Skip to main content

Carbonization of Urban Areas

  • Chapter
  • First Online:
Book cover Recarbonization of the Biosphere

Abstract

Re-carbonization of forests and agricultural land along with carbon dioxide (CO2) capture technologies have been considered as options for reducing atmospheric CO2 concentrations. Can also land ecosystem created by humans like urban areas be carbonized? The urbanization trends show that the area and importance of urban areas continue to increase. Share of urban population will increase from present 50–70% by 2050 globally. The share of urban land will be also progressively increasing to accommodate the growing number of urbanites. This chapter discusses strategies to carbonize urban areas, so that more carbon (C) per capita can be stored there. It starts with a brief review of the urban C cycle. Two features distinguish urban C cycle from other ecosystems: (1) C cycling of a city and its footprint are intimately linked and (2) natural and anthropogenic components of urban C cycle are equally important and interdependent. Then major pools and mechanisms for C storage in both anthropogenic and natural components of the urban C cycle are reviewed. Soil is the largest potential C pool followed by vegetation, landfills, and buildings. Although in settlements with low build-up density soil may store more than 60% of total C, in densely build-up cities soils and buildings may store equal amounts of C (∼40% each). Potential of C storage in landfills is controversial, because of accompanying methane emissions and groundwater pollution. Human-driven mechanisms for C accumulation in cities such as import of C containing materials supersede the natural ones. At the current level of technology any option for carbonization of cities is associated with CO2 emissions. Cities’ carbonization cannot be considered as a pure increase in C storage per capita, but as an increase in C storage per capita per unit of emitted CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NH3 :

ammonia

CaCO3 :

calcite

C:

carbon

CO2 :

carbon dioxide

CO:

carbon monoxide

GHGs:

greenhouse gases

CH4 :

methane

NOx :

nitrogen oxides

N2O:

nitrous oxide

SOM:

soil organic matter

VOC:

volatile organic compounds

References

  • Barlaz MA (1998) Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Glob Biogeochem Cycle 12(2):373–380

    Article  CAS  Google Scholar 

  • Bramryd T (1980) Fluxes and accumulation of organic carbon in urban ecosystems on a global scale. In: Bornkamm R, Lee JA, Seaward MRD (eds) Urban ecology. Blackwell Scientific Publications, Oxford, pp 3–12

    Article  CAS  Google Scholar 

  • Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States. Ecol Appl 15(6):1851–1863

    Article  Google Scholar 

  • Buchanan AH, Levine SB (1999) Wood-based building materials and atmospheric carbon emissions. Environ Sci Policy 2(6):427–437

    Article  Google Scholar 

  • Chapin SF III, Mooney HA, Chapin MC et al (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Churkina G (2008) Modeling the carbon cycle of urban systems. Ecol Model 216(2):107–113

    Article  Google Scholar 

  • Churkina G, Brown D, Keoleian GA (2010) Carbon stored in human settlements: the conterminous US. Glob Chang Biol 16:135–143. doi:10.1111/j.1365-2486.2009.02002.x

    Article  Google Scholar 

  • Decker EH, Elliot S, Smith FA et al (2000) Energy and material flow through the urban ecosystem. Ann Rev Energy Environ 25:685–740

    Article  Google Scholar 

  • EEA (2006) Urban sprawl in Europe – the ignored challenge. European Environment Agency (EEA), Copenhagen

    Google Scholar 

  • EPA (2006) Solid waste management and greenhouse gases. A life cycle assessment of emissions and sinks, 3rd edn. The U. S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Gajda J (2001) Absorption of atmospheric carbon dioxide. Portland Cement Association, Skokie

    Google Scholar 

  • Gajda J, Miller FM (2000) Concrete as a sink for atmospheric carbon dioxide: a literature review and estimation of CO2 absorption. Portland Cement Association, Skokie

    Google Scholar 

  • Getter KL, Rowe DB, Robertson GP et al (2009) Carbon sequestration potential of extensive green roofs. Environ Sci Technol 43(19):7564–7570. doi:10.1021/es901539x

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P et al (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci 2:217–231

    Article  CAS  Google Scholar 

  • Hiller R, McFadden J, Kljun N (2011) Interpreting CO2 fluxes over a suburban lawn: the influence of traffic emissions. Bound-Lay Meteorol 138(2):215–230. doi:10.1007/s10546-010-9558-0

    Article  Google Scholar 

  • IEA (2008) World energy outlook 2008: executive summary. International Energy Agency (IEA), Paris

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR et al (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jo HK, McPherson GE (1995) Carbon storage and flux in urban residential greenspace. J Environ Manage 45:109–133

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436. doi:10.1890/1051-0761(2000) 0102.0.CO;2

    Article  Google Scholar 

  • Kennedy C, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Indust Ecol 11(2):43–59

    Article  CAS  Google Scholar 

  • Larcher W (2002) Physiological plant ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Lavalle C, Demicheli L, Kasanko M et al (2002) Towards an urban atlas. Assessment of spatial data on 25 European cities and urban areas. European Environmental Agency, Copenhagen

    Google Scholar 

  • Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sed 7(4):247–260. doi:10.1065/jss2007.06.235

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2010) Carbon dynamics and pools in major forest biomes of the world. In: Lorenz K, Lal R (eds) Carbon sequestration in forest ecosystems. Springer, Dordrecht

    Chapter  Google Scholar 

  • Lorenz K, Preston CM, Kandeler E (2006) Soil organic matter in urban soils: estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Geoderma 130(3–4):312–323

    Article  CAS  Google Scholar 

  • Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2(12):837–841

    Article  CAS  Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    Article  PubMed  CAS  Google Scholar 

  • Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35(4):1566–1575

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups. Oecologia 114:471–482

    Article  PubMed  CAS  Google Scholar 

  • Sailor DJ (2008) A green roof model for building energy simulation programs. Energy Build 40(8):1466–1478

    Article  Google Scholar 

  • Townsend-Small A, Czimczik CI (2010) Carbon sequestration and greenhouse gas emissions in urban turf. Geophys Res Lett 37(2):L02707. doi:10.1029/2009gl041675

    Article  Google Scholar 

  • UN (2008) World urbanization prospects: the 2007 revision (trans: United Nations Department of Economic and Social Affairs PD). United Nations, New York

    Google Scholar 

  • Upton B, Miner R, Spinney M et al (2008) The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 32(1):1–10. doi:10.1016/j.biombioe.2007.07.001

    Article  CAS  Google Scholar 

  • Warith M, Li X, Jin H (1995) Bioreactor landfills: state-of-the-art review. Emir J Eng Res 10(1):1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Churkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Churkina, G. (2012). Carbonization of Urban Areas. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_16

Download citation

Publish with us

Policies and ethics