Skip to main content

Modeling Nonlinear Beta Probability Fields

  • Chapter
Geostatistics Oslo 2012

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 17))

Abstract

Experiments show how proportions correspond to nonlinear conditional Beta probability distributions. The encountered Beta probability (Beta p-) fields are not classic p-fields. Instead, the shape of the local probability density function (pdf) for the proportion p(x) random variable at each location x changes with the Beta distribution parameters, α and β which are in turn functions of the local proportions themselves. In addition, Beta random variables with different shapes of pdf’s have nonlinear pairwise relations; therefore, Beta p-fields are nonlinear. A novel approach was devised to transform these complex Beta random variables to the Gaussian domain which can be modeled with linear geostatistics. A property of the proposed numerical approach is that kriging estimates, when back transformed to the Beta domain using Riemann’s integral produce unbiased Beta parameters. This contribution completely redefines the p-field concept with a theoretical framework enabling the simulation of Beta p-fields of proportions. This work represents new findings in geostatistics and motivates further studies of probability or proportion as a random variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biver P, Haas A, Bacquet C (2002) Uncertainties in facies proportion estimation II: application to geostatistical simulation of facies and assessment of volumetric uncertainties. Math Geol 34(6):703–714

    Article  Google Scholar 

  2. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222

    Article  Google Scholar 

  3. Deutsch CV, Journel AG (1998) GSLIB, geostatistical software library and users guide, 2nd edn. Oxford University Press, New York, Oxford, 369 pp

    Google Scholar 

  4. Deutsch CV, Lan Z (2008) The Beta distribution for categorical variables at different support. In: Graeme Bonham-Carter QC (ed) Progress in geomathematics. Springer, Berlin, pp 445–456

    Chapter  Google Scholar 

  5. DiDinato AR, Morris A (1993) Algorithm 708: significant digit computation of the incomplete Beta function ratios. ACM Trans Math Softw 18:360–373

    Article  Google Scholar 

  6. Froidevaux R (1993) Probability field simulation. In: Soares A (ed) Geostatistics Troia. Kluwer Academic, Norwell, pp 73–84

    Chapter  Google Scholar 

  7. Goetschalckx R, Pascal P, Hoey J (2011) Continuous correlated Beta processes. In: Walsh T (ed.) International joint conference on artificial intelligence (IJCAI). Barcelona, Spain

    Google Scholar 

  8. Haas A, Formery P (2002) Uncertainties in facies proportion estimation I. Theoretical framework: the Dirichlet distribution. Math Geol 34(6):679–702

    Article  Google Scholar 

  9. Isaacs EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York, 561 pp

    Google Scholar 

  10. Journel AG (1994) Modeling uncertainty: some conceptual thoughts. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer Academic, Dordrecht

    Google Scholar 

  11. Leuangthong OL (2004) The promises and pitfalls of direct simulation. In: Leuangthong OL, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Banff

    Google Scholar 

  12. Pyrcz M, Deutsch CV (2001) Two artifacts of probability field simulation. Math Geol 33(7):775–799

    Article  Google Scholar 

  13. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  14. Soares A (2001) Direct sequential simulation and cosimulation. Math Geol 33(8):911–926

    Article  Google Scholar 

  15. Srivastava RM (1992) Reservoir characterization with probability field simulation. SPE Form Eval 7(4):927–937

    Google Scholar 

  16. Srivastava RM, Froidevaux R (2004) Probability field simulation: a retrospective. In: Leuangthong OL, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Banff, pp 55–64

    Google Scholar 

  17. Vargas-Guzman JA (2004) Geostatistics for power models of Gaussian fields. Math Geol 36:307–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Daniel Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Khan, K.D., Vargas-Guzman, J.A. (2012). Modeling Nonlinear Beta Probability Fields. In: Abrahamsen, P., Hauge, R., Kolbjørnsen, O. (eds) Geostatistics Oslo 2012. Quantitative Geology and Geostatistics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4153-9_7

Download citation

Publish with us

Policies and ethics