Skip to main content

A Review on Barley Yellow Dwarf Virus

  • Chapter
  • First Online:
Book cover Crop Production for Agricultural Improvement

Abstract

Barley yellow dwarf (BYD) is an economically important, most widely distributed, and destructive viral disease of cereals. The disease is caused by barley yellow dwarf virus (BYDV). The virus is phloem-limited pathogen and causes variable symptoms depending upon the virus isolate, crop species, time of infection and environmental conditions. In general, yellowing and reddening of leaves starting from upper tips to downward, dwarfing and reduction in size and number of ears and grains are observed in infected plants. BYDV is an isometric Luteovirus containing ssRNA genome and is transmitted in a persistent manner by more than 20 species of aphids. The disease has a serious economic impact and yield losses are variable and may range from 5% to 50%. Presently, five isolates of the virus such as PAV, MAV, RMV, RPV and SGV have been identified based on epitope profile and aphid vector specificity. The five biologically well defined isolates are sub-divided in two sub-groups; subgroup 1 including PAV, MAV and SGV and subgroup 11 including RMV and RPV. Although the disease can be managed by integrated approaches such as cultural practices, use of pesticides and host plant resistance, but planting of crop varieties with tolerance or resistant is the most economical and practical approach. Development of host plant resistance through genetic engineering is another possible option to combat the problem. Recombinant DNA technology has opened up the prospect of increasing genetic diversity in crop plants by their transformation. This will further help to increase the genetic resistance of bread wheats while using BYDV-resistant genes already identified in wild relatives of wheat and other species. Given the economic significance of the disease and its world wide occurrence, this review has been presented to update the knowledge of various aspects of BYDVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen E, Wang S, Miller WA (1999) Barley yellow dwarf virus RNA requires a cap-independent translation sequence because it lacks a 5′ cap. Virology 253:139–144

    Article  PubMed  CAS  Google Scholar 

  • Aslam M, Iftikhar A (1990) Barley yellow dwarf in Pakistan. In: Burnett PA (ed) World perspectives on barley yellow dwarf. In: Proceeding of the international workshop, Udine, Italy, CIMMYT, Mexico, DF Mexico, p 511

    Google Scholar 

  • Baltenberger DE, Ohm HW, Foster JE (1987) Reactions of oat, barley and wheat to infection with barley yellow dwarf isolates. Crop Sci 27:195–198

    Article  Google Scholar 

  • Banks PM, Larkin PJ, Bariana HS, Lagudah RA (1995) The use of cell culture for sub chromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum inter-medium to wheat. Genome 38:395–405

    Article  PubMed  CAS  Google Scholar 

  • Banttari EE (1965) Occurrence of aster yellows in barley in the field and its comparison with BYD. Phytopathology 55:838–843

    Google Scholar 

  • Barbara DJ, Kawata EE, Veng PP, Lister RM, Larkins BA (1987) Production of cDNA clones from the MAV isolate of barley yellow dwarf. J Gen Virol 68:2419

    Article  CAS  Google Scholar 

  • Barry JK, Miller WA (2002) A programmed ribosomal frameshift that requires base pairing across four kilobases suggests a novel mechanism for controlling ribosome and replicase traffic on a viral RNA. Proc Natl Acad Sci 99:11133–11138

    Article  PubMed  CAS  Google Scholar 

  • Bashir M, Aftab M, Khan S, Hussain A, Muhammad D, Bhatti MB (1994) Screening of barley and oats genotypes against barley yellow dwarf Luteovirus under natural infection conditions in Pakistan. Barley yellow dwarf virus newsletter no: 5, CIMMYT, Mexico, pp 13–14

    Google Scholar 

  • Bashir M, Berchinger L, Kisana NS, Mujahid MY, Hashmi NI (1997) Detection of five serotypes of barley yellow dwarf virus in Pakistan. Rachis 16:47–49

    Google Scholar 

  • Bekele G, Singh RP, Alcala M (1988) Results of the first international scab resistance screening nursery (SRSN), 1985–86, CIMMYT, Mexico, D.F. Mexico

    Google Scholar 

  • Brakke MK, Rochow WF (1974) Ribonucleic acid of barley yellow dwarf virus. Virology 61:240–248

    Article  PubMed  CAS  Google Scholar 

  • Brault VJ, Van den Heuvel FJM, Verbeek M, Ziegler-Graff V, Reutenauer A (1995) Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J 14:650–659

    PubMed  CAS  Google Scholar 

  • Brettel RIS, Banks PM, Cauderon Y, Cheng XZM, Larkin PJ, Waterhouse PM (1988) A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol 13:599–603

    Article  Google Scholar 

  • Brown CM, Dinesh-Kumar SP, Miller WA (1996) Local and distant sequences are required for efficient read-through of the barley yellow dwarf virus-PAV coat protein gene stop codon. J Virol 70:5884–5892

    PubMed  CAS  Google Scholar 

  • Bruehl GW (1961) Barley yellow dwarf, a virus disease of cereals and grasses. Monograph no-1. Am Phythopathol Soc, USA

    Google Scholar 

  • Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ (1996) Plant viruses online- barley yellow dwarf Luteovirus, Description and lists from the VIDE database. Version 16th January, URL http://biology.annu.edu.Au/Groups/MES/Vide

  • Bruyere A, Brault V, Ziegler-Graff V, Simonis MT, van den Heuvel JFJM (1997) Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging, and on virus accumulation, symptoms and aphid transmission. Virology 230:323–334

    Article  PubMed  CAS  Google Scholar 

  • Burnett PA (ed) (1990) World perspectives on barley yellow dwarf virus. In: Proceedings of the international workshop CIMMYT, Mexico, DF Mexico

    Google Scholar 

  • Burnett PA, Comeau A, Qualset CO (1995a) Host plant tolerance or resistance for control of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 321–343

    Google Scholar 

  • Burnett PA, Comeau A, Qualset CO (1995b) Host plant tolerance or resistance for control of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 9–28

    Google Scholar 

  • Cauderon Y (1979) Use of Agropyron species for wheat improvement. In: Proceeding of the conference broadening genetic base of crops, Wageningen, The Netherlands, pp 129–139

    Google Scholar 

  • Ceoloni C, Del Signore G, Pasquini M, Testa A (1988) Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetic symposium, Institute of Plant Science Research, Cambridge, UK, pp 221–226

    Google Scholar 

  • Chay C, Smith DM, Vaughan R, Gray SM (1996a) Diversity among isolates within the PAV serotype of barley yellow dwarf virus. Phytopathology 86:370–377

    Article  CAS  Google Scholar 

  • Chay CA, Gunasinge UB, Dinesh-Kumar SP, Miller WA, Gray SM (1996b) Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219:57–65

    Article  PubMed  CAS  Google Scholar 

  • Cheng SL, Domier LL, D’Arcy CJ (1994) Detection of the readthrough protein of barley yellow dwarf virus. Virology 202:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • CIMMYT (1984) Barley yellow dwarf: a proceeding of the workshop CIMMYT, Mexico, DF Mexico

    Google Scholar 

  • Collin J, St-Pierre CA, Comeau A (1990) Analysis of genetic resistance to barley yellow dwarf virus in Triticale and evaluation of various estimators of resistance. In: Burnett PA (ed) World perspectives on barley yellow dwarf virus: Proceedings of the international workshop CIMMYT, Mexico, DF Mexico, p 404

    Google Scholar 

  • Comeau A (1988a) La resistance aux purcerons; aspects theoriques et pratiques [Aphid resistance; theoretical and practical aspects]. In: Vincent C, Coderre D (eds) Principles et applications de lutte biologique. Lutte biologique, Canada, pp 433–449

    Google Scholar 

  • Comeau A (1988b) Tolerance of oats to barley yellow dwarf. In: Mattsson B, Lyhagen R (eds) Proceedings of the third international oat conference, Lund, Sweden, 4–8 July 1988, Svaloev (Sweden): Svaloef AB, 1989.- ISBN 91-971323-0-6, pp 279–286

    Google Scholar 

  • Comeau A, Barnett G (1979) Effect of barley yellow dwarf virus on N, P, K fertilizer efficiency and on the harvest index of oats. Can J Plant Sci 59:43–54

    Article  CAS  Google Scholar 

  • Comeau A, Jedlinski H (1990) Successful breeding for barley yellow dwarf virus resistance: a systematic approach related to other agronomic characteristic. In: Burnett PA (ed) World perspectives on barley yellow dwarf. Proceeding of the international workshop, Udine, Italy, CIMMYT, Mexico, DF Mexico, p 511

    Google Scholar 

  • Comeau A, Makkouk KM (1988) Recent progress in barley yellow dwarf virus research: interactions with diseases and other stresses. Rachis 7:5–11

    Google Scholar 

  • Comeau A, Makkouk KM (1992) Recent progress in barley yellow dwarf virus research: interactions with diseases and other stresses. Rachis 7:5–11

    Google Scholar 

  • Comeau A, Pierre CA (1990) The genetics of resistance to barley yellow dwarf virus. In: Burnett PA (ed) World perspectives on barley yellow dwarf. Proceeding of the international workshop, Udine, Italy, CIMMYT, Mexico, DF Mexico, pp 107–112

    Google Scholar 

  • Couture L (1982) Receptivite de cultivars de cereales de printemps a la contamination des graines sur inflorescence par les Fusarium spp. Can J Plant Sci 62:29–34

    Article  Google Scholar 

  • Creamer R, Falk BW (1989) Characterization of a nonspecifically aphid-transmitted CA-RPV isolate of barley yellow dwarf virus. Phytopathology 79:942–946

    Article  Google Scholar 

  • Creamer R, Falk BW (1990) Direct detection of transcapsidated barley yellow dwarf luteoviruses in doubly infected plants. J Gen Virol 71:211–217

    Article  CAS  Google Scholar 

  • D’Arcy CJ (1995) Symptomatology and host range of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. American Psychopathological Society Press, St. Paul, pp 9–28

    Google Scholar 

  • D’Arcy CJ, Burnett PA (eds) (1995) Barley yellow dwarf, 40 years of progress. APS Press, St. Paul, p 374

    Google Scholar 

  • D’Arcy CJ, Domier LL, Mayo MA (2000) Family Luteoviridae. In: van Regenmortel MHV, Fauquest CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) Virus taxonomy: seventh report of the international committee on the taxonomy of viruses. Academic, San Diego, pp 775–784

    Google Scholar 

  • Demler SA, de Zoeten GA (1991) The nucleotide sequence and luteovirus-like nature of RNA1 of an aphid non-transmissible strain of pea enation mosaic virus. J Gen Virol 72:1819–1834

    Article  PubMed  CAS  Google Scholar 

  • Demler SA, Rucker DG, de Zoeten GA (1993) The chimeric nature of the genome of pea enation mosaic virus: the independent replication of RNA 2. J Gen Virol 74:1–14

    Article  PubMed  CAS  Google Scholar 

  • Demler SA, de Zoeten GA, Adam G, Harris KF (1996) Pea enation mosaic enamovirus: properties and aphid transmission. In: Harrison BD, Murant AF (eds) The plant viruses, polyhedral virions and bipartite RNA. Genome 5:303–344

    CAS  Google Scholar 

  • Derrick KS (1973) Detection and identification of plant viruses by serologically specific electron microscopy. Phytopathology 63:441–end page

    Google Scholar 

  • Di R, Dinesh-Kumar SP, Miller WA (1993) Translational frameshifting by barley yellow dwarf virus RNA (PAV serotype) in Escherichia coli and in eukaryotic cell-free extracts. Mol Plant Microb Interact 6:444–452

    Article  CAS  Google Scholar 

  • Diaco R, Lister RM, Hill JH, Durand DP (1986) Detection of homologous and heterologous barley yellow dwarf virus isolates with monoclonal antibodies in serologically specific electron microscopy. Phytopathology 76:225–230

    Article  Google Scholar 

  • Dinesh-Kumar SP, Miller WA (1993) Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5:679–692

    PubMed  CAS  Google Scholar 

  • Dinman JD, Richter S, Plant EP, Taylor RC, Hammell AB, Rana TM (2002) The frameshift signal of HIV-1 involves a potential intra-molecular triplex RNA structure. Proc Natl Acad Sci 99:5331–5336

    Article  PubMed  CAS  Google Scholar 

  • Duffus JE, Rochow WF (1978) Neutralization of beet western yellow virus by antisera against barley yellow dwarf virus. Phytopathology 68:45–49

    Article  Google Scholar 

  • Eastop VF (1983) The biology of the principal aphid virus vector. In: Plum RT, Thresh JM (eds) Plant virus epidemiology. Blackwell Scientific Publications, Oxford, UK, pp 115–132

    Google Scholar 

  • Eweida M, Oxelfelt P (1989) Production of cloned cDNA from a Swedish barley yellow dwarf isolate. Ann Appl Boil 114:61–69

    Article  CAS  Google Scholar 

  • Filichkin SA, Lister RM, McGrath PF, Young MJ (1994) In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology 205:290–299

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Brumfield S, Filichkin TP, Young MJ (1997) In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J Virol 71:569–577

    PubMed  CAS  Google Scholar 

  • Ford C, Collins N, Rathjen J, Shams-Bakhsh M, Paltridge N, Symons RH (1996) Barley Yd2, a naturally occurring gene that provides resistance against barley yellow dwarf virus. Presented at International congress of Virology, Jerusalem, p 185

    Google Scholar 

  • Fuentes FD, Exconde OR (1969) Etiology of spot blotch of barley in the Philippines. Philippines Agric 52:483–504

    Google Scholar 

  • Gerlach W, Miller A, Waterhouse PM (1987) Barley yellow dwarf virus newsletter 1:17

    Google Scholar 

  • Gildow FE (1993) Evidence for receptor – mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology 83:270–277

    Article  Google Scholar 

  • Gildow FE, Frank JA (1988) Barley yellow dwarf virus in Pennsylvania: effect of the PAV isolate on yield components of Nobel spring oats. Plant Dis 77:254–256

    Article  Google Scholar 

  • Gildow FE, Gray SM (1993) The aphid salivary gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteoviruses. Phytopathology 83:1293–1302

    Article  Google Scholar 

  • Gildow FE, Rochow WF (1980) Role of accessory salivary glands in aphid transmission of barley yellow dwarf virus. Virology 104:97–108

    Article  PubMed  CAS  Google Scholar 

  • Gildow FE, Ballinger ME, Rochow WF (1983) Identification of double stranded RNAs associated with barley yellow dwarf virus infection in oats. Phytopathology 73:1570–1572

    Article  CAS  Google Scholar 

  • Gill CC, Chong J (1975) Cytopathological evidence for the division of barley yellow dwarf virus isolates into two subgroups. Virology 95:59–69

    Article  PubMed  CAS  Google Scholar 

  • Grafton KF, Poehlman JM, Sechler DT, Sehgal OP (1982) Effect of barley yellow dwarf virus infection on winter survival and other agronomic traits in barley. Crop Sci 22:596–600

    Article  Google Scholar 

  • Gray SM (1996) Plant virus proteins involved in natural vector transmission. Trends Microbiol 4:259–264

    Article  PubMed  CAS  Google Scholar 

  • Gray SM, Smith D, Altman N (1993) Barley yellow dwarf virus isolate-specific resistance in spring oats reduced virus accumulation and aphid transmission. Phytopathology 83:716–720

    Article  Google Scholar 

  • Griggs T (1992) Smart genetic beat a devastating wheat virus. In: Griggs T (ed) Partners in research for development. ACIAR, Canberra, pp 17–19

    Google Scholar 

  • Gron V (2000) Havrerodsot. Nielsen SL, Nicolaisen M, Hansen LM, Nielsen GC. Markbrug nr. 228. Ministeriet for Fodevarer, Landbrug og Fiskeri. Danmarks JordbrugsForskning

    Google Scholar 

  • Guo L, Allen E, Miller WA (2001) Base-pairing between untranslated regions facilitates translation of uncapped, non-polyadenylated viral RNA. Mol Cell 7:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Halbert SE, Cornelly J, Lister RM, Klein RE, Bishop GW (1992) Vector specificity of barley yellow dwarf virus stereotypes and variants in southwestern Idaho. Ann Appl Biol 121:123–132

    Article  Google Scholar 

  • Hammond J, Lister RM, Foster JE (1983) Purification, identity and some properties of an isolate of barley yellow dwarf virus from Indiana. J Gen Virol 64:667–676

    Article  Google Scholar 

  • Harper AM, Atkinson TG, Smith AD (1976) Effect of Rhopalosiphum padi and barley yellow dwarf virus on forage yield and quality of barley and oats. J Econ Entomol 69:383–385

    Google Scholar 

  • Hewings AD, Eastman CE (1995) Epidemiology of barley yellow dwarf in North America. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 75–106

    Google Scholar 

  • Holloway PJ, Heath R (1992) Identification of polypeptide markers of barley yellow dwarf virus resistance and susceptibility genes in non-infected barley (Hordeum vulgare) plants. Theor Appl Genet 85:2–3

    Article  Google Scholar 

  • Holmes SI (1985) Barley yellow dwarf virus in ryegrass and detection by ELISA. Plant Pathol 34:214–220

    Article  Google Scholar 

  • Hsu HT, Aebig J, Rochow WF (1984) Differences among monoclonal antibodies to barley yellow dwarf virus. Phytopathology 74:600–605

    Article  Google Scholar 

  • Hu JS, Rochow WF, Dietert RR (1985) Production and use of antibodies from hen eggs for the SGV isolate of barley yellow dwarf virus. Phytopathology 75:914–919

    Article  Google Scholar 

  • Huang HC, Harper AM, Kokko EG, Howard RI (1981) Aphid transmission of Verticillium alboatrum to alfalfa. Can J Plant Pathol 5:141–147

    Article  Google Scholar 

  • Kainz M, Hendrix W (1981) Response of cereal roots to barley yellow dwarf virus infection in a mist culture. Phytopathology 71:229

    Google Scholar 

  • Kaiser J (2001) Breeding a hardier. Weed Sci 293:1425–1427

    CAS  Google Scholar 

  • Kelly L, Gerlach WL, Waterhouse PM (1994) Characterisation of the sub genomic RNAs of an Australian isolate of barley yellow dwarf luteovirus. Virology 202:565–573

    Article  PubMed  CAS  Google Scholar 

  • Khalid S, Aftab M, Ahmad I, Aslam M (1992a) Detection of barley yellow dwarf virus in Pakistan. Pak J Bot 24:225–225

    Google Scholar 

  • Khalid S, Ahmad I, Aftab M, Mohsin A (1992b) Barley yellow dwarf disease in Pakistan. In: 5th international Plant virus symposium on viruses, vectors and the environment, 27–31 July 1992, Valenzano (BARI), Italy, p 201

    Google Scholar 

  • Khetarpal PK, Kumar J, Beuve M, Parakh DB, Nath R (1994) Outbreak of MAV-type barley yellow dwarf virus on wheat in the Garwal Hills in India. Plant Pathol 43:415–416

    Article  Google Scholar 

  • Kim KH, Lommel SA (1998) Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic diantho virus. Virology 250:50–59

    Article  PubMed  CAS  Google Scholar 

  • Kim YG, Su L, Maas S, O’Neill A, Rich A (1999) Specific mutations in a viral RNA pseudo-knot drastically change ribosomal frameshifting efficiency. Proc Natl Acad Sci 96:14234–14239

    Article  PubMed  CAS  Google Scholar 

  • Koev G, Mohan BR, Dinesh-Kumar SP, Torbert KA, Somers DA, Miller WA (1998) Extreme reduction of disease in oats transformed with the 5′ half of the barley yellow dwarf virus-PAV genome. Phytopathology 88:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Koev G, Liu S, Beckett R, Miller WA (2002) The 3′-terminal structure required for replication of barley yellow dwarf virus RNA contains an embedded 3′ end. Virology 292:114–126

    Article  PubMed  CAS  Google Scholar 

  • Lei CH, Lister RM, Vincent JR, Karan-jkar MN (1995) SGV serotype isolates of barley yellow dwarf virus differing in vectors and molecular relationships. Phytopathology 85:820–826

    Article  CAS  Google Scholar 

  • Lister RM, Ranieri R (1995) Distribution ands economic importance of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 29–53

    Google Scholar 

  • Lister RM, Rochow WF (1979) Detection of barley yellow dwarf virus by enzyme-linked immunosorbent assay. Phytopathology 69:649–654

    Article  CAS  Google Scholar 

  • Lister RM, Sward RJ (1988) Anomalies in serological and vector relationships of MAV-like isolates of barley yellow dwarf virus from Australia and the USA. Phytopathology 78:766–770

    Article  Google Scholar 

  • Lorenzoni C, Bertolini M, Loi N, Osler R, Snidaro M (1990) Tolerance to barley yellow dwarf virus in maize. In: Burnett PA (ed) World perspectives on barley yellow dwarf virus: Proceedings of the international workshop CIMMYT, Mexico, DF Mexico, pp 402–403

    Google Scholar 

  • Lowe HJB (1978) Detection of resistance to aphids in cereals. Ann Appl Biol 88:401–403

    Article  Google Scholar 

  • Luzzardi GC (1985) Wheat breeding for scab resistance. In: Wheat for more tropical environments: a proceedings of the international symposium UNDP/CIMMYT, 24–28 Sept 1984, CIMMYT, Mexico, DF Mexico, pp 158–168

    Google Scholar 

  • Mackey J (1973) The wheat roots. In: Proceedings of the fourth international wheat genetics symposium, Missouri Agricultural Experiments Station, Columbia, USA, pp 827–842

    Google Scholar 

  • Mackey J (1988) Shoot:root interrelations in oats. In: Proceedings of the third international oat conference, Lund, Sweden

    Google Scholar 

  • Makkouk KM, Comeau A (1994) Evaluation of various methods for the detection of barley yellow dwarf virus by tissue blot immunoassay and its use for virus detection in cereals inoculated at different growth stages. Eur J Plant Pathol 100:71–80

    Article  Google Scholar 

  • Mann JA, Harrington R, Carter N, Plumb RT (1997) Control of aphids and barley yellow dwarf virus in spring-sown cereals. Crop Prot 16:81–87

    Article  Google Scholar 

  • Martin RR, D’Arcy CJ (1990) Relationships among luteoviruses based on nucleic acid hybridization and serological studies. Intervirology 31:23–30

    PubMed  CAS  Google Scholar 

  • Mastari J, Lapierre H, Dessens JT (1998) A symmetrical distribution of barley yellow dwarf virus PAV variants between host plant species. Phytopathology 88:818–821

    Article  PubMed  CAS  Google Scholar 

  • Mathre DE (ed) (1985) Compendium of barley diseases. American Phytopathology Society (APS), St. Paul, p 78

    Google Scholar 

  • Mayo MA, Ziegler-Graf V (1996) Molecular biology of luteoviruses. Adv Virus Res 46:413–460

    Article  PubMed  CAS  Google Scholar 

  • McKirdy SJ, Jones RAC (1996) Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of barley yellow dwarf luteovirus in cereals. Plant Dis 80:895–901

    Article  CAS  Google Scholar 

  • Milinkó I, Nagy P, Rakk Z, Dezséry M (1984) Elõzetes közlemény egy hazánkban új kukorica patogén vírusról. Növényvédelem 8:350–352

    Google Scholar 

  • Miller WA, Waterhouse PM, Gerlach WL, Helms K (1987) Genome organization of barley yellow dwarf virus. Phytopathology 77:1704–1704

    Google Scholar 

  • Miller WA, Waterhouse PM, Kortt AA, Gerlach WL (1988) Sequence and identification of the barley yellow dwarf virus coat protein gene. Virology 165:306–309

    Article  PubMed  CAS  Google Scholar 

  • Miller WA, Dinesh-Kumar SP, Paul CP (1995) Luteovirus gene expression. Crit Rev Plant Sci 14:179–211

    CAS  Google Scholar 

  • Miller WA, Koev G, Mohan BR (1997) Are there risks associated with transgenic resistance to luteoviruses? Plant Dis 81:700–710

    Article  Google Scholar 

  • Miller WA, Liu S, Beckett R (2002) Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol Plant Pathol 3:1173–1183

    Article  Google Scholar 

  • Mills PR, Mercer PC, McGimpsey HC (1980) Barley yellow dwraf virus. Annual Report Department of Agriculture, Ireland

    Google Scholar 

  • Mohan BR, Dinesh-Kumar SP, Miller WA (1995) Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology 212:186–195

    Article  PubMed  CAS  Google Scholar 

  • Nagaich BB, Vashisth KS (1963) Barley yellow dwarf: a new viral disease for India. Indian Phytopathol 16:318–319

    Google Scholar 

  • Oswald JW, Houston BR (1951) A new virus disease of cereals transmissible by aphids. Plant Dis Rep 35:471–475

    Google Scholar 

  • Oswald JW, Houston BR (1953a) Host range and epiphytology of the cereal yellow dwarf virus. Phytopathology 43:128–136

    Google Scholar 

  • Oswald JW, Houston BR (1953b) Host range and epiphytology of cereal yellow dwarf. Phytopathology 43:309–313

    Google Scholar 

  • Paliwal YC (1977) Rapid diagnosis of barley yellow dwarf virus in plants using serologically specific electron microscopy. Phytopathology 89:25–30

    Article  Google Scholar 

  • Paliwal YC (1982) Role of perennial grasses, winter wheat and aphid vectors in the disease cycle and epidemiology of barley yellow dwarf virus. Can J Plant Pathol 4:367–374

    Article  Google Scholar 

  • Pead MT, Torrance L (1988) Some characteristics of monoclonal antibodies to a British MAV-like isolate barley yellow dwarf virus. Ann Appl Biol 113:215–218

    Article  Google Scholar 

  • Pelletier GJ, Comeau A, Couture L (1974) Interaction entre le virus de la feuille rouge de I’avoine (BYDV), Septoria avenae et Puccinia coronate sur Avena sativa. Phytoprotection 55:9–12

    Google Scholar 

  • Pfeffer S, Dunoyer PF, Heim KER, Jonard G, Ziegler-Graff V (2002) P0 of Beet western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815–6824

    Article  PubMed  CAS  Google Scholar 

  • Plumb RT (1983) Barley yellow dwarf virus a global problem. In: Plum RT, Thresh JM (eds) Plant virus epidemiology. Blackwell Scientific Publications, Oxford, pp 185–198

    Google Scholar 

  • Plumb RT (1984) Chemical and cultural control of barley yellow dwarf virus. In: Burnett PA (ed) Barley yellow dwarf: Proceedings of the workshop CIMMYT, Mexico, DF Mexico, pp 52–57

    Google Scholar 

  • Plumb RT (1995) Epidemiology of barley yellow dwarf in Europe. In: Burnette PA (ed) World perspectives on barley yellow dwraf virus: Proceeding of the international workshop CIMMYT, Mexico, DF Mexico, pp 107–127

    Google Scholar 

  • Plumb RT, Johnstone GR (1995) Cultural, chemical, and biological methods for the control of barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 307–319

    Google Scholar 

  • Pocsai E, Kobza S (1983) Epidemiological occurrence of barley yellow dwarf virus in Hungary. In: Proceedings of the international conference of integrated plant protection, 4–9 July Budapest, Hungary, vol 1, pp 50–57

    Google Scholar 

  • Pocsai E, Kiss-Simonné I, Basky Z, Dezséry M (1985) Árpa sárga törpeség virus fellépése rizsen. Abstr Növényvédelem 7:308

    Google Scholar 

  • Pocsai E, Kovács G, Murányi I, Orosz Á, Papp M, Szunics L (1995) Differentiation of barley yellow dwarf luteovirus serotypes infecting cereals and maize in Hungary. Agronomy 15:401–408

    Article  Google Scholar 

  • Power AG, Gray SM (1995) Aphid transmission of barley yellow dwarf viruses: interactions between viruses, vectors, and host plants. In: D’Arcy JC, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 259–289

    Google Scholar 

  • Qualset CO, Lorens GF, Ullman DE, McGuire PE (1990) Genetics of host plant resistance to barley yellow dwarf virus. In: Burnett PA (ed) World perspectives on barley yellow dwarf virus: Proceedings of the international workshop. Mexici, CIMMYT, Mexico, DF Mexico, p 338

    Google Scholar 

  • Randles JW, Rathjen JP (1995) Luteovirus. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP (eds) Virus taxonomy: sixth report of the international committee on taxonomy of viruses. Springer, Wien/New York, pp 379–383

    Google Scholar 

  • Ranieri R, Lister RM, Shaner G, Burnett PA, Vallejo J (1992) Cross protection among Mexican barley yellow dwarf virus isolates APS/MSA Joint Meeting, 8–12 Aug, Portland, USA

    Google Scholar 

  • Rasmusson DC, Scheller CW (1959) The inheritance of resistance in barley to the barley yellow dwarf virus. Agron J 51:661–664

    Article  Google Scholar 

  • Rathjen JP, Karageorgos LE, Habili N, Waterhouse PM, Symons RH (1994) Soybean dwarf luteovirus contains the third variant genome type in the luteovirus group. Virology 198:571–579

    Article  Google Scholar 

  • Rochow WF (1969) Biological properties of four isolates of barley yellow dwarf virus. Phytopathology 59:1580–1589

    PubMed  CAS  Google Scholar 

  • Rochow WF (1970a) Barley yellow dwarf virus. Descriptions of plant viruses, no 32, Kew, Surrey, UK, CMI/AAB

    Google Scholar 

  • Rochow WF (1970b) Barley yellow dwarf virus: phenotype mixing and vector specificity. Science 167:875–878

    Article  PubMed  CAS  Google Scholar 

  • Rochow WF (1973) Selective virus transmission by Rhopalosiphum padi exposed sequentially to two barley yellow dwarf viruses. Phytopathology 63:1317–1322

    Article  Google Scholar 

  • Rochow WF (1979) Comparative diagnosis of barley yellow dwarf by serological and aphid transmission tests. Plant Dis Rep 63:426–430

    Google Scholar 

  • Rochow WF (1982) Identification of barley yellow dwarf virus: comparison of biological and serological methods. Plant Dis 66:381–384

    Article  Google Scholar 

  • Rochow WF, Carmichael LE (1979) Specificity among barley yellow dwarf viruses in enzyme linked immunosorbent assays. Virology 55:415–420

    Article  Google Scholar 

  • Rochow WF, Duffus JE (1981) Luteoviruses and yellow diseases. In: Kurstak E (ed) Handbook of plant virus infections and comparative diagnosis. Elsevier, Dordrecht

    Google Scholar 

  • Rochow WF, Gill CC (1978) Dependent virus transmission by Rhopalosiphum padi from mixed infection of the various isolates of barley yellow dwarf virus. Phytopathology 68:451–456

    Article  Google Scholar 

  • Rochow WF, Muller I (1971) A fifth variant of barley yellow dwarf virus in New York. Plant Dis 55:874–877

    Google Scholar 

  • Rochow WF, Muller I, Tufford LA, Smith DM (1986) Identification of luteoviruses of small grains from 1981 through 1984 by two methods. Plant Dis 70:461–464

    Article  Google Scholar 

  • Rochow WF, Hu JS, Foster RL, Hsu HT (1987) Parallel identification of five luteoviruses that cause barley yellow dwarf. Plant Dis 71:272–275

    Article  Google Scholar 

  • Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838

    Article  PubMed  CAS  Google Scholar 

  • Scalla R, Rochow WF (1977) Protein component of two isolates of barley yellow dwarf virus. Virology 78(2):576–580

    Article  PubMed  CAS  Google Scholar 

  • Schaller CW (1984) The genetics of resistance to barley yellow dwraf virus in barley. In: Burnett PA (ed) Barley yellow dwarf: a proceedings of the international workshop, CIMMYT, Mexico, DF Mexico, pp 93–99

    Google Scholar 

  • Schaller CW, Qualset CO, Rutger JN (1964) Inheritance and linkage of the Yd2 gene conditioning resistance to barley yellow dwarf virus disease in barley. Crop Sci 4:544–548

    Article  Google Scholar 

  • Sharma HC, Gill BS, Uyemoto JK (1984) High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathology 110:143–147

    Article  Google Scholar 

  • Sharma H, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Burnett PA, Albarran M, Rajaram S (1993) Bdv1: a gene for tolerance to barley yellow dwarf virus in bread wheats. Crop Sci 33:231–234

    Article  Google Scholar 

  • Slykhuis JT (1967) Virus disease of cereals. Rev Appl Mycol 46:401–429

    Google Scholar 

  • Smith HC (1955) Notes on new diseases in New Zealand. Commonwealth Phytopathol Newsl No 1:10–11

    Google Scholar 

  • Smith HC (1957) Cereal yellow dwarf virus seen in Australia. Commonwealth Phytopathol Newsl 3:10–11

    Google Scholar 

  • Smith HG, Barker H (1999) The Luteoviridae. CABI Publishing, Wallingford

    Google Scholar 

  • Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR (1992) Fertile, transgenic oat plants. Biotechnology 10:1589–1594

    Article  CAS  Google Scholar 

  • Sward RJ, Kollmorgen JF (1989) The effects of the interaction of barley yellow dwarf virus and take-all fungus on the growth and yield of wheat. In: Burnette PA (ed) World perspectives on barley yellow dwarf virus: Proceeding of the international workshop CIMMYT, Medico, DF Mexico, pp 305–312

    Google Scholar 

  • Szirmai J (1967) Új virusbetegség gabonaföldjeinken: A sárga törpeség. Magyar Mezõgazdaság 22:19

    Google Scholar 

  • Szirmai J (1979) Seed transmission experiments with barley yellow dwarf virus. Novenytermeles 28:147–150

    Google Scholar 

  • Szunics L, Szunics L (1980) Vírus a búzán (Virus on the wheat). Magyar Mezõgazdaság 35:9

    Google Scholar 

  • Tavella CM (1987) Date of heading and plant height of wheat varieties, as related to Septoria leaf blotch damage. Euphytica 27:577–580

    Article  Google Scholar 

  • Torrance L, Pead MT, Larkins AP, Butcher GW (1986) Characterization of monoclonal antibodies to a UK isolate of barley yellow dwarf virus. J Gen Virol 67:569–572

    Google Scholar 

  • van den Heuvel JFJ, Verbeek MM, van der Wilk F (1994) Endosymbiotic bacteria associated with circulative transmission of potato leaf roll virus by Myzus persicae. J Gen Virol 75:2559–2565

    Article  PubMed  Google Scholar 

  • van Riessen HW, Paul LM, Kathy LF, John FM, William SG (1998) Barley yellow dwarf in small grains Alabama Cooperative Extension System, CIRCULAR ANR-1082, USA

    Google Scholar 

  • Vance VB, Berger PH, Carrington JC, Hunt AG, Shi XM (1995) 50 proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology 206:583–590

    Article  PubMed  CAS  Google Scholar 

  • Vega J, Scagliusi SMM, Ulian EC (1997) Sugarcane yellow leaf disease in Brazil: evidence of association with a luteovirus. Plant Dis 81:21–26

    Article  Google Scholar 

  • Vincent JR, Lister RM, Ueng PP, Wen F, Lei CH, Klein RE, Larkin BA (1992) Biotechnology: a new weapon against barley yellow dwarf virus. In: Comeau A, Makkouk KM (eds) Barley yellow dwarf in West Asia and North Africa Proceedings of a Workshop ICARDA, Aleppo, Syria, pp 189–196

    Google Scholar 

  • Wang JY, Chay C, Gildow FE, Gray SM (1995) Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology 206:954–962

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Browning KS, Miller WA (1997) A viral sequence in the 3′- untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. EMBO J 16:4107–4116

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Guo L, Allen E, Miller WA (1999) A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans. RNA 5:728–738

    Article  PubMed  CAS  Google Scholar 

  • Wang MB, Abbot DC, Waterhouse PM (2000) A single copy of a virus-derived transgene-encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Gerlach WL, Miller WA (1986) Sero-specific and general luteovirus probes from cloned cDNA sequences of barley yellow dwarf virus. J Gen Virol 68:2419–2420

    Google Scholar 

  • Waterhouse PM, Gildow FE, Johnstone GR (1988) Luteoviruses. In: Descriptions of plant viruses no 339. Kew, Surrey, England: Commonwealth Mycological Institute Assoc Appl Biol

    Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411:834–842

    Article  PubMed  CAS  Google Scholar 

  • Watkins JE, Leslie CL (1997) Barley yellow dwarf disease of barley, oats, and wheat C-28. In: Field crops Published by Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, USA

    Google Scholar 

  • Watson MA, Mulligan TE (1957) Cereal yellow dwarf virus in Great Britain. Plant Pathology 6:12–14

    Article  Google Scholar 

  • Wen F, Lister RM (1991) Heterologous encapsidation in mixed infections among four isolates of barley yellow dwarf virus. J Gen Virol 72:2217–2223

    Article  PubMed  Google Scholar 

  • Wen F, Lister RM, Fattouh FA (1991) Cross-protection among strains of barley yellow dwarf virus. J Gen Virol 72:791–799

    Article  PubMed  Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul, p 112

    Google Scholar 

  • Xin ZY, Hu HJ, Chen X, Lin ZS, Zhou GH, Qian YT, Cheng ZM, Larkin PJ, Banks P, Apples P, Glarke B, Brettel RIS (1991) Development of common wheat germplasm resistant to barley yellow dwarf virus vY biotechnology. Sci China 34:1055–1062

    Google Scholar 

  • Xiong Z, Kim KH, Kendall TL, Lommel SA (1993) Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro. Virology 193:213–221

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Jawad Ahmad Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shah, S.J.A., Bashir, M., Manzoor, N. (2012). A Review on Barley Yellow Dwarf Virus. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_29

Download citation

Publish with us

Policies and ethics