Skip to main content

Status and Perspectives of Ion Track Electronics for Advanced Biosensing

  • Conference paper
  • First Online:

Abstract

New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell–secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alfonta L, Bukelman O, Chandra A, Fahrner WR, Fink D, Fuks D, Golovanov V, Hnatowicz V, Hoppe K, Kiv A, Klinkovich I, Landau M, Morante JR, Tkachenko NV, Vacik J, Valden M (2009) Strategies towards advanced ion track-based biosensors. Radiat Eff Defects Solids 164:431–437

    Article  ADS  Google Scholar 

  2. Bačáková L, Grausová L, Vacík J, Fraczek A, Blazewicz S, Kromka A, Potocký Š, Vaněček M, Bílková P, Vorlíček V, Švorčík V (2007) Adhesion, growth and differentiation of bone-derived cells on surfaces modified with carbon nanoparticles. In: Proceedings of vacuum and plasma surface engineering, Liberec – Hejnice, Czech Republic, 24–26 Oct 2007

    Google Scholar 

  3. Bačáková L, Grausova L, Vacik J, Fraczek A, Blazewicz S, Kromka A, Vanecek M, Svorcik V (2007) Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diamond Relat Mater 16:2133–2140

    Article  ADS  Google Scholar 

  4. Berg HC, Turner L (1990) Chemotaxis of bacteria in glass capillary arrays. Biophys J 58:919–930

    Article  Google Scholar 

  5. Fink D, Petrov AV, Fahrner WR, Hoppe K, Papaleo RM, Berdinsky AS, Chandra A, Zrineh A, Chadderton LT (2003) In: Proceedings of ICONSAT, Kolkata, 18–21 Dec 2003

    Google Scholar 

  6. Fink D, Petrov A, Hoppe K, Fahrner WR (2003) Characterization of “TEMPOS”. In: Proceedings of MRS fall meeting, Boston, 1–5 Dec 2003

    Google Scholar 

  7. Fink D (ed) (2004) Fundamentals of ion irradiated polymers, Springer series in materials science, vol 63. Springer, Berlin, and references therein

    Google Scholar 

  8. Fink D (ed) (2004) Transport processes in ion irradiated polymers, Springer series in materials science, vol 65. Springer, Berlin, and references therein

    Google Scholar 

  9. Fink D, Klinkovich I, Bukelman O, Marks RS, Kiv A, Fuks D, Fahrner WR, Alfonta L (2009) Glucose determination using a re-usable enzyme-modified ion track membrane. Biosens Bioelectron 24:2702–2706

    Article  Google Scholar 

  10. Fink D, Cruz S, Vacik J, Hnatowicz V (2010) Electrical current pulsations of funnel-type tracks in electrolytes. Radiat Eff Defects Solids 165:818–833

    Article  Google Scholar 

  11. Fink D, Kiv A, Fuks D, Saad A, Vacik J, Hnatowicz V, Chandra A (2010) Conducting swift heavy ion track networks. Radiat Eff Defects Solids 165:227–244

    Article  ADS  Google Scholar 

  12. Fink D, Muñoz G, Cruz SA, Gopejenko V (2010) Neural network-type behavior of some non-biological systems. In: Proceedings of the III Congreso Español de Informática (CEDI), Valencia, Spain, 7–10 Sept 2010

    Google Scholar 

  13. Fink D, Vacik J, Hnatowicz V, Muñoz G, Alfonta L, Klinkovich I (2010) Funnel-type etched ion tracks in polymers. Radiat Eff Defects Solids 165:343–361

    Article  ADS  Google Scholar 

  14. Fink D, Muñoz G, Cruz S, Alfonta L, Mandabi Y, Vacík J, Hnatowicz V, Chandra A (2010) Electroactive polymers as obtained by insertion of electrolytes into polymeric ion tracks. In: Proceedings of international conference on electroactive polymers, Surajkund, India, 21–26 Nov 2010

    Google Scholar 

  15. Fink D, Cruz S, Muñoz G, Kiv A (2011) Current spikes in polymeric latent and funnel-type ion tracks. Radiat Eff Defects Solids 166:373–388

    Article  Google Scholar 

  16. Fink D, Muñoz G, Vacik J, Alfonta L (2011) Pulsed biosensing. IEEE Sens J 11(4):1084–1087

    Article  Google Scholar 

  17. Fink D, Muñoz HG, Alfonta L (2011) Ion track-based urea sensing. Sensors and Actuators B 156:467–470

    Google Scholar 

  18. Fink D, Cruz SA (2012) Optimization of transport processes in etched ion tracks in polymers for biosensing. In: Proceedings of MRS Cancun, 2011

    Google Scholar 

  19. Giselbrecht S, Gietzelt T, Gottwald E, Trautmann C, Truckenmueller R, Weibezahn KF, Welle A (2006) 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomed Microdevices 8:191–199

    Article  Google Scholar 

  20. Hoppe K, Fink D, Fahrner WR (2008) Metallized nuclear tracks in quasi MOS structures for nanoelectronic devices. J Electrochem Soc 155:7–11

    Article  Google Scholar 

  21. Kumari A, Pasini P, Daunert S (2008) Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem 391:1619–1627

    Article  Google Scholar 

  22. Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317:331–332

    Article  Google Scholar 

  23. Muñoz G, Klinkovich I, Alfonta L, Fink D (2010) Glucose sensing with complex polymer-electrolyte systems. IEEE Sens J 10:1849–1854

    Article  Google Scholar 

  24. Sinha D, Petrov A, Fink D, Fahrner WR, Hoppe K, Chandra A (2004) TEMPOS structures with gold nanoclusters. Radiat Eff Defects Solids 159:517–533

    Article  ADS  Google Scholar 

  25. Siwy Z, Apel P, Baur D, Dobrev D, Korchev Y, Neumann R, Spohr R, Trautmann C, Voss K (2003) Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf Sci 532–535:1061–1066

    Article  Google Scholar 

  26. Siwy Z, Behrends J, Fertig N, Fulinski A, Martin CR, Neumann R, Trautmann C, Molares ET (2004) Nanovorrichtung für einen geladenen Teilchenfluss und Verfahren zu deren Herstellung. German Patent DE 10244914A1 (5.6.2004)

    Google Scholar 

  27. Siwy Z, Trofin L, Kohli P, Baker LL, Trautmann C, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001

    Article  Google Scholar 

Download references

Acknowledgement

L.A. acknowledges the support of the Edmond J. Safra Center for the Design and Engineering of Functional Biopolymers at Ben-Gurion University. D.F. thanks the Instituto de Fisica at the Universidade Federal do Rio Grande do Sul, Porto Alegre and the Universidad Autónoma Metropolitana, Iztapalapa, México City for his invitation as a guest researcher. We thank CAPES Brazilia and the Czech Grant Agency for support. We are further obliged to Prof. S. Cruz and O. Bukelman for valuable discussions and Dr. P. Apel from JNRI Dubna, Russia for providing us with the ion-irradiated foils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fink, D. et al. (2012). Status and Perspectives of Ion Track Electronics for Advanced Biosensing. In: Shunin, Y., Kiv, A. (eds) Nanodevices and Nanomaterials for Ecological Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4119-5_24

Download citation

Publish with us

Policies and ethics