Skip to main content

On the Mechanism of the Respiratory Complex I

  • Chapter
  • First Online:
A Structural Perspective on Respiratory Complex I

Abstract

The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with a proton translocation across the membrane. Electron microscopy revealed the two-part structure of the enzyme complex. A peripheral arm, composed of globular subunits, extends into the aqueous phase. The arm contains the cofactors for the electron transfer reaction, namely one flavin mononucleotide and up to ten iron-sulfur (Fe/S) clusters. The other arm, the membrane arm, is embedded in the lipid bilayer and thus necessarily involved in proton translocation. The (ubi)quinone binding site is most likely located at the interface of the two arms. The oxidation of one NADH is coupled with the translocation of four protons (current consensus value). In this chapter, the binding of the substrates NADH and (ubi)quinone, the role of individual Fe/S clusters and the mechanism of proton translocation are discussed in the light of recent data obtained from our laboratories. We propose a model for the respiratory complex I, in which the electron transfer is coupled with the translocation of two protons by the (ubi)quinone redox chemistry and the residual two protons by conformational changes within the membrane arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlers PM, Zwicker K, Kerscher S, Brandt U (2000) Function of conserved acidic residues in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 275:23577–23582

    Article  PubMed  CAS  Google Scholar 

  • Albracht SPJ (1993) Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH:ubiquinone oxidoreductase. Biochim Biophys Acta 1144:221–224

    Article  PubMed  CAS  Google Scholar 

  • Amarneh B, Vik SB (2003) Mutagenesis of subunit N of the Escherichia coli complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 42:4800–4808

    Article  PubMed  CAS  Google Scholar 

  • Auriol C, Bestel-Corre G, Claude JB, Soucaille P, Meynial-Salles I (2011) Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proc Natl Acad Sci USA 108:1278–1283

    Article  PubMed  CAS  Google Scholar 

  • Baranova EA, Holt PJ, Sazanov LA (2007) Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J Mol Biol 366:140–154

    Article  PubMed  CAS  Google Scholar 

  • Belevich G, Euro L, Wikström M, Verkhovskaya M (2007) Role of the conserved arginine 274 and histidine 224 and 228 residues in the NuoCD subunit of complex I from Escherichia coli. Biochemistry 46:526–533

    Article  PubMed  CAS  Google Scholar 

  • Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284:29773–29783

    Article  PubMed  CAS  Google Scholar 

  • Birrell JA, Hirst J (2010) Truncation of subunit ND2 disrupts the threefold symmetry of the antiporter-like subunits in complex I from higher metazoans. FEBS Lett 584:4247–4252

    Article  PubMed  CAS  Google Scholar 

  • Bogachev AV, Murtazina RA, Skulachev VP (1996) H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237

    PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  PubMed  CAS  Google Scholar 

  • Bungert S, Krafft B, Schlesinger R, Friedrich T (1999) One-step purification of the NADH dehydrogenase fragment of the Escherichia coli by means of Strep-tag affinity chromatography. FEBS Lett 460:207–211

    Article  PubMed  CAS  Google Scholar 

  • Chatelet C, Gaillard J, Pétillot Y, Louwagie M, Meyer J (1999) A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex aeolicus. Biochem Biophys Res Commun 261:885–889

    Article  PubMed  CAS  Google Scholar 

  • Clason T, Ruiz T, Schägger H, Peng G, Zickermann V, Brandt U, Michel H, Radermacher M (2010) The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169:81–88

    Article  PubMed  CAS  Google Scholar 

  • Cross M, Xiao Z, Maes EM, Czernuszewicz RS, Drew SC, Pilbrow JR, George GN, Wedd AG (2002) Removal of a cysteine ligand from rubredoxin: assembly of Fe(2)S(2) and Fe(S-Cys)(3)(OH) centres. J Biol Inorg Chem 7:781–790

    Article  PubMed  CAS  Google Scholar 

  • Darrouzet E, Issartel JP, Lunardi J, Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 431:34–38

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • de Jongh HH, Goormaghtigh E, Ruysschaert JM (1997) Amide-proton exchange of water-soluble proteins of different structural classes studied at the submolecular level by infrared spectroscopy. Biochemistry 36:13603–13610

    Article  PubMed  Google Scholar 

  • Djavadi-Ohaniance L, Hatefi Y (1975) Oxidation of NADPH by submitochondrial particles from beef heart in complete absence of transhydrogenase activity from NADPH to NAD. J Biol Chem 250:9397–9403

    PubMed  CAS  Google Scholar 

  • Duarte M, Pópulo H, Videira A, Friedrich T, Schulte U (2002) Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis. Biochem J 364:833–839

    Article  PubMed  CAS  Google Scholar 

  • Dupuis A, Prieur I, Lunardi J (2001) Toward a characterization of the connecting module of complex I. J Bioenerg Biomembr 33:159–168

    Article  PubMed  CAS  Google Scholar 

  • Earley FGP, Patel SD, Ragan CI, Attardi G (1987) Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H]dihydrorotenone. FEBS Lett 219:108–112

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Hoberman HD, Howard RL, King TE, Lee CP, Mackler B, Sottocasa G (1965) Stereospecificity of certain soluble and particulate preparations of mitochondrial reduced nicotinamide-adenine dinucleotide dehydrogenase from beef heart. Nature 207:940–941

    Article  PubMed  CAS  Google Scholar 

  • Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134

    Article  PubMed  CAS  Google Scholar 

  • Fisher N, Rich PR (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Flemming D, Schlitt A, Spehr V, Bischof T, Friedrich T (2003a) Iron-sulfur cluster N2 of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is located on subunit NuoB. J Biol Chem 278:47602–47609

    Article  PubMed  CAS  Google Scholar 

  • Flemming D, Hellwig P, Friedrich T (2003b) Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coli NADH:ubiquinone oxidoreductase. J Biol Chem 278:3055–3062

    Article  PubMed  CAS  Google Scholar 

  • Flemming D, Hellwig P, Lepper S, Kloer DP, Friedrich T (2006) Catalytic importance of acidic amino acids on subunit NuoB of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 281:24781–24789

    Article  PubMed  CAS  Google Scholar 

  • Flemming D, Stolpe S, Schneider D, Hellwig P, Friedrich T (2005) A possible role for iron-sulfur cluster N2 in proton translocation by the NADH:ubiquinone oxidoreductase (complex I). J Mol Microbiol Biotechnol 10:208–222

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (1998) The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation driven proton-pump? J Bioenerg Biomembr 33:169–179

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Hellwig P (2010) Redox-induced conformational changes within the Escherichia coli NADH ubiquinone oxidoreductase (complex I): an analysis by mutagenesis and FTIR spectroscopy. Biochim Biophys Acta 1797:659–663

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Pohl T (13 Aug 2007, posting date) Chapter 3.2.4, NADH as Donor. In: Böck A, Curtis III R, Kaper JB, Neidhardt FC, Nyström T, Slauch JM, Squires CL (eds) EcoSal – Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC. http://www.ecosal.org

  • Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–541

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Steinmüller K, Weiss H (1995) The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 367:107–111

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Stolpe S, Schneider D, Barquera B, Hellwig P (2005) Ion translocation by the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochem Soc Trans 33:836–839

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga J, Gaillard J, Meyer J (1993) Mutated forms of a [2Fe-2S] ferredoxine with serine ligands to the iron-sulfur-cluster. Biochem Biophys Res Commun 194:104–111

    Article  PubMed  CAS  Google Scholar 

  • Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135

    Article  PubMed  CAS  Google Scholar 

  • Galkin A, Dröse S, Brandt U (2006) The proton pumping stoichiometry of purified mitochondrial complex I reconstituted in proteoliposomes. Biochim Biophys Acta 1757:1575–1581

    Article  PubMed  CAS  Google Scholar 

  • Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    Article  PubMed  CAS  Google Scholar 

  • Golinelli MP, Akin LA, Crouse BR, Johnson MK, Meyer J (1996) Cysteine ligand swapping on a deletable loop of the [2Fe-2S] ferredoxin from Clostridium pasteurianum. Biochemistry 35:8995–9002

    Article  PubMed  CAS  Google Scholar 

  • Golinelli MP, Chatelet C, Duin EC, Johnson MK, Meyer J (1998) Extensive ligand rearrangements around the [2Fe-2S] cluster of Clostridium pasteurianum ferredoxin. Biochemistry 37:10429–10437

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA (2003) The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 278:25731–25737

    Article  PubMed  CAS  Google Scholar 

  • Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem 23:405–450

    Article  PubMed  CAS  Google Scholar 

  • Gregory RB, Lumry R (1985) Hydrogen-exchange evidence for distinct structural classes in globular proteins. Biopolymers 24:301–326

    Article  PubMed  CAS  Google Scholar 

  • Grigorieff N (1999) Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 9:476–483

    Article  PubMed  CAS  Google Scholar 

  • Guénebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276:105–112

    Article  PubMed  Google Scholar 

  • Gunner MR, Saleh MA, Cross E, ud-Doula A, Wise M (2000) Backbone dipoles generate positive potentials in all proteins: Origins and implications of the effect. Biophys J 78:1126–1144

    Article  PubMed  Google Scholar 

  • Gurrath M, Friedrich T (2004) Adjacent cysteines are capable of ligating the same tetranuclear iron-sulfur cluster. Proteins: Struct Funct Bioinform 56:556–563

    Article  CAS  Google Scholar 

  • Guzman L, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  Google Scholar 

  • Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR (1989) New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 171:4617–4622

    PubMed  CAS  Google Scholar 

  • Haris PI, Chapman D (1995) The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers 37:251–263

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y, Hanstein WG (1973) Interactions of reduced and oxidized triphosphopyridine nucleotides with the electron-transport system of bovine heart mitochondria. Biochemistry 12:3515–3522

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Stuchebrukhov AA (2010) Electron tunneling in respiratory complex I. Proc Natl Acad Sci USA 107:19157–19162

    Article  PubMed  CAS  Google Scholar 

  • Hellwig P, Scheide D, Bungert S, Mäntele W, Friedrich T (2000) FTIR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli: oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chain. Biochemistry 39:10884–10891

    Article  PubMed  CAS  Google Scholar 

  • Hellwig P, Stolpe S, Friedrich T (2004) Fourier transform infrared spectroscopic study on the conformational reorganization in Escherichia coli complex I due to redox-driven proton translocation. Biopolymers 74:69–72

    Article  PubMed  CAS  Google Scholar 

  • Hielscher R (2009) The role of lipids and nucleotides in the catalytic mechanism of proteins from the respiratory chain: an electrochemical and infrared spectroscopic approach, PhD thesis, University of Strasbourg

    Google Scholar 

  • Hielscher R, Wenz T, Stolpe S, Hunte C, Friedrich T, Hellwig P (2006) Monitoring redox-dependent contribution of lipids in Fourier transform infrared difference spectra of complex I from Escherichia coli. Biopolymers 82:291–294

    Article  PubMed  CAS  Google Scholar 

  • Hielscher R, Friedrich T, Hellwig P (2011) Far and mid infrared spectroscopic analysis on the substrate induced structural dynamics of the respiratory complex I. Chemphyschem 12:217–224

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe P, Carroll J, Sazanov LA (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45:4413–4420

    Article  PubMed  CAS  Google Scholar 

  • Hirst J (2010) Towards the molecular mechanism of respiratory complex I. Biochem J 425:327–339

    Article  CAS  Google Scholar 

  • Hirst J, King MS, Pryde KR (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36:976–980

    Article  PubMed  CAS  Google Scholar 

  • Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA (1996) Watching proteins move using site-directed spin labeling. Structure 4:779–783

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329:448–451

    Article  PubMed  CAS  Google Scholar 

  • Hustedt EJ, Smirnov AI, Laub FL, Cobb CE, Beth AH (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency CW-EPR data. Biophys J 74:1861–1877

    Article  Google Scholar 

  • Hvidt A, Linderstrøm-Lang K (1954) Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta 14:574–575

    Article  PubMed  CAS  Google Scholar 

  • Hvidt A, Linderstrøm-Lang K (1955) The kinetics of the deuterium exchange of insulin with D2O; an amendment. Biochim Biophys Acta 16:168–169

    Article  PubMed  CAS  Google Scholar 

  • Hvidt A, Nieslen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287–386

    Article  PubMed  CAS  Google Scholar 

  • Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  PubMed  CAS  Google Scholar 

  • Ingledew WJ, Ohnishi T (1980) An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem J 186:111–117

    PubMed  CAS  Google Scholar 

  • Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chemphyschem 3:927–932

    Article  PubMed  CAS  Google Scholar 

  • Kashani-Poor N, Zwicker K, Kerscher S, Brandt U (2001) A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 276:24082–24087

    Article  PubMed  CAS  Google Scholar 

  • Kikuno R, Miyata T (1985) Sequence homologies among mitochondrial DNA-coded URF2, URF4 and URF5. FEBS Lett 189:85–88

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Fuchs JA, Woodward CK (1993) Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry 32:9600–9608

    Article  PubMed  CAS  Google Scholar 

  • Knox DG, Rosenberg A (1980) Fluctuations of protein structure as expressed in the distribution of hydrogen exchange rate constants. Biopolymers 19:1049–1068

    Article  PubMed  CAS  Google Scholar 

  • Kohlstädt M, Dörner K, Labatzke R, Koç C, Hielscher R, Schiltz E, Einsle O, Hellwig P, Friedrich T (2008) Heterologous production, isolation, characterization and crystallization of a soluble fragment of the NADH:ubiquinone oxidoreductase (complex I) from Aquifex aeolicus. Biochemistry 47:13036–13045

    Article  CAS  Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. J Adv Protein Chem 38:181–364

    Article  CAS  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612

    Article  PubMed  CAS  Google Scholar 

  • Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T (1995) Isolation and characterization of the proton-translocating NADH:ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem 230:538–548

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783

    Article  PubMed  CAS  Google Scholar 

  • Mamedova AA, Holt PJ, Carroll J, Sazanov LA (2004) Substrate-induced conformational change in bacterial complex I. J Biol Chem 279:23830–23836

    Article  PubMed  CAS  Google Scholar 

  • Marshall D, Fisher N, Grigic L, Zickermann V, Brandt U, Shannon RJ, Hirst J, Lawrence R, Rich PR (2006) ATR-FTIR redox difference spectroscopy of Yarrowia lipolytica and bovine complex I. Biochemistry 45:5458–5467

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Hagerhall C (2003) The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 549:7–13

    Article  PubMed  CAS  Google Scholar 

  • Meyer J, Andrade SL, Einsle O (2008) Thioredoxin-like [2Fe-2S] ferredoxin. In: Messerschmidt A (ed) Handbook of metalloproteins. Wiley, New York

    Google Scholar 

  • Moparthi VK, Kumar B, Mathiesen C, Hägerhäll C (2011) Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. Biochim Biophys Acta 1807:427–436

    Article  PubMed  CAS  Google Scholar 

  • Morina K, Schulte M, Hubrich F, Dörner K, Steimle S, Stolpe S, Friedrich T (2011) Engineering the respiratory complex I to an energy-converting NADPH:ubiquinone oxidoreductase. J Biol Chem 286:34627–34634

    Article  PubMed  CAS  Google Scholar 

  • Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109

    Article  PubMed  CAS  Google Scholar 

  • Murai M, Sekiguchi K, Nishioka T, Miyoshi H (2009) Characterization of the inhibitor binding site in mitochondrial NADH-ubiquinone oxidoreductase by photoaffinity labeling using a quinazoline-type inhibitor. Biochemistry 48:688–698

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, Miyoshi H, Yagi T (2003) The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42:746–754

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Yano T, Yagi T, Ohnishi T (2005) Characterization of the iron-sulfur cluster N7 (N1c) in the subunit NuoG of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. J Biol Chem 280:301–307

    PubMed  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Han H, Matsuno-Yagi A, Keinan E, Sinha SC, Yagi T, Ohnishi T (2010) The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor. FEBS Lett 584:883–888

    Article  PubMed  CAS  Google Scholar 

  • Oden KL, DeVeaux LC, Vibat CR, Cronan JE Jr, Gennis RB (1990) Genomic replacement in Escherichia coli K-12 using covalently closed circular plasmid DNA. Gene 96:29–36

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T (1998) Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T (2010) Piston drives a proton pump. Nature 465:428–429

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579:4555–4561

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi ST, Salerno JC, Ohnishi T (2010a) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1891–1893

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Nakamaru-Ogiso E, Ohnishi ST (2010b) A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). FEBS Lett 584:4131–4137

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi ST, Shinzawa-Itoh K, Ohta K, Yoshikawa S, Ohnishi T (2010c) New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Biochim Biophys Acta 1797:1901–1909

    Article  PubMed  CAS  Google Scholar 

  • Ohshima M, Miyoshi H, Sakamoto K, Takegami K, Iwata J, Kuwabara K, Iwamura H, Yagi T (1998) Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones. Biochemistry 37:6436–6445

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Fritzsch G, Zickermann V, Schägger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO, Michel H (2003) Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium Aquifex aeolicus. Biochemistry 42:3032–3039

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Ermler U, Clason T, Bornemann S, Hedderich T, Ruiz T, Meyer B, Radermacher M, Karras M, Michel H (2010) The structure of complex I from the hyperthermophilic eubacterium Aquifex aeolicus. Biochim Biophys Acta 1797(Supplement):22

    Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Pohl T, Uhlmann M, Kaufenstein M, Friedrich T (2007a) Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry 46:10694–10702

    Article  PubMed  CAS  Google Scholar 

  • Pohl T, Bauer T, Dörner K, Stolpe S, Sell P, Zocher G, Friedrich T (2007b) Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Biochemistry 46:6588–6596

    Article  PubMed  CAS  Google Scholar 

  • Pohl T, Walter J, Stolpe S, Defeu Soufo HJ, Graumann PL, Friedrich T (2007c) Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase. BMC Biochem 8:13

    Article  PubMed  CAS  Google Scholar 

  • Pohl T, Schneider D, Hielscher R, Stolpe S, Dörner K, Kohlstädt M, Böttcher B, Hellwig P, Friedrich T (2008) Nucleotide-induced conformational changes in the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochem Soc Trans 36:971–975

    Article  PubMed  CAS  Google Scholar 

  • Pohl T, Spatzal T, Aksoyoglu M, Schleicher E, Rostas AM, Lay H, Glessner U, Boudon C, Hellwig P, Weber S, Friedrich T (2010) Spin labeling of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1797:1894–1900

    Article  PubMed  CAS  Google Scholar 

  • Ragan CI, Racker E (1973) Resolution and reconstitution of the mitochondrial electron transport system. IV. The reconstitution of rotenone-sensitive reduced nicotinamide adenine dinucleotide-ubiquinone reductase from reduced nicotinamide adenine dinucleotide dehydrogenase and phospholipids. J Biol Chem 248:6876–6884

    PubMed  CAS  Google Scholar 

  • Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–246

    Article  PubMed  CAS  Google Scholar 

  • Ritter M, Anderka O, Ludwig B, Mäntele W, Hellwig P (2003) Electrochemical and FTIR spectroscopic characterization of the cytochrome bc1 complex from Paracoccus denitrificans: evidence for protonation reactions coupled to quinone binding. Biochemistry 42:12391–12399

    Article  PubMed  CAS  Google Scholar 

  • Rothery RA, Workun GJ, Weiner JH (2008) The prokaryotic complex iron-sulfur molybdoenzyme family. Biochim Biophys Acta 1778:1897–1929

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Pohl T, Walter J, Dörner K, Kohlstädt M, Berger A, Spehr V, Friedrich T (2008) Assembly of the Escherichia coli complex I. Biochim Biophys Acta 1777:735–739

    Article  PubMed  CAS  Google Scholar 

  • Schuler F, Yano T, DiBernardo S, Yagi T, Yankovskaya V, Singer T, Casida JE (1999) NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. Proc Natl Acad Sci USA 96:4149–4153

    Article  PubMed  CAS  Google Scholar 

  • Screpanti E, Hunte C (2007) Discontinuous membrane helices in transport proteins and their correlation with function. J Struct Biol 159:261–267

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi K, Murai M, Miyoshi H (2009) Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochim Biophys Acta 1787:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Sharpley MS, Hirst J (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 281:34803–34809

    Article  PubMed  CAS  Google Scholar 

  • Sharpley MS, Shannon RJ, Draghi F, Hirst J (2006) Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45:241–248

    Article  PubMed  CAS  Google Scholar 

  • Sled VD, Friedrich T, Leif H, Weiss H, Meinhardt SW, Fukumori Y, Calhoun MW, Gennis RB, Ohnishi T (1993) Bacterial NADH-quinone oxidoreductases: iron-sulfur clusters and related problems. J Bioenerg Biomembr 25:347–356

    Article  PubMed  CAS  Google Scholar 

  • Sled VD, Rudnitzky NI, Hatefi Y, Ohnishi T (1994) Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I). Biochemistry 33:10069–10075

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Finel M, Korolik V, Mendz GL (2000) Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch Microbiol 174:1–10

    Article  PubMed  CAS  Google Scholar 

  • Spehr V, Schlitt A, Scheide D, Guénebaut V, Friedrich T (1999) Overexpression of the Escherichia coli nuo-operon and isolation of the overproduced NADH:ubiquinone oxidoreductase (complex I). Biochemistry 38:16261–16267

    Article  PubMed  CAS  Google Scholar 

  • Steimle S, Bajzath C, Dörner K, Schulte M, Bothe V, Friedrich T (2011) Role of subunit NuoL for proton translocation by respiratory complex I. Biochemistry 50:3386–3393

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J 73:3287–3298

    Article  PubMed  CAS  Google Scholar 

  • Stolpe S, Friedrich T (2004) The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383

    Article  PubMed  CAS  Google Scholar 

  • Tocilescu MA, Zickermann V, Zwicker K, Brandt U (2010) Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta 1797:1883–1890

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann M, Friedrich T (2005) EPR signals assigned to Fe/S cluster N1c of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) derive from cluster N1a. Biochemistry 44:1653–1658

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234

    Article  PubMed  CAS  Google Scholar 

  • van Hellemond JJ, van der Klei A, van Weelden SW, Tielens AG (2003) Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos Trans R Soc Lond B Biol Sci 358:205–213

    Article  PubMed  CAS  Google Scholar 

  • Verkhovskaya ML, Belevich N, Euro L, Wikström M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci USA 105:3763–3767

    Article  PubMed  CAS  Google Scholar 

  • Vigano C, Smeyers M, Raussens V, Scherilinckx F, Ruysschaert JM, Goormaghtigh E (2004) Hydrogen-deuterium exchange in membrane proteins monitored by IR spectroscopy: a new tool to resolve protein structure and dynamics. Biopolymers 74:19–26

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AD (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim Biophys Acta 1364:169–185

    Article  PubMed  CAS  Google Scholar 

  • Vogel R, Siebert F (2000) Vibrational spectroscopy as a tool for probing protein function. Curr Opin Chem Biol 4:518–523

    Article  PubMed  CAS  Google Scholar 

  • Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Quart Rev Biophys 25:253–324

    Article  CAS  Google Scholar 

  • Wallace BJ, Young IG (1977) Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta 461:84–100

    Article  PubMed  CAS  Google Scholar 

  • Weerakoon DR, Olson JW (2008) The Campylobacter jejuni NADH:ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. J Bacteriol 190:915–925

    Article  PubMed  CAS  Google Scholar 

  • Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. J Mol Biol 233:109–122

    Article  PubMed  CAS  Google Scholar 

  • Weiss H, Friedrich T, Hofhaus G, Preis D (1991) The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 197:563–576

    Article  PubMed  CAS  Google Scholar 

  • Whitehead SJ, Rossington KE, Hafiz A, Cotton NP, Jackson JB (2005) Zinc ions selectively inhibit steps associated with binding and release of NADP(H) during turnover of proton-translocating transhydrogenase. FEBS Lett 579:2863–2867

    Article  PubMed  CAS  Google Scholar 

  • Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–304

    Article  PubMed  Google Scholar 

  • Wittekindt C, Schwarz M, Friedrich T, Koslowski T (2009) Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: an unusual mechanism deduced from atomistic theory and bioinformatics. J Am Chem Soc 131:8134–8140

    Article  PubMed  CAS  Google Scholar 

  • Workun GJ, Moquin K, Rothery RA, Weiner JH (2008) Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold. Microbiol Mol Biol Rev 72:228–248

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42:2266–2274

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Sled VD, Ohnishi T, Yagi T (1994) Expression of the 25-kilodalton iron-sulfur subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. Biochemistry 33:494–499

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Chu SS, Sled VD, Ohnishi T, Yagi T (1997) The proton-translocating NADH-quinone oxidoreductase (NDH-1) of thermophilic bacterium Thermus thermophilus HB-8. Complete DNA sequence of the gene cluster and thermostable properties of the expressed NQO2 subunit. J Biol Chem 272:4201–4211

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Magnitsky S, Ohnishi T (2000) Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction. Biochim Biophys Acta 1459:299–304

    Article  PubMed  CAS  Google Scholar 

  • Yano T, Dunham WR, Ohnishi T (2005) Characterization of the delta μH+-sensitive ubisemiquinone species (SQNf) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry 44:1744–1754

    Article  PubMed  CAS  Google Scholar 

  • Yeh AP, Ambroggio XI, Andrade SLA, Einsle O, Chatelet C, Meyer J, Rees DC (2002) High resolution crystal structures of the wild type and Cys-55  →  Ser and Cys-59  →  Ser variants of the thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. J Biol Chem 277:34499–34507

    Article  PubMed  CAS  Google Scholar 

  • Zickermann V, Bostina M, Hunte C, Ruiz T, Radermacher M, Brandt U (2003) Functional implications from an unexpected position of the 49-kDa subunit of NADH:ubiquinone oxidoreductase. J Biol Chem 278:29072–29078

    Article  PubMed  CAS  Google Scholar 

  • Zscherp C, Barth A (2001) Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. Biochemistry 40:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Zwicker K, Galkin A, Dröse S, Grgic L, Kerscher S, Brandt U (2006) The Redox-Bohr group associated with iron-sulfur cluster N2 of complex I. J Biol Chem 281:23013–23017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work in the authors groups was supported by the Deutsche Forschungsge­meinschaft (DFG; to TF and OE), by the Volkswagen Foundation (to TF and PH) and the Agence Nationale de Recherche (ANR; to PH). We thank Linda Williams for her help in correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friedrich, T., Hellwig, P., Einsle, O. (2012). On the Mechanism of the Respiratory Complex I. In: Sazanov, L. (eds) A Structural Perspective on Respiratory Complex I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4138-6_2

Download citation

Publish with us

Policies and ethics