Skip to main content

Behaviour of Plant Pathogens for Crops Under Stress During the Determination of Physiological, Biochemical, and Molecular Approaches for Salt Stress Tolerance

  • Chapter
  • First Online:
Crop Production for Agricultural Improvement

Abstract

Agricultural technology is the only way to meet the nutritional needs of the world’s population. In the last century, crop production has significantly increased and has reached its plateau, coincident with the increase in world population. However, a large percentage of the human population still does not have enough food, therefore many are underfed and face malnourishment. The world population will continue to grow along with poverty, environmental health concerns, issues surrounding the availability of clean water sources, etc. By the middle of this century it may reach 10 billion. Therefore, scientists need to try to keep the relationship between crop production and population on an upward slope. To fully understand trends and to determine increases in crop production, many marginal areas need to be included into agricultural lands. If environmental pollution, drought, salinity, disease, and insect problems, as well as the use of irrigation water of marginal quality, are taken into account along with newly added low fertile agricultural lands, many crop plants, for a major part of their growth periods, are grown under adverse conditions. Therefore, now and in the future, scientists have to find physiological, biochemical, and molecular approaches to overcome negative production issues. However, the behaviour and characteristics of plant pathogens have also changed. In this chapter, recent developments in agriculture regarding the production of crops under stress conditions and the behaviour of plant pathogens are evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMC:

Carboxymethylcellulase

FOV:

Fusarium oxysporum f.sp. vasinfectum

GA:

Gibberellic Acid

GM:

Genetically Modified

IAA:

Indole Acetic Acid

NAR:

Net Assimilation Rate

PAL:

Phenylalanine Lyase

PG:

Polygalacturanase

PL:

Pectate Lyase

QTL:

Quantitative Trait Locus

RAPD:

Random Amplification of Polymorphic DNA.

RFLP:

Restriction Fragment Length Polymorphism

RGR:

Relative Growth Rate

VW:

Verticillium Wilt

References

  • Abumhadi NM, Atanassov AI (2010) Future challenges of plant biotechnology and genomics. Rom Biotechnol Lett 15(2):127–142

    CAS  Google Scholar 

  • Ahn KJ, Kim KH (2001) Effect of temperature and salinity on in vitro zoosporulation of Perkinsus sp. in Manila clams Ruditapes philippinarum. Dis Aquat Organ 48(1):43–46

    Article  PubMed  CAS  Google Scholar 

  • Al-Abed N, Amayreh J, Al-Afifi A, Al-Hiyari G (2004) Bioremediation of a Jordanian saline soil: a laboratory study. Commun Soil Sci Plant Anal 35(9–10):1457–1467

    Article  CAS  Google Scholar 

  • Al-Rawahy SH (2000) Study of the adaptive mechanisms evolved through selecting NaCl tolerant cells and plants of alfalfa (M. media cv. Rambler). PhD thesis, University of Wales, Swansea

    Google Scholar 

  • Al-Sadia AM, Al-Masoudia RS, Al-Habsib N, Al-Saida FA, Al-Rawahy SA, Ahmed M, Deadman MD (2010) Effect of salinity on Pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathol 59:112–120

    Article  Google Scholar 

  • Amir H, Mair A, Riba A (1996) Role de la microflore dans la resistance a la Fusariose vascularie induite par la salinite dans un sol de palmeraie. Soil Biol Biochem 28(1):113–122

    Article  CAS  Google Scholar 

  • Araya F, Abarca O, Zunica GE, Corcuera LJ (1991) Effects of NaCl on glycine-betaine and on aphids in cereal seedlings. Phytochemistry 30(6):1793–1795

    Article  CAS  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yield absorption of inorganic nutrients. Soil Sci 50:463–483

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Atanassov A (2009) Genomics and the global challenges, Biotechnol & Biotechnol Eq. 23/2009/SE, pp 448–451, Special edition: 120 years of Academic Education in Biology, XI Anniversary Scientific Conference

    Google Scholar 

  • Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress improving crop efficiency, vol 44, Tasks for vegetation sciences. Springer, Germany, pp 1–16

    Chapter  Google Scholar 

  • Besri M (1990) Effect of salinity on the development of tomato Verticillium wilt in Morocco. In: Proceedings of the fifth international Verticillium symposium, Leningrad, p 61

    Google Scholar 

  • Bevan M, Flavell R, Chilton M (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Blaker NS, MacDonald JD (1986) The role of salinity in the development of Phytophthora root rot of citrus. Phytopathology 76:970–975

    Article  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Borde M, Dudhane M, Jite PJ (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30(3):265–271

    Article  CAS  Google Scholar 

  • Bouchibi N, van Bruggen AHC, MacDonald JD (1990) Effect of ion concentration and sodium: calcium ratio of a nutrient solution on Phytophtora root rot of tomato and zoospore motility and viability of Phytophtora parasitica. Phytopathology 80:1323–1329

    Article  CAS  Google Scholar 

  • Boyer JS (1995) Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annu Rev Phytopathol 33:251–274

    Article  PubMed  CAS  Google Scholar 

  • Bray L, Chriqui D, Gloux K, Lerudulier D, Meyer M, Peduzzi J (1991) Betaines and free amino acids in salt stressed vitro plants and winter resting buds of Populus trichocarpa x deltoides. Physiol Plant 83(1):136–143

    Article  CAS  Google Scholar 

  • Brugnoli E, Bjorkman O (1992) Growth of cotton under continuous salinity stress: influence of allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Article  CAS  Google Scholar 

  • Cavalieri AJ (2005) Biotechnology and agriculture in 2020: a report of the project on technology futures and global power, wealth and conflict. II Centre for Strategic and International Studies (Washington, DC) III

    Google Scholar 

  • Chandler D, Heale JB, Gillespie AT (1994) Effect of osmotic potential on the germination of conidia and colony growth of Verticillium lecanii. Mycol Res 98(4):384–388

    Article  Google Scholar 

  • Danti S, Broggio M (1997) Impact of salinity stress on the biometric responses of an isolate of Verticillium dahliae Kleb. From potato. In: Proceedings of the seventh international Verticillium symposium, Cape Sounion, Athens, Greece, p 53

    Google Scholar 

  • Dikilitas M (1997) A study of interactions between the phytopathogenic fungus Verticillium albo-atrum (Reinke & Berth) and tomato (Lycopersicon esculentum) and various cultivars of lucerne (Medicago sativa L. & M. media). M.Phil. thesis, University of Wales, Swansea, UK

    Google Scholar 

  • Dikilitas M (2003) Effect of salinity & its interactions With Verticillium Albo-Atrum on the disease development In Tomato (Lycopersicon Esculentum Mill.) and Lucerne (Medicago Sativa & M. Media) Plants. Ph.D. thesis, University of Wales, Swansea

    Google Scholar 

  • Dikilitas M, Karakas S (2010) Salts as potential environmental pollutants, their types, effects on plants and approaches for their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, London, pp 357–381

    Chapter  Google Scholar 

  • Dikilitas M, Karakas S (2011) Agriculture in 2020: what is the target? Harran Univ J Fac Agric 14(3):1–2

    Google Scholar 

  • Dikilitas M, Kocyigit A, Yigit F (2009) A molecular-based fast method to determine the extent of DNA damages in higher plants and fungi. Afr J Biotech 8(14):3118–3127

    Google Scholar 

  • Dikilitas M, Smith CJ (1999) Pathogenicity of Verticillium albo-atrum to salt tolerant lucerne strains. Biological Control Agents in Crop & Animal Protection, 24–28 Aug 1999, University of Wales, Swansea

    Google Scholar 

  • DiLeo MV, Pye MF, Roubtsova TV, Duniway JM, MacDonald JD, Rizzo DM, Bostock RM (2010) Abscisic acid in salt stress predisposition to Phytophthora root and crown rot in tomato and chrysanthemum. Phytopathology 100:871–879

    Article  PubMed  CAS  Google Scholar 

  • Dimartino M, Panebianco S, Vitale A, Castello I, Leonardi C, Cirvilleri G, Polizzi G (2011) Occurrence and pathogenicity of Pseudomonas fluorescens and P. putida on tomato plants in Italy. J Plant Pathol 93(1):79–87

    Google Scholar 

  • Dunn DC, Duncan LW, Romeo JT (1998) Changes in arginine, Pal activity, and nematode behaviour in salinity-stressed citrus. Phytochemistry 49(2):413–417

    Article  PubMed  CAS  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Google Scholar 

  • El-Abyad MS, Abu-Taleb AM, Khalil MS (1992) Impact of salinity stress on soil-borne fungi of sugar beet. Plant Soil 143:75–83

    Article  CAS  Google Scholar 

  • El-Iklil Y, Karrou M, Mrabet R, Benichou M (2002) Salt stress effect on metabolic concentrations of Lycopersicum esculentum and Lycopersicum cheesmanii. Can J Plant Sci 82(1):177–183

    Article  Google Scholar 

  • El-Mougy NS, Abdel-Kader MM (2009) Salts application for suppressing potato early blight disease. J Plant Prot Res 49(4):353–361

    Article  CAS  Google Scholar 

  • Engel RE, Grey WE (1991) Chloride fertilizer effects on winter wheat inoculated with Fusarium culmorum. Agron J 83(1):204–208

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr 31:1121–1157

    Article  CAS  Google Scholar 

  • Gamalero E, Graziella B, Bernard RG (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Musarrat AZJ (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 1–22

    Chapter  Google Scholar 

  • Gao S, Shain L (1995) Effects of osmotic potential on virulent and hypovirulent strains of the chestnut blight fungus. Can J For Res 25(6):1024–1029

    Article  Google Scholar 

  • Goudarzi A, Banihashemi Z, Manouchehr M (2008) Effect of water potential on sclerotial germination and mycelial growth of Macrophomina phaseolina. Phytopathol Mediterr 47:107–114

    Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Griffith GS, Boddy L (1991) Fungal decomposition of attached angiosperm twigs. III. Effect of water potential and temperature on fungal growth, survival and decay of wood. New Phytol 117:259–269

    Article  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Hancock JG, Huisman OC (1981) Nutrient movement in host-pathogen systems. Annu Rev Phytopathol 19:309–331

    Article  CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Hasan HAH (2002) Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48(3):101–106

    CAS  Google Scholar 

  • Holmes EW (1976) Verticillium wilt of salt-injured sugar maple-preliminary study. Proc Am Phytopathol Soc 3:305–306

    Google Scholar 

  • Howell AB, Francois L, Erwin DC (1994) Interactive effect of salinity and Verticillium albo-atrum on Verticillium wilt disease severity and yield of two alfalfa cultivars. Field Crops Res 37:247–251

    Article  Google Scholar 

  • James RA, Davenport R, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Jauhar P (2006) Cytogenetic architecture of cereal crops and their manipulation to fit human needs: opportunities and challenges. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement, vol 2, Cereals. CRC Taylor & Francis Press, Boca Raton, pp 1–25

    Chapter  Google Scholar 

  • Jbir N, Ammar S, Chaibi W, Ayadi A (2001) PAL activity and ionic contents of two wheat species differing in their sensitivity to NaCl, in response to salt stress. J Trace Microprobe Tech 19(3):447–450

    Article  CAS  Google Scholar 

  • Jefferson PG, Gossen BD (2002) Irrigation increases Verticillium wilt incidence in a susceptible alfalfa cultivar. Plant Dis 86(6):588–592

    Article  Google Scholar 

  • Jin X, Hengxia Y, Xiaojing L, Xia L (2010) Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta 231:449–459

    Article  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristatic cells of barley roots. Plant Cell Physiol 37:169–173

    Article  CAS  Google Scholar 

  • Knox RE, Clarke FR (2007) Molecular breeding approaches for enhanced resistance against fungal pathogens. In: Punja ZK, De Boer SH, Sanfacon H (eds) Biotechnology and plant disease management. CAB International, Oxfordshire, pp 321–357

    Chapter  Google Scholar 

  • Kostandi SF, Soliman MF (1998) The role calcium in mediating smut disease severity and salt tolerance in corn under chloride and sulphate salinity. J Phytopathol 146:191–195

    Article  CAS  Google Scholar 

  • Krokene P, Solheim H (2001) Loss of pathogenicity in the blue-stain fungus Ceractocystis polonica. Plant Pathol 50(4):497–502

    Article  CAS  Google Scholar 

  • Levin AG, Lavee S, Tsror (Lahkim) L (2003) Epidemiology of Verticillium dahliae on olive (cv. Picual) and its effect on yield under saline conditions. Plant Pathol 52:212–218

    Article  Google Scholar 

  • MacDonald JD (1984) Salinity effects on susceptibility of chrysanthemum root rot to Phytophthora cryptogea. Phytopathology 74:621–624

    Article  Google Scholar 

  • Madigen O (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269

    Article  Google Scholar 

  • McQuilken MP, Whipps JM, Cooke RC (1992) Effects of osmotic and matric potential on growth and oospore germination of the biocontrol agent Phythium oligandrum. Mycol Res 96(7):588–591

    Article  Google Scholar 

  • Mecteau MR, Arul J, Russell JT (2002) Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycol Res 106(6):688–696

    Article  CAS  Google Scholar 

  • Mecteau MR, Arul J, Tweddell RJ (2008) Effect of different salts on the development of Fusarium solani var. coeruleum, a causal agent of potato dry rot. Phytoprotection 89(1):1–6

    Article  CAS  Google Scholar 

  • Mer RK, Prajith PK, Pandya DH, Pandey AN (2000) Effects of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J Agron Crop Sci 185:209–217

    Article  CAS  Google Scholar 

  • Mills AAS, Platt HW, Hurta RAR (2004) Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharvest Biol Technol 34:341–350

    Article  CAS  Google Scholar 

  • Mohammad H, Haggag WF (2006) Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum. Braz J Microbiol 37:181–191

    Google Scholar 

  • Mohammadi AH, Banihashemi Z, Maftoun M (2007) Interaction between salinity stress and Verticillium Wilt disease in three pistachio rootstocks in a calcareous soil. J Plant Nutr 30:241–252

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2009) Strategies for crop improvement in saline soils. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress improving crop efficiency, vol 44, Tasks for vegetation sciences. Springer, Berlin, pp 99–110

    Chapter  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agric Res 54:627–635

    Article  CAS  Google Scholar 

  • Nachmias A, Kaufman Z, Livescu L, Tsror L, Meiri A, Caligari PDS (1993) Effects of salinity and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 21(3):245–255

    Article  Google Scholar 

  • Nachmias A, Livescu L, Tsror L, Ben Hador G, Orenstein J, Sabbah S, Orion D (1994) Enhancement of Verticillium infection in potato under stress. In: 6th international Verticillium symposium, Dead Sea, Israel, Phytoparasitica 23:51

    Google Scholar 

  • Neves GYS, Marchiosi R, Ferrarese MLL, Siqueira-Soares RC, Ferrarese-Filho O (2010) Root growth inhibition and lignification induced by salt stress in soybean. J Agron Crop Sci 196:467–473

    Article  CAS  Google Scholar 

  • Obuekwe CO, Adekunle MB, Esmaeil A, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Int Biodeter Biodegr 56:197–205

    Article  CAS  Google Scholar 

  • Omar SA, Abd-Alla MH (2000) Physiological aspects of fungi isolated from root nodules of faba bean (Vicia faba L.). Microbiol Res 154(4):339–347

    Article  PubMed  CAS  Google Scholar 

  • Orenstein J, Sabbah S, Nachmias A (1995) Enhancement of Verticillium dahliae infection of potato plants under stress conditions. In: 6th international Verticillium symposium, Dead Sea, Israel, Phytoparasitica 23:51

    Google Scholar 

  • Palmero Llamas D, De Cara GM, Iglesias Gonzalez C, Ruiz Lopez G, Tello Marquina JC (2008) Effects of water potential on spore germination and viability of Fusarium species. J Ind Microbiol Biotechnol 35:1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Palmero D, De Cara M, Moreno MM, Iglesias C, Tello JC (2010) Stimulation of mycelial growth of pathogenic and seabed isolates of Fusarium oxysporum in presence of salts. Afr J Microbiol Res 4(17):1859–1861

    Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11(6):501–521

    Article  Google Scholar 

  • Ragazzi A, Vecchio V (1992) Behaviour of chlamydospores of Fusarium oxysporum f. sp. vasinfectum in substrates containing sodium chloride. Phytopathol Mediterr 31:85–87

    Google Scholar 

  • Ragazzi A, Vechio V, Dellavalle I, Cucchi A, Mancini F (1994) Variations in the pathogenicity of Fusarium oxysporum f.sp. vasinfectum in relation to the salinity of the nutrient medium. J Plant Dis Prot 101(3):263–266

    CAS  Google Scholar 

  • Ragazzi A, Broggio M, Soldi R, Moricca S, Dellavalle I, Sabatini S (1996) Biometry and pathogenicity of Fusarium oxysporum f. sp. vasinfectum on a Na2SO4 enriched medium. J Plant Dis Protect 103(3):272–278

    CAS  Google Scholar 

  • Ramagopal S (1993) Advances in understanding the molecular biology of drought and salinity tolerance in plants-the first decade. In: Lodha ML, Mehta SL, Ramagopal S, Srivastava GP (eds) Adv Plant Biotech Biochem. Indian Soc Agril Biochemists, Kanpur, pp 38–39

    Google Scholar 

  • Rasmussen SL, Stanghellini ME (1988) Effect of salinity stress on development of Phythium blight in Agrostis palustris. Phytopathology 78:1495–1497

    Article  Google Scholar 

  • Regragui A, Rahouti M, Et Lahlou H (2003) Effet Du Stress salin sur Verticillium albo-atrum: pathogĂ©nĂ©citĂ© et production d’enzymes cellulolytiques in vitro Cryptogamie. Mycology 24(2):167–174

    Google Scholar 

  • Regraui A, Lahlou H (2005) Effect of salinity on in vitro Trichoderma harzianum antagonism against Verticillium dahliae. Pak J Biol Sci 8(6):872–876

    Article  Google Scholar 

  • Rougon-Cardoso A, Zipfel C (2010) A new approach to confer broad-spectrum disease resistance in plants. Information Systems for Biotechnology News Report, 5–8 June

    Google Scholar 

  • Saadatmand AR, Banihashemi Z, Sepaskhah AR, Maftoun M (2008) Soil salinity and water stress and their effect on susceptibility to Verticillium Wilt disease, ion composition and growth of pistachio. J Phytopathol 156:287–292

    Article  Google Scholar 

  • Sanogo S (2004) Response of chile pepper to Phytophthora capsici in relation to soil salinity. Plant Dis 88:205–209

    Article  Google Scholar 

  • Singh RP (1995) Differential response of growth and nitrate assimilation in sesame and mungbean seedlings to heavy metal stress. Proc Acad Environ Biol 4:215–220

    CAS  Google Scholar 

  • Singh RP, Choudhary A, Gulati A, Dahiya HC, Jaival PK, Sengar RS (1997) Response of plants to salinity in interaction with other abiotic and biotic factors. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Science Publishers Inc, Enfield, pp 25–39

    Google Scholar 

  • Snapp SS, Shennan C (1994) Salinity effects on root growth and senescence in tomato and the consequences for severity of Phytophthora root rot infection. J Am Soc Hort Sci 119(3):458–463

    Google Scholar 

  • Snapp SS, Shennan C, van Bruggen AHC (1991) Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill. New Phytol 119:275–284

    Article  CAS  Google Scholar 

  • Sridhara S (2006) Vertebrate pests in agriculture-the Indian scenario. Scientific, Jodhpur

    Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(4):453–457

    Article  PubMed  CAS  Google Scholar 

  • Sulistyowati L, Keane PJ (1992) Effect of soil salinity and water content on stem rot caused by Phytophthora citrophthora and accumulation of phytoalexin in citrus rootstocks. Phytopathology 82(7):771–777

    Article  CAS  Google Scholar 

  • Swiecki TJ, MacDonald JD (1991) Soil salinity enhances Phytophthora root rot of tomato but hinders asexual reproduction by Phytophthora parasitica. J Am Soc Hortic Sci 116(3):471–477

    Google Scholar 

  • Syvertsen J, Levy Y (2005) Salinity interactions with other abiotic and biotic stresses in citrus. HortTechnology 15(1):100–103

    Google Scholar 

  • Tang M (2001) Elicitor-induced defence responses and mechanisms of signal transduction in Medicago sativa L. Ph.D. thesis, University of Wales, Swansea

    Google Scholar 

  • Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 95:1438–1444

    Article  PubMed  Google Scholar 

  • Turco E, Broggio M, Ragazzi A (1999) Enzymes produced by Fusarium oxysporum f. sp. vasinfectum compared on a saline and a non-saline substrate. J Plant Dis Prot 106:333–341

    CAS  Google Scholar 

  • Turco E, Naldini D, Ragazzi A (2002) Disease incidence and vessel anatomy in cotton plants infected with Fusarium oxysporum f.sp. vasinfectum under salinity stress. J Plant Dis Prot 109(1):15–24

    Google Scholar 

  • Turco E, Vizzuso C, Franceschini S, Ragazzi A, Stefanini FM (2007) The in vitro effect of gossypol and its interaction with salts on conidial germination and viability of Fusarium oxysporum sp. vasinfectum isolates. J Appl Microbiol 103(2007):2370–2381

    Article  PubMed  CAS  Google Scholar 

  • Urja P, Meenu S (2010) Role of single fungal isolates and consortia as plant growth promoters under saline conditions. Res J Biotechnol 5(3):5–9

    Google Scholar 

  • Wilkens S, Field CD (1993) Effect of varying sea-water salinity on growth kinetics of Phytophthora polymorphica. Mycol Res 97(9):1135–1139

    Article  Google Scholar 

  • Xu Y, Sun X, Jin J, Zhou (2010) Protective effect of nitric oxide on light induced oxidative damage in leaves of tall fescue. J Plant Physiol 167:512–518

    Article  Google Scholar 

  • Zahran HH (1991) Conditions for successful Rhizobium legume symbiosis in saline environments. Biol Fertil Soils 12(1):73–80

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this chapter to the memory of Prof John Gallon (University of Wales, Swansea-UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Dikilitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dikilitas, M., Karakas, S. (2012). Behaviour of Plant Pathogens for Crops Under Stress During the Determination of Physiological, Biochemical, and Molecular Approaches for Salt Stress Tolerance. In: Ashraf, M., Ă–ztĂĽrk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_16

Download citation

Publish with us

Policies and ethics