Skip to main content

Molecular Basis of Disease Resistance in Cereal Crops: An Overview

  • Chapter
  • First Online:

Abstract

Deep insight into the molecular mechanism of disease resistance in plants is essential for devising sophisticated breeding strategies leading towards crop protection. Most of the disease resistance (R) genes show genetic and structural similarity even though their target pathogens are extremely diverged in strain types, mode of action, virulence and target plant part. The search for a unified model operating for disease resistance in cereals may provide improved control of devastating pathogens which is critical for global food security. A super family of ‘R’ genes encoding NBS-LRR (Nucleotide binding site- Leucine rich repeats) with its several sub-classes, recently identified ABC (ATP binding cassette) transporter and kinase START genes confer resistance to numerous pathogens. These molecular motifs activate a wide array of metabolic responses under tight genetic control as the plant detects a prospective invader. Some of the ‘R’ genes require additional genes for the expression of resistance. Investigations into the structure of ‘R’ genes, protein products, their location and mechanism of interaction with pathogen elicitor molecules and future prospects are discussed in this review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghnoum R, Niks NN (2011) Transgressive segregation for extremely low and high level of quantitative resistance to powdery mildew in barley. J Plant Physiol 168:45–50

    Article  PubMed  CAS  Google Scholar 

  • Alpy F, Tomasetto C (2005) Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J Cell Sci 118:2791–2801

    Article  PubMed  CAS  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  PubMed  CAS  Google Scholar 

  • Bischof M, Eichmann R, Hückelhoven R (2011) Pathogenesis-associated transcriptional patterns in Triticeae. J Plant Physiol 168:9–19

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ (2002) Protein-protein interactions in pathogen recognition by plants. Plant Mol Biol 50:981–989

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci 95:15849–15854

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Kudrna RN, Kudma N, Kilian H, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust resistance gene Rpg1 is a novel disease resistance gene with homology to receptor kinases. Proc Natl Acad Sci 99:9328–9333

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci 105:149–170

    Article  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast gene Pi-ta. Plant Cell 12:2033–2046

    PubMed  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8(10):1793–1807

    PubMed  CAS  Google Scholar 

  • Dardick CD, Ronald PC (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2:1–15

    Article  Google Scholar 

  • Douchkov D, Johrde A, Nowara D, Himmelbach A, Lueck S, Niks R (2011) Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis. J Plant Physiol 168:20–29

    Article  PubMed  CAS  Google Scholar 

  • Feng DS, Ma X, Lin AL, Wang HG, Tian JC (2010) Isolation of resistance gene analogues to powdery mildew resistance sequences in hexaploid wheat. Biol Plant 54(3):551–555

    Article  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Flor H (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell 8:5–14

    PubMed  CAS  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependant resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25:335–348

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Inducible plant defense mechanisms and resistance gene function. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Hensel G, Himmelbach A, Chen D, Douchkov K, Kumlehn J (2011) Transgene expression systems in the Triticeae cereals. J Plant Physiol 168:30–44

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi H, Sato H, Nonoue Y, Kuno-Takemoto Y, Takeuchi Y, Kato H, Nemoto H, Ogawa T, Yano M, Imbe T, Ando I (2010) Development of introgression lines derived from Oryza rufipogon and O. glumaepatula in the genetic background of japonica cultivated rice (O. sativa L.) and evaluation of resistance to rice blast. Breed Sci 60:604–612

    Article  Google Scholar 

  • Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES, Moullet O, Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhou SY, Zhao WS, Su SC, Peng YL (2009) A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice Blast disease resistance. Plant Mol Biol 69:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Mackey D, Holt BF, Wiiq A, Danql JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • Meeley RB, Walton JD (1991) Enzymatic detoxification of HC-toxin, the host selective cyclic peptide from Chochliobolus carbonum. Plant Physiol 97:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Meeley RB, Johal GS, Briggs SP, Walton JD (1992) A biochemical phenotype for a disease resistance gene of maize. Plant Cell 4:71–77

    PubMed  CAS  Google Scholar 

  • Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Mitchelmore RW (1998) The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10:1817–1832

    PubMed  CAS  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  PubMed  CAS  Google Scholar 

  • Morel J, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Different 4:671–683

    Article  CAS  Google Scholar 

  • Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342

    Article  PubMed  CAS  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    PubMed  CAS  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multi-gene family in rice. Genetics 172:1901–1914

    Article  PubMed  CAS  Google Scholar 

  • Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) The pleiotropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3:207–214

    PubMed  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Schneider DS (2002) Plant immunity and film Noir: what gumshoe detectives can teach us about plant-pathogen interactions. Cell 109:537–540

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Lahaye T, Man-Wah T, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527

    Article  PubMed  CAS  Google Scholar 

  • Takahashi AA, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100:11777–11782

    Article  PubMed  CAS  Google Scholar 

  • Van der Biezen EA, Jones JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 12:454–456

    Article  Google Scholar 

  • Van der Hoorn RA, De Wit PJ, Joosten MH (2002) Balancing selection favors guarding resistance proteins. Trends Plant Sci 7:67–71

    Article  PubMed  Google Scholar 

  • Verica JA, He ZH (2002) The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol 129:455–459

    Article  PubMed  CAS  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayos Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN (2002) Genetic and molecular characterization of the maize rp3 rust resistance gene. Genetics 162:381–394

    PubMed  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A 95:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Zellerhoff N, Axel H, Wubei D, Stephane B, Ulrich S, Schweizer P (2010) Non-host resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152:2053–2066

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Kurth J, Wei F, Elliot C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13:337–350

    PubMed  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen J, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Bux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bux, H., Ashraf, M., Rasheed, A., Poudyal, D.S., Kazi, A.G., Afzaal, M. (2012). Molecular Basis of Disease Resistance in Cereal Crops: An Overview. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_18

Download citation

Publish with us

Policies and ethics