Skip to main content

Strain Fields and Electronic Structure of Vacancy-Type Defects in Graphene from First-Principles Simulation

  • Conference paper
  • First Online:
Book cover Nanodevices and Nanomaterials for Ecological Security

Abstract

Using density-functional-theory simulations we study strain fields near vacancy-type defects in graphene. We demonstrate that the strain fields around these defects reach far into the unperturbed hexagonal network. As metal and other adatoms have a high affinity to the non-perfect and strained regions of graphene, they are therefore attracted by the reconstructed defects. This explains the intriguing behavior of metal adatoms on graphene reported in recent experiments (Cretu et al., Phys Rev Lett 105:196102, 2010). Finally, we analyze the electronic band structure of graphene with defects and show that some defects open a semiconductor gap in graphene, which may be important for carbon-based nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197

    Article  ADS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  ADS  Google Scholar 

  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385

    Article  ADS  Google Scholar 

  5. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26

    Article  Google Scholar 

  6. Appelhans DJ, Lin Z, Lusk MT (2010) Two-dimensional carbon semiconductor: density functional theory calculations. Phys Rev B 82:073410

    Article  ADS  Google Scholar 

  7. Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC (2011) From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106:105505

    Article  ADS  Google Scholar 

  8. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-Doping of graphene through electrothermal reactions with ammonia. Science 324:768

    Article  ADS  Google Scholar 

  9. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337

    Article  Google Scholar 

  10. Biel B, Blase X, Triozon F, Roche S (2009) Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett 102:096803

    Article  ADS  Google Scholar 

  11. Zheng XH, Rungger I, Zeng Z, Sanvito S (2009) Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Phys Rev B 80:235426

    Article  ADS  Google Scholar 

  12. Dutta S, Manna AK, Pati SK (2009) Intrinsic half-metallicity in modified graphene nanoribbons. Phys Rev Lett 102:096601

    Article  ADS  Google Scholar 

  13. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571

    Article  ADS  Google Scholar 

  14. Pinto H, Jones R, Goss J, Briddon PR (2010) Mechanisms of doping graphene. Phys Status Solidi (a) 207:2131

    Article  ADS  Google Scholar 

  15. Subrahmanyam K, Manna AK, Pati SK, Rao CNR (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70

    Article  ADS  Google Scholar 

  16. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykkö P, Nieminen RM (2009) Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys Rev Lett 102:126807

    Article  ADS  Google Scholar 

  17. Cretu O, Krasheninnikov AV, Rodriguez-Manzo JA, Sun L, Nieminen R, Banhart F (2010) Migration and localization of metal atoms on strained graphene. Phys Rev Lett 105:196102

    Article  ADS  Google Scholar 

  18. Zhang W, Sun L, Xu Z, Krasheninnikov AV, Huai P, Zhu Z, Banhart F (2010) Migration of gold atoms in graphene ribbons: role of the edges. Phys Rev B 81:125425

    Article  ADS  Google Scholar 

  19. Hentschel M, Guinea F (2007) Orthogonality catastrophe and Kondo effect in graphene. Phys Rev B 76:115407

    Article  ADS  Google Scholar 

  20. Sengupta K, Baskaran G (2008) Tuning Kondo physics in graphene with gate voltage. Phys Rev B 77:045417

    Article  ADS  Google Scholar 

  21. Dóra B, Thalmeier P (2007) Reentrant Kondo effect in Landau-quantized graphene: influence of the chemical potential. Phys Rev B 76:115435

    Article  ADS  Google Scholar 

  22. Shytov AV, Katsnelson MI, Levitov LS (2007) Vacuum polarization and screening of supercritical impurities in graphene. Phys Rev Lett 99:236801

    Article  ADS  Google Scholar 

  23. Bittencourt C, Felten A, Douhard B, Colomer J-F, Van Tendeloo G, Drube W, Ghijsen J, Pireaux J-J (2007) Metallic nanoparticles on plasma treated carbon nanotubes: nanohybrids. Surf Sci 601:2800

    Article  ADS  Google Scholar 

  24. Yazyev OV, Pasquarello A (2008) Effect of metal elements in catalytic growth of carbon nanotubes. Phys Rev Lett 100:156102

    Article  ADS  Google Scholar 

  25. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346

    Article  ADS  Google Scholar 

  26. Sielemann R, Kobayashi Y, Yoshida Y, Gunnlaugsson HP, Weyer G (2008) Magnetism at single isolated Iron atoms implanted in graphite. Phys Rev Lett 101:137206

    Article  ADS  Google Scholar 

  27. Gan Y, Sun L, Banhart F (2008) One- and two-dimensional diffusion of metal atoms in graphene. Small 4:587

    Article  Google Scholar 

  28. Santos EJG, Ayuela A, Fagan SB, Mendes Filho J, Azevedo DL, Souza Filho AG, Sánchez-Portal D (2008) Switching on magnetism in Ni-doped graphene: density functional calculations. Phys Rev B 78:195420

    Article  ADS  Google Scholar 

  29. Santos EJG, Ayuela A, Sánchez-Portal D (2010) First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New J Phys 12:053012

    Article  Google Scholar 

  30. Rodriguez-Manzo JA, Cretu O, Banhart F (2010) Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 4:3422

    Article  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput Mater Sci 6:15

    Article  Google Scholar 

  32. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  ADS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  ADS  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  MathSciNet  ADS  Google Scholar 

  35. Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6:723

    Article  ADS  Google Scholar 

  36. Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV, Nieminen RM (2004) Irradiation-induced magnetism in graphite: a density functional study. Phys Rev Lett 93:187202

    Article  ADS  Google Scholar 

  37. El-Barbary AA, Telling RH, Ewels CP, Heggie MI, Briddon PR (2003) Structure and energetics of the vacancy in graphite. Phys Rev B 68:144107

    Article  ADS  Google Scholar 

  38. Krasheninnikov AV, Nordlund K, Sirviö M, Salonen E, Keinonen J (2001) Formation of ion irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys Rev B 63:245405

    Article  ADS  Google Scholar 

  39. Krasheninnikov AV (2001) Predicted scanning microscopy images of carbon nanotubes with atomic vacancies. Solid State Commun 118:361

    Article  ADS  Google Scholar 

  40. Krasheninnikov AV, Banhart F, Li JX, Foster AS, Nieminen R (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428

    Article  ADS  Google Scholar 

  41. Krasheninnikov AV, Lehtinen PO, Foster AS, Nieminen RM (2006) Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem Phys Lett 418:132

    Article  ADS  Google Scholar 

  42. Lee G, Wang CZ, Yoon E, Hwang N, Kim D, Ho KM (2005) Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys Rev Lett 95:205501

    Article  ADS  Google Scholar 

  43. Scarpa F, Adhikari S, Phani AS (2010) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20:065709

    Article  ADS  Google Scholar 

  44. Lehtinen PO, Foster AS, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen RM (2003) Magnetic properties and diffusion of adatoms on a graphene sheet. Phys Rev Lett 91:017202

    Article  ADS  Google Scholar 

  45. Krasheninnikov AV, Nordlund K, Lehtinen PO, Foster AS, Ayuela A, Nieminen RM (2004) Adsorption and migration of carbon adatoms on zigzag nanotubes. Carbon 42:1021

    Article  Google Scholar 

  46. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652

    Article  ADS  Google Scholar 

  47. Repp J, Moresco F, Meyer G, Rieder K-H (2000) Substrate mediated long-range oscillatory interaction between adatoms: Cu/Cu(111). Phys Rev Lett 85:2981

    Article  ADS  Google Scholar 

  48. Hornekær L, Rauls E, Xu W, Šljivaňcanin Ž, Otero R, Stensgaard I, Lægsgaard E, Hammer B, Besenbacher F (2006) Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys Rev Lett 97:186102

    Article  ADS  Google Scholar 

  49. Buchs G, Krasheninnikov AV, Ruffieux P, Göoning P, Foster AS, Nieminen RM, Gröning O (2007) Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption. New J Phys 9:275

    Article  Google Scholar 

  50. Cheianov VV, Fal’ko VI (2006) Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Phys Rev Lett 97:226801

    Article  ADS  Google Scholar 

  51. Santos EJG, Sánchez-Portal D, Ayuela A (2010) Magnetism of substitutional co impurities in graphene: realization of single π vacancies. Phys Rev B 81:125433

    Article  ADS  Google Scholar 

  52. Krasheninnikov AV, Miyamoto Y, Tománek D (2007) Role of electronic excitations in ion collisions with carbon nanostructures. Phys Rev Lett 99:016104

    Article  ADS  Google Scholar 

  53. Compagnini G, Giannazzo F, Sonde S, Raineri V, Rimini E (2009) Ion irradiation and defect formation in single layer graphene. Carbon 47:3201

    Article  Google Scholar 

  54. Åström JA, Krasheninnikov AV, Nordlund K (2004) Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model. Phys Rev Lett 93:215503; (2005) 94:029902(E)

    Google Scholar 

  55. Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BWH, Jarillo-Herrero P, Marcus CM (2009) Etching of graphene devices with a helium ion beam. ACS Nano 3:2674

    Article  Google Scholar 

  56. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nano-structured materials. J Appl Phys 107:071301

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Banhart for useful discussions. This work has been supported by the Academy of Finland through Centers of Excellence and other projects. The Finnish IT Center for Science has provided generous grants of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krasheninnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Krasheninnikov, A.V. (2012). Strain Fields and Electronic Structure of Vacancy-Type Defects in Graphene from First-Principles Simulation. In: Shunin, Y., Kiv, A. (eds) Nanodevices and Nanomaterials for Ecological Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4119-5_5

Download citation

Publish with us

Policies and ethics