Skip to main content

Nanocomposite Materials – Ferroelectric Nanoparticles Incorporated into Porous Matrix

  • Conference paper
  • First Online:
Nanodevices and Nanomaterials for Ecological Security

Abstract

The aim of this work is to develop a technique of introducing selected ferroelectric materials (TGS, NaNO2, NaNO3, KNO3, ADP and KDP) into porous glasses with various average pore dimensions. The major efforts have been focused on the investigations of the influence of the pore size on physical properties and phase transition of nanocrystals embedded into porous matrix with different methods. The ferroelectrics have been introduced into porous glasses from the melt and a water solution. The results of electrical (dielectric, pyroelectric) and thermal (dilatometric and calorimetric) measurements have shown that the observed sequences of phase transitions in ferroelectric materials embedded into the porous glasses are similar to that in bulk crystals. The relationship between phase transition and melt temperatures versus average values of pore dimensions has been determined. The experimentally observed shift of phase transition temperatures is the superposition of the size effect and pressure effect created by the difference of thermal expansion coefficients of ferroelectrics nanoparticles and glass matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott JF (2002) Ferroelectrics memories. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  2. Beskrovny A, Golosovsky I, Fokin A, Kumzerov Yu, Kurbakov A, Naberezhnov A, Vakhrushev S (2002) Structure evolution and formation of a pre-melted state in NaNO2 confined within porous glass. Appl Phys A 74:S1001–S1003

    Article  ADS  Google Scholar 

  3. Tien Ch, Charnaya EV, Lee MK, Baryshnikov SV, Sun SY, Michel D, Böhlmann W (2005) Coexistence of melted and ferroelectric states in sodium nitrite within mesoporous sieves. Phys Rev B 72. doi:104105-1-104105-6

  4. Jang EK, Woo JW, Yu I (1995) Rochelle salt nanocrystals embedded in porous glass. Application of Ferroelectrics, 1994.ISAF’94. Proceedings of the Ninth IEE International Symposium. CH34 16-50-7803-1847-1/95/1995IEEE:210–213

    Google Scholar 

  5. Balabinskaya AS, Ivanova EN, Ivanova MS, Kumzerov Yu A, Pan’kova SV, Poborchii VV, Romanov SG, Solovyev VG, Khanin SD (2005) Investigation into the electrical and optical properties of sodium nitrite and sodium nitrate nanoparticles in regular porous matrices. Glass Phys Chem 31:330–336

    Google Scholar 

  6. Rysiakiewicz-Pasek E, Lukaszewski P, Bogdanska J (2000) Investigation of correlation between mechanical properties and structure of porous glasses. Opt Appl XXX:173

    Google Scholar 

  7. Rysiakiewicz-Pasek E, Poprawski R, Polanska J, Urbanowicz A, Sieradzki A (2006) Properties of porous glasses with embedded ferroelectric materials. J Non-Cryst Solids 352:4309–4314

    Article  ADS  Google Scholar 

  8. Zhong WL, Wang YG, Zhang PL, Qu BD (1994) Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys Rev B 50:698

    Article  ADS  Google Scholar 

  9. Strukov BA, Davitadze ST, Shulman SG, Goltzman BV, Lemanov VV (2004) Ferroelectrics 301:157

    Article  Google Scholar 

  10. Rysiakiewicz-Pasek E, Komar J, Ciżman A, Poprawski R (2010) Calorimetric investigations of NaNO3 and NaNO2 embedded into porous glasses. J Non-Cryst Solids 356:661–663

    Article  ADS  Google Scholar 

  11. Beskrovny AI, Vasilovskii SG, Vakhrushev SB, Kurdyukov DA, Zvorykina OI, Naberezhnov AA, Okuneva NM, Tovar M, Rysiakiewicz-Pasek E, Jaguś P (2010) Temperature dependences of the order parameter for sodium nitrite embedded into porous glasses and opals. Phys Solid State 52(5):1092–1097

    Article  ADS  Google Scholar 

  12. Mu R, Jin F, Morgan SH, Henderson DO, Silberman E (1994) The possible crossover effects of NaNO3 confined in porous media: from bulk to clusters. J Chem Phys 100:7749

    Article  ADS  Google Scholar 

  13. Poprawski R, Rysiakiewicz-Pasek E, Sieradzki A, Ciżman A, Polańska J (2007) Ferroelectric phase transitions in KNO3 embedded into porous glasses. J Non-Cryst Solids 353:4457–4461

    Article  ADS  Google Scholar 

  14. Sieradzki A, Komar J, Rysiakiewicz-Pasek E, Ciżman A, Poprawski R (2010) Calorimetric investigations of phase transitions in KNO3 embedded into porous glasses. Ferroelectrics 402(1):60–65

    Article  Google Scholar 

  15. Landoldt HH, Börnstein R (1982) Group III crystal and solid state physics. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  16. Chandra S, Kumar A (1990) Proton conduction in some solid hydrates and KDP-ferroelectric family materials. Solid State Ion 40:863

    Article  Google Scholar 

  17. Diosa JE, Vargas RA, Albinsson L (2004) Dielectric relaxation of KH2PO4 above room temperature. Phys Status Solidi (b) 241:1369

    Article  ADS  Google Scholar 

  18. Colla EV, Fokin AV, Kumzerov Yu A (1997) Ferroelectrcs properties of nanosize KDP particles. Solid State Commun 103(2):127–130

    Google Scholar 

  19. Marciniszyn T, Poprawski R, Komar J, Sieradzki A (2010) Phase transition in NH4H2PO4-porous glass composites. Phase Transit 83(10–11):909–916

    Article  Google Scholar 

  20. Sieradzki A, Ciżman A, Poprawski R, Marciniszyn T, Rysiakiewicz-Pasek E (2011) Electrical conductivity and phase transitions in KDP- and ADP-porous glass nanocomposites. J Adv Dielectr 1:337–343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rysiakiewicz-Pasek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rysiakiewicz-Pasek, E., Poprawski, R., Ciżman, A., Sieradzki, A. (2012). Nanocomposite Materials – Ferroelectric Nanoparticles Incorporated into Porous Matrix. In: Shunin, Y., Kiv, A. (eds) Nanodevices and Nanomaterials for Ecological Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4119-5_16

Download citation

Publish with us

Policies and ethics