Skip to main content

Ab Initio Calculations of SrTiO3 (111) Surfaces

  • Conference paper
  • First Online:
Nanodevices and Nanomaterials for Ecological Security

Abstract

The paper presents the results of calculations of SrTiO3 polar (111) surface relaxations and energetics using the ab initio code CRYSTAL and a hybrid description of exchange and correlation. Using a hybrid B3LYP approach, the surface relaxation has been calculated for the two possible Ti and SrO3 SrTiO3 (111) surface terminations. For both Ti and SrO3-terminated SrTiO3 (111) surfaces upper layer atoms, with the sole exception of SrO3-terminated surface Sr atom, relax inwards. The calculated surface relaxation energy for Ti-terminated SrTiO3 (111) surface is almost five times larger, than the surface relaxation energy for SrO3-terminated SrTiO3 (111) surface. The surface energy for Ti-terminated SrTiO3 (111) surface (4.99 eV) is smaller, than the surface energy for SrO3-terminated SrTiO3 (111) surface (6.30 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noguera C (1996) Physics and chemistry at oxide surfaces. Cambridge University Press, New York

    Book  Google Scholar 

  2. Auciello O, Scott JF, Ramesh R (1998) The physics of ferroelectric memories. Phys Today July:22–24

    Google Scholar 

  3. Padilla J, Vanderbilt D (1998) Ab initio study of SrTiO3 surfaces. Surf Sci 418:64–70

    Article  ADS  Google Scholar 

  4. Cheng C, Kunc K, Lee MH (2000) Structural relaxation and longitudinal dipole moment of SrTiO3 (001) (1 × 1) surfaces. Phys Rev B 62:10409–10418

    Article  ADS  Google Scholar 

  5. Heifets E, Eglitis RI, Kotomin EA, Maier J, Borstel G (2001) Ab initio modeling of surface structure of SrTiO3 perovskite crystals. Phys Rev B 64:235417

    Article  ADS  Google Scholar 

  6. Erdman N, Poeppelmeier K, Asta M, Warschkov O, Ellis DE, Marks L (2002) The structure and chemistry of the TiO2-rich surface of SrTiO3. Nature 419:55–57

    Article  ADS  Google Scholar 

  7. Eglitis RI, Vanderbilt D (2008) First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces. Phys Rev B 77:195408

    Article  ADS  Google Scholar 

  8. Kimura S, Yamauchi J, Tsukada M, Watanabe S (1995) First-principles study on electronic structure of the (001) surface of SrTiO3. Phys Rev B 51:11049–11054

    Article  ADS  Google Scholar 

  9. Li ZQ, Zhu JL, Wu CQ, Tang Z, Kawazoe Y (1998) Relaxation of TiO2- and SrO-terminated SrTiO3 (001) surfaces. Phys Rev B 58:8075–8078

    Article  ADS  Google Scholar 

  10. Herger R, Willmott PR, Bunk O, Schlepütz CM, Patterson BD, Delley B (2007) Surface of strontium titanate. Phys Rev Lett 98:076102

    Article  ADS  Google Scholar 

  11. Heifets E, Eglitis RI, Kotomin EA, Maier J, Borstel G (2002) First-principles calculations for SrTiO3 (100) surface structure. Surf Sci 513:211–220

    Article  ADS  Google Scholar 

  12. Johnston K, Castell MR, Paxton AT, Finnis MW (2004) SrTiO3 (001) (2x1) reconstructions: first-principles calculations of surface energy and atomic structure compared with scanning tunnelling microscopy. Phys Rev B 70:085415

    Article  ADS  Google Scholar 

  13. Piskunov S, Kotomin EA, Heifets E, Maier J, Eglitis RI, Borstel G (2005) Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces. Surf Sci 575:75–88

    Article  ADS  Google Scholar 

  14. Li YL, Choudhury S, Haeni JH, Biegalsky MD, Vasudevarao A, Sharan A, Ma HZ, Levy J, Gopalan V, Trolier-McKinstry S, Schlom DG, Jia QX, Chen LQ (2006) Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films. Phys Rev B 73:184112

    Article  ADS  Google Scholar 

  15. Bickel N, Schmidt G, Heinz K, Müller K (1989) Ferroelectric relaxation of the SrTiO3 (100) surface. Phys Rev Lett 62:2009–2011

    Article  ADS  Google Scholar 

  16. Hikita T, Hanada T, Kudo M, Kawai M (1993) Structure and electronic state of the TiO2 and SrO terminated SrTiO3 (100) surfaces. Surf Sci 287–288:377–381

    Article  Google Scholar 

  17. Kudo M, Hikita T, Hanada T, Sekine R, Kawai M (1994) Surface reactions at the controlled structure of SrTiO3 (001). Surf Interface Anal 22:412–416

    Article  Google Scholar 

  18. Kido Y, Nishimura T, Hoshido Y, Mamba H (2000) Surface structures of SrTiO3 (001) and Ni/SrTiO3 (001) studied by medium-energy ion scattering and SR-photoelectron spectroscopy. Nucl Instrum Methods Phys Res B 161–163:371–376

    Article  Google Scholar 

  19. Ikeda A, Nishimura T, Morishita T, Kido Y (1999) Surface relaxation and rumpling of TiO2-terminated SrTiO3 (001) determined by medium ion scattering. Surf Sci 433–435:520–524

    Article  Google Scholar 

  20. Charlton G, Brennan S, Muryn CA, McGrath R, Norman D, Turner TS, Charlton G (2000) Surface relaxation of SrTiO3. Surf Sci 457:L376–L380

    Article  Google Scholar 

  21. van der Heide PAW, Jiang QD, Kim YS, Rabalais JW (2001) X-ray photoelectron spectroscopic and ion scattering study of the SrTiO3 (001) surface. Surf Sci 473:59–70

    Article  Google Scholar 

  22. Maus-Friedrichs W, Frerichs M, Gunhold A, Krischok S, Kempter V, Bihlmayer G (2002) The characterization of SrTiO3 (001) with MIES, UPS(Hel) and first-principles calculations. Surf Sci 515:499–506

    Article  ADS  Google Scholar 

  23. Bottin F, Finocchi F, Noguera C (2003) Stability and electronic structure of the (1x1) SrTiO3 (110) polar surfaces by first-principles calculations. Phys Rev B 68:035418

    Article  ADS  Google Scholar 

  24. Heifets E, Goddard WA III, Kotomin EA, Eglitis RI, Borstel G (2004) Ab initio calculations of the SrTiO3 (110) polar surface. Phys Rev B 69:035408

    Article  ADS  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  ADS  Google Scholar 

  26. Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys Rev B 33:8800–8802; (1989) Erratum: accurate and simple density functional for the electronic exchange energy: generalized gradient approximation 40:3399(E)-3399(E); Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Google Scholar 

  27. Enterkin JA, Subramanian AK, Russell BC, Castell MR, Poeppelmeier KR, Marks LD (2010) A homologous series of structures on the surface of SrTiO3 (110). Nat Mater 9:245–247

    ADS  Google Scholar 

  28. Tanaka H, Kawai T (1996) Surface structure of reduced SrTiO3 (111) observed by scanning tunnelling microscopy. Surf Sci 365:437–442

    Article  ADS  Google Scholar 

  29. Chang J, Park YS, Kim SK (2008) Atomically flat single-terminated SrTiO3 (111) surface. Appl Phys Lett 92:152910

    Article  ADS  Google Scholar 

  30. Pojani A, Finocchi F, Noguera C (1999) Polarity on the SrTiO3 (111) and (110) surfaces. Surf Sci 442:179–198

    Article  ADS  Google Scholar 

  31. Saunders VR, Dovesi R, Roetti C, Causa M, Harrison NM, Orlando R, Zicovich-Wilson CM (2006) CRYSTAL-2006 User Manual. University of Torino, Torino

    Google Scholar 

  32. Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci 29:165–178

    Article  Google Scholar 

  33. Eglitis RI, Vanderbilt D (2008) Ab initio calculations of the atomic and electronic structure of CaTiO3 (001) and (011) surfaces. Phys Rev B 78:155420

    Article  ADS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  ADS  Google Scholar 

  35. Hay PJ, Wadt WR (1984) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–291

    Google Scholar 

  36. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–307

    Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  MathSciNet  ADS  Google Scholar 

  38. Hellwege KH, Hellwege AM (eds) (1969) Ferroelectrics and related substances, Landolt-Börnstein, New Series, Group III, vol 3. Springer, Berlin

    Google Scholar 

  39. Catlow CRA, Stoneham AM (1983) Ionicity in solids. J Phys C: Solid-State Phys 16:4321–4338

    Article  ADS  Google Scholar 

  40. Bochicchio RC, Reale HF (1993) On the nature of crystalline bonding: extension of statistical population analysis to two- and three- dimensional crystalline systems. J Phys B: At Mol Opt Phys 26:4871–4883

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by European Social Fund project Nr. 2009/0202/1DP/1.1.1.2.0/09/APIA/VIAA/141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Eglitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Eglitis, R.I. (2012). Ab Initio Calculations of SrTiO3 (111) Surfaces. In: Shunin, Y., Kiv, A. (eds) Nanodevices and Nanomaterials for Ecological Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4119-5_11

Download citation

Publish with us

Policies and ethics