Skip to main content

Agrobacterium tumefaciens and its Use in Plant Biotechnology

  • Chapter
  • First Online:
Crop Production for Agricultural Improvement

Abstract

For years, isolation of foreign genes from one plant and transferring them to another and then observing effects of new genes in transferred plants has only been a dream for a plant biologist. Today, many commercially important species are routinely transformed by different biotechnological methods. Methods available for plant transformation are arranged in three main groups: using biological vectors (virus- or bacteria-mediated transformation), direct DNA transfer techniques (chemical-, electrical-, or laser-induced permeability of protoplasts or cells) and non-biological vector systems (microprojectiles, microinjection or liposome fusion). Today in many countries a number of transgenic important crops such as soybean, maize, cotton, canola, sugarbeet, sugarcane and alfalfa are available and the mostly preferred method is Agrobacterium-mediated transformation. In this chapter, some information about this important bacterium and mechanisms of Agrobacterium-mediated gene transfer are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    Article  PubMed  CAS  Google Scholar 

  • Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74(12):5350–5354

    Article  PubMed  CAS  Google Scholar 

  • Ames GF, Mimura CS, Shyamala V (1990) Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: traffic ATPases. FEMS Microbiol Rev 75:429–446

    Article  CAS  Google Scholar 

  • Anderson A, Moore L (1979) Host specificity in the genus Agrobacterium. Phytopathology 69:320–323

    Article  Google Scholar 

  • Ankenbauer RG, Nester EW (1990) Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bacteriol 172:6442–6446

    PubMed  CAS  Google Scholar 

  • Armitage P, Walden R, Draper J (1988) Vectors for the transformation of plant cells using Agrobacterium. In: Draper J, Scott R, Armitage P, Walden R (eds) Plant genetic transformation and gene expression: a laboratory manual. Blackwell Scientific Publisher, Oxford, pp 1–67

    Google Scholar 

  • Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170:4181–4187

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1995) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, John Wiley & Sons, New York

    Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94:10723–10728

    Article  PubMed  CAS  Google Scholar 

  • Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2:335–350

    Article  CAS  Google Scholar 

  • Bartlett JMS, Stirling D (2003) A short history of the polymerase chain reaction. In: Bartlett JMS, Stirling D (eds) PCR protocols. Humana Press Inc, Totowa, pp 3–6

    Chapter  Google Scholar 

  • Barton KA, Whitely HR, Yang NS (1987) Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Barz WH, Marja K, Caldentey KM (2002) Plant biotechnology – an emerging field. In: Marja K, Caldentey KM, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker Inc, New York, pp 1–20

    Google Scholar 

  • Beaudet AL (1991) Molecular genetics and medicine. In: Wilson JD, Braunwald E, Isselbacher KJ, Petersdrof RG, Martin JB, Faucci AS, Root RK (eds) Harrison’s principles of internal medicine, vol 1. McGraw-Hill Inc, New York, pp 32–46

    Google Scholar 

  • Beaupré CE, Bohne J, Dale EM, Binns AN (1997) Interactions between VirB9 and VirB10 proteins involved in the movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179:78–89

    PubMed  Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology, 1st edn. Williams and Wilkins, Baltimore, pp 1–442

    Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Beaupre CE, Dale EM (1995) Inhibition of VirB mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol 177:4890–4899

    PubMed  CAS  Google Scholar 

  • Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145(2):177–181

    Article  PubMed  CAS  Google Scholar 

  • Bradley LR, Kim JS, Matthysse AG (1997) Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J Bacteriol 179:5372–5379

    Google Scholar 

  • Braun AC (1941) Development of secondary tumors and tumor strands in the crown gall of sunflowers. Phytopathology 31:135–149

    Google Scholar 

  • Braun AC (1947) Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34:234–240

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, Winans S (2005) Detection and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  PubMed  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci U S A 93:15272–15275

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed  CAS  Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  • Burr TJ, Bazzi C, Sule S, Otten L (1998) Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82:1288–1297

    Article  Google Scholar 

  • Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their role in plant interaction. J Bacteriol 169:2086–2091

    PubMed  CAS  Google Scholar 

  • Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Theines C, Nester EW (1989) Role of Agrobacterium tumefaciens chvA protein in export of β-1,2 glucan. J Bacteriol 171:1609–1615

    PubMed  CAS  Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EW (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci U S A 87:6708–6712

    Article  PubMed  CAS  Google Scholar 

  • Cangelosi GA, Best EA, Martinetti C, Nester EW (1991) Genetic analysis of Agrobacterium tumefaciens. Method Enzymol 145:177–181

    Google Scholar 

  • Cardoza V (2008) Tissue culture: the manipulation of plant development. In: Stewart CN Jr (ed) Plant biotechnology and genetics. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 113–134

    Chapter  Google Scholar 

  • Cavara F (1897) Tubercolosi della vite Intorno alla eziologia de alcune malattie di piante coltivate Stazoni Sperimentale. Agrarie Italiane 30:483–487

    Google Scholar 

  • Chang CH, Winans SC (1992) Functional roles assigned to the periplasmic, linker and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174:7033–7039

    PubMed  CAS  Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology, 2nd edn. Science Publishers Inc., Enfield, pp 1–521

    Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium – mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    Article  PubMed  CAS  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094

    PubMed  CAS  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, ­architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, McLean G, Greene E, Howard E, Kuldau G, Thorstenson Y, Zupan J, Zambryski P (1992) Agrobacterium plant cell interaction: induction of vir genes and T-DNA transfer. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, London, pp 169–198

    Google Scholar 

  • Citovsky V, Warnick D, Zambryski P (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci U S A 91:3210–3214

    Article  PubMed  CAS  Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    PubMed  CAS  Google Scholar 

  • Cubero J, López M (2005) Agrobacterium persistence in plant tissue after transformation. In: Peña L (ed) Methods in molecular biology, transgenic plants: methods and protocols. Humana Press Inc., Totowa, pp 351–364

    Google Scholar 

  • Dang TAT, Christie PJ (1997) The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179:453–462

    PubMed  CAS  Google Scholar 

  • Danna K, Nathans D (1971) Studies of sv40 DNA 1 Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A 68(12):2913–2917

    Article  PubMed  CAS  Google Scholar 

  • Das A, Xie YH (1998) Construction of transposon Tn3phoA: its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol 27:405–414

    Article  PubMed  CAS  Google Scholar 

  • de Frammond AJ, Back EW, Chilton WS, Kayes L, Chilton MD (1986) Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet 202:125–131

    Article  Google Scholar 

  • de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • de la Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1(3):118–133

    Article  Google Scholar 

  • Deacon JW, Macdonald RKW, Fox FM, Lascaris D (1988) Application of alginate gel for protection of wounds against crown gall (Agrobacterium tumefaciens). Plant Pathol 37(4):522–528

    Article  CAS  Google Scholar 

  • deCleene M, DeLay J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • Dessaux Y, Petit A, Far SK, Murphy PM (1998) Opines and opine-like molecules involved in plant-Rhizobiaceae interactions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer Academic, Dordrecht, pp 173–197

    Chapter  Google Scholar 

  • Doty SL, Yu NC, Lundin JI, Heath JD, Nester EW (1996) Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J Bacteriol 178:961–970

    PubMed  CAS  Google Scholar 

  • Douglas CJ, Halperin W, Nester EW (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cells. J Bacteriol 152:1265–1275

    PubMed  CAS  Google Scholar 

  • Duggar BM (1909) Fungous diseases of plants. Ginn and Co, New York, pp 1–508

    Google Scholar 

  • Dürrenberger F, Crameri A, Hohn B, Koukolíková-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86:9154–9158

    Article  PubMed  Google Scholar 

  • Edwards JB, Delort J, Mallet J (1991) Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5 ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res 19:5227–5232

    Article  PubMed  CAS  Google Scholar 

  • Einspanier R (2006) DNA-based methods for detection of genetic modifications. In: Heller KJ (ed) Genetically engineered food methods and detection. 2nd Updated and Enlarged Ed. Wiley-VCH Verlag GmbH & Co., KgaA, Darmstadt, pp 163–185

    Google Scholar 

  • Ellis JG, Kerr A, Petit A, Tempe J (1982) Conjugal transfer of nopaline and agropine Ti plasmids: the role of agrocinopines. Mol Gen Genet 186:269–274

    Article  CAS  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8(8):380–386

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Dunal F (1853) Observations sur les maladies regantes de la vigne. Bull Soc Cent Agric Dep Herault 40:46

    Google Scholar 

  • Fernández D, Spudich GM, Zhou XR, Berger BR, Christie PJ (1996) Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178:3168–3176

    PubMed  Google Scholar 

  • Filichkin SA, Gelvin SB (1993) Formation of a putative relaxation intermediate during T-DNA processing directed by the Agrobacterium tumefaciens VirD1, D2 endonuclease. Mol Microbiol 8:915–926

    Article  PubMed  CAS  Google Scholar 

  • Finberg KE, Muth TR, Young SP, Maken JB, Heitritter SM, Binns AN, Banta LM (1995) Interactions of VirB9, -10 and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence of tight associations. J Bacteriol 177:4881–4889

    PubMed  CAS  Google Scholar 

  • Firth N, Ippen-Ihler K, Skurray RA (1996) Structure and function of the F factor and mechanism of conjugation. In: Neidhardt FC, Curtis R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HC (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, DC, pp 2377–2401

    Google Scholar 

  • Fullner KJ, Lara CJ, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Bohnert HJ, Bourque DP (eds) (1995) Methods in plant cell biology, vol 50. Academic, New York, pp 1–555

    Google Scholar 

  • Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    PubMed  CAS  Google Scholar 

  • Garrity GM (ed) (2005) Bergey’s manual of systematic bacteriology, 2nd edn. The Proteobacteria, Originally published by Williams and Wilkins, 1984 2nd edn. Springer, New York

    Google Scholar 

  • Gautheret RJ (1959) La culture des tissus vegetaux; Techniques et Realisations Masson and Cie Paris, IV, 884pp

    Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol 51:223–256

    Article  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R, van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Gene Dev 5:287–297

    Article  PubMed  CAS  Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen, biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328

    Article  PubMed  CAS  Google Scholar 

  • Grant JE, Cooper PA, Dale TM (2004) Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons. Plant Cell Rep 22(12):894–902

    Article  PubMed  CAS  Google Scholar 

  • Gürel F, Gözükirmizi N (2003) Electroporation transformation of barley. In: Jackson JF, Liskens HS (eds) Modern methods of plant analysis, vol 23, Plant transformation. Springer, Berlin, Germany, pp 69–89

    Google Scholar 

  • Guyon P, Chilton MD, Petit A, Tempé J (1980) Agropine in ‘null type’ crown gall tumors: evidence for generality of the opine concept. Proc Natl Acad Sci U S A 77:2693–2697

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen Sitzungsber Akad Wiss Wien Math-Naturwiss Kl. Abt J 111:69–92

    Google Scholar 

  • Hamilton RH, Fall MZ (1971) The loss of tumor-inducing ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27:229–230

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Smith LY, Howarth AJ (1988) Agrobacterium tumefaciens mutants deficient in chemotaxis to root exudates. Mol Plant Microbe Interact 1:182–186

    Article  Google Scholar 

  • Heinemann JA, Sprague GF (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209

    Article  PubMed  CAS  Google Scholar 

  • Hernalsteens JP, van Vliet F, de Beuckeleer M, Depicker A, Engler G, Lemmes M, Holsters M, van Montagu M, Schell J (1980) The Agrobacterium tumefaciens Ti plasmid as a host vector system for introducing foreign DNA in plants. Nature 287:654–656

    Article  CAS  Google Scholar 

  • Herrera-Estrella A, Chen Z, van Montagu M, Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA protein complex at the 5 terminus of T-strand molecules. EMBO J 7:4055–4062

    PubMed  CAS  Google Scholar 

  • Higgings CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR, Gallagher MP (1990) Binding protein dependent transport systems. J Bioenerg Biomembr 22:571–592

    Article  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Shilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, Hofker M, den Dulk-Ras H, Schilperoort RA (1984) A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid and a Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 11:195–205

    Article  PubMed  CAS  Google Scholar 

  • Hopkins WG (2007) Plant biotechnology. Infobase Publishing, Philadelphia, pp 1–153

    Google Scholar 

  • Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf disks. Proc Natl Acad Sci U S A 83:2571–2575

    Article  PubMed  CAS  Google Scholar 

  • Howard EA, Citovsky V (1990) The emerging structure of the Agrobacterium T-DNA transfer complex. BioEssays 12:103–108

    Article  CAS  Google Scholar 

  • Howard EA, Citovsky V, Zambryski P (1990) The T-complex of Agrobacterium tumefaciens. UCLA Symp Mol Cell Biol News Ser 129:1–11

    CAS  Google Scholar 

  • Howard E, Zupan J, Citovsky V, Zambryski P (1992) The VirD2 protein of A tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68:109–118

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Morel P, Powell B, Kado CI (1990) VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172:1142–1144

    PubMed  CAS  Google Scholar 

  • James C (2010) Global status of commercialized biotech/GM crops: 2010 ISAAA Brief No: 42. ISAAA, Ithaca, pp 1–7

    Google Scholar 

  • Jayaram M (1994) Phosphoryl transfer if FLP recombination: a template for strand transfer mechanisms. Trends Biotechnol 19:78–82

    CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SW (1984) Hypervariable minisatellite regions in human DNA. Nature 314:67–73

    Article  Google Scholar 

  • Jeon GA, Eu JS, Sim WS (1998) The role of inverted repeat (IR) sequence of the virE gene expression in Agrobacterium tumefaciens pTiA6. Mol Cells 8:49–53

    PubMed  CAS  Google Scholar 

  • Jeon YH, Park H, Lee BD, Yu YH, Chang SP, Kim SG, Hwang I, Kim YH (2008) First description of crown gall disease on ginseng. Plant Pathol J 24(2):207–210

    Article  Google Scholar 

  • Jin S, Prusti RK, Roitsch T, Ankenbauer RG, Nester EW (1990a) Phosphorylation of the VirG protein of Agrobacterium Tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172:4945–4950

    PubMed  CAS  Google Scholar 

  • Jin S, Roitsch T, Ankenbauer RG, Gordon MP, Nester EW (1990b) The VirA protein of Agrobacterium tumefaciens is autophosphorylated, is essential for vir gene regulation. J Bacteriol 172:525–530

    PubMed  CAS  Google Scholar 

  • Kanemoto RH, Powell AT, Akiyoshi DE, Regier DA, Kerstetter RA, Nester EW, Hawes MC, Gordon MP (1989) Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens. J Bacteriol 171:2506–2512

    PubMed  CAS  Google Scholar 

  • Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Pathol 1:241–246

    Article  Google Scholar 

  • Khawar KM, Özcan S (2002) In vitro induction of crown galls by Agrobacterium tumefaciens super virulent strain A281 (pTiBo 542) in lentil (Lens culinaris Medik.). Turk J Bot 26:65–170

    Google Scholar 

  • Klee H, Montoya A, Horodyskit F, Lichtenstein C, Garfinkel D, Fuller S, Flores C, Peschon J, Nester E, Gordon M (1984) Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci U S A 81:1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Knauf V, Yanofsky M, Montoya A, Nester E (1984) Physical and functional map of an Agrobacterium tumefaciens tumor inducing plasmid that confers a narrow host range. J Bacteriol 160:564–568

    PubMed  CAS  Google Scholar 

  • Knudsen KA (1985) Proteins transferred to nitrocellulose for use as immunogens. Anal Biochem 147:285–288

    Article  PubMed  CAS  Google Scholar 

  • Koo J, Kim Y, Kim J, Yeom M, Lee IC, Nam HG (2007) A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. Plant Cell Physiol 48(8):1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Kuldau GA, deVos G, Owen J, McGaffrey G, Zambryski P (1990) The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221:256–266

    Article  PubMed  CAS  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Kyhse-Anderson J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  Google Scholar 

  • Lacy GH, Hansen MA (2002) Crown gall of woody ornamentals Virginia Cooperative Extension, Plant Disease, Fact Sheets Publication No: 450–608, pp 1–2. Online at: http://pubsextvtedu/450/450-608/450-608_pdf.pdf

  • Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Article  PubMed  CAS  Google Scholar 

  • Lehman CW, Trautman JK, Carroll D (1994) Illegitimate recombination in Xenopus: characterization of end-joined junctions. Nucleic Acid Res 22:434–442

    Article  PubMed  CAS  Google Scholar 

  • Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77:321–324

    Article  PubMed  CAS  Google Scholar 

  • Lessl M, Balzer D, Pansegrau W, Lanka E (1992) Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for TDNA transfer. J Biol Chem 267:20471–20480

    PubMed  CAS  Google Scholar 

  • Li HQ, Chen L, Li MR (2007) Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila. Plant Cell Rep 26:1785–1789

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein C, Klee H, Montoya A, Garfinkel D, Fuller S, Flores C, Nester E, Gordon M (1984) Nucleotide sequence and transcript mapping of the tmr gene of the pTiA6NC octopine Ti plasmid: a bacterial gene involved in plant tumorigenesis. J Mol Appl Genet 2:354–362

    PubMed  CAS  Google Scholar 

  • Lieske R (1928) Untersuchungen uber die Krebskrankheit bei Pflanzen, Tieren und Menschen” Zentralbl Bakteriol Parasitenk Infektionskr. Hyg Abt I Orig 108:118–146

    Google Scholar 

  • Lindsay DG (2002) The potential contribution of plant biotechnology to improving food quality. In: Marja K, Caldentey KMO, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 195–226

    Google Scholar 

  • Lioret C (1956) Sur la mise en evidence d’un acide amine non identifie particulier aux tissus de ‘crown-gall’. Bull Soc Fr Physiol Veg 2:76–78

    Google Scholar 

  • Loopstra CA, Stomp AM, Sederoff RR (1990) Agrobacterium mediated DNA transfer in sugar pine. Plant Mol Biol 15:1–9

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Kado CI (1979) Host range conferred by the virulence specifying plasmid of Agrobacterium tumefaciens. J Bacteriol 139:591–596

    PubMed  CAS  Google Scholar 

  • LPSN (2011) The website of “List of Bacterial names with Standing in Nomenclature” online at: http://wwwbacteriocictfr/a/agrobacteriumhtml

  • Lundquist RC, Close TJ, Kado CI (1984) Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol Gen Genet 193:1–7

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch FE, Sambrook J (eds) (1982) Molecular cloning: a laboratory manual of Cold Spring Harbor Laboratory. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Matthysse AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154:906–915

    PubMed  CAS  Google Scholar 

  • Matthysse AG, Kijne JW (1998) Attachment of Rhizobiaceae to plant cells. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer Academic, Dordrecht, pp 235–249

    Chapter  Google Scholar 

  • Matthysse AG, Yarnall HA, Young N (1996) Requirement for genes with homology to ABC transport system for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol 178:5302–5308

    PubMed  CAS  Google Scholar 

  • Matzke AJM, Chilton MD (1981) Site-specific insertion of genes into T-DNA of the Agrobacterium tumour-inducing plasmid: an approach to genetic engineering of higher plant cells. J Mol Appl Genet 1:39–49

    PubMed  CAS  Google Scholar 

  • McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp using Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 34:53–62

    Article  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Bi 22:101–127

    Article  CAS  Google Scholar 

  • Memelink J, Swords KMM, Staehelin LA, Hoge JHC (eds) (1994) Southern, Northern and Western blot analysis. Kluwer Academic, Dordrecht, pp 1–23

    Google Scholar 

  • Men SZ, Ming XT, Liu RW, Wei CH, Li Y (2003) Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tissue Organ Cult 75:63–71

    Article  CAS  Google Scholar 

  • Merkli A, Christen P, Kapetanidis I (1997) Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Rep 16:632–636

    Article  CAS  Google Scholar 

  • Miki B (2008) Marker genes and promoters. In: Stewart CN Jr (ed) Plant biotechnology and genetics. Wiley, Hoboken, pp 217–244

    Chapter  Google Scholar 

  • Mohan V, Mohan A, Hitman GA (1998) Methodology in molecular genetics and its applications to diabetology. Int J Diab Dev Countries 18:46–49

    Google Scholar 

  • Morel G, Martin C (1952) Guérison de dahlias atteints d’une maladie à virus. C R Acad Sci 235:1324–1325

    CAS  Google Scholar 

  • Mugnier JP, Ready W, Riedel GE (1986) Root culture system useful in the study of biotrophic root pathogens in vitro. In: Augustine PC, Danforth HD, Bakst MR (eds) Biotechnology for solving agricultural problems. Nijhof, Dordrecht, pp 147–153

    Chapter  Google Scholar 

  • Muir WH, Hildebt AC, Riker AJ (1954) Plant tissue cultures produced from single isolated cells. Science 119:877–878

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nair AJ (ed) (2008) Introduction to biotechnology and genetic engineering. Laxmi Publications, Pvt. Ltd, New Delhi, India, pp 1–798

    Google Scholar 

  • Narula A, Kumar S, Bansal KC, Srivastava PS (2004) Biotechnological approaches towards improvement of medicinal plants. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Anamaya Publishers, New Delhi, pp 78–116

    Google Scholar 

  • Oger P, Kim KS, Sackett SL, Piper KR, Farrand SK (1998) Octopine-type Ti plasmids code for mannopine-inducible dominant-negative allele of TraR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol Microbiol 27:277–288

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Toyoda-Yamamoto A, Ito K, Takebe I, Machida Y (1991) Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in cell membrane. Mol Gen Genet 228:24–32

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Yamada M, Sekiya S, Okuhara T, Taguchi G, Inatomi S, Shimosaka M (2010) Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci Biotechnol Biochem 74(11):2327–2329

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MM, Barroso J, Pais MS (1991) Direct gene transfer into Actinidia deliciosa protoplasts: analysis of transient expression of the CAT gene using TLC autoradiography and a GC-MS-based method. Plant Mol Biol 17(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Otten L, deGreve H, Leemans J, Hain R, Hooykaas P, Schell J (1984) Restoration of virulence of vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 195:159–163

    Article  CAS  Google Scholar 

  • Özcan S, Uranbey S, Sancak C, Parmaksiz İ, Gürel E, Babaoğlu M (2004) Agrobacterium araciliğiyla gen aktarimi. In: Özcan S, Gürel E, Babaoğlu M (eds) Bitki Biyoteknolojisi II (Plant biotechnology, II), Genetik Mühendisliği ve Uygulamalari (Genetic engineering and its applications), Cilt II, 2nd edn. SÜ Vakfi Yayinlari, Turkey, pp 112–159

    Google Scholar 

  • Ozyigit II (2008) Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L.) shoot tips. Afr J Biotechnol 7(8):1145–1150

    CAS  Google Scholar 

  • Ozyigit II (2009) In vitro shoot development from three different nodes of cotton (Gossypium hirsutum L.). Not Bot Hort Agrobot 37(1):74–78

    Google Scholar 

  • Özyiğit İİ, Gözükirmizi N (2008) High efficiency shoot and root formation from cotyledonary nodes of cotton (Gossypium hirsutum L.). Pak J Bot 40(4):1665–1672

    Google Scholar 

  • Ozyigit II, Gozukirmizi N (2009) Efficient shoot and root formation from shoot apices of cotton (Gossypium hirsutum L.). Russ J Plant Physiol 56(4):527–531

    Article  CAS  Google Scholar 

  • Özyiğit İİ, Gözükirmizi N, Semiz BD (2006) Agrobacterium-mediated transformation of cotton: Gossypium hirsutum L “Çukurova 1518” from Turkey. In: Proceedings of the IV international congress of ethnobotany, Istanbul, pp 589–592

    Google Scholar 

  • Ozyigit II, Kahraman MV, Ercan O (2007) Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). Afr J Biotechnol 6(1):3–8

    CAS  Google Scholar 

  • Palmer AG, Gao R, Maresh J, Erbiol WK, Lynn DG (2004) Chemical biology of multihost/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42:439–464

    Article  PubMed  CAS  Google Scholar 

  • Pan SQ, Charles T, Jin S, Wu Z, Nester EW (1993) Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction. Proc Natl Acad Sci U S A 90:39–43

    Google Scholar 

  • Pan SQ, Jin S, Boulton MI, Hawes M, Gordon MP, Nester EW (1995) An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Mol Microbiol 17:259–269

    Article  PubMed  CAS  Google Scholar 

  • Parke D, Ornston LN, Nester EW (1987) Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the pTi plasmid in Agrobacterium tumefaciens. J Bacteriol 169:5336–5338

    PubMed  CAS  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73:857–871

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. Embo J 7(13):4021–4026

    Google Scholar 

  • Peralta EG, Ream LW (1985) T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci U S A 82:5112–5116

    Article  PubMed  CAS  Google Scholar 

  • Petit A, Tepme J, Kerr A, Holsters M, van Montagu M, Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271:570–571

    Article  CAS  Google Scholar 

  • Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens mediated transformation of yeast. Proc Natl Acad Sci U S A 93:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Pohlman RF, Genetti HD, Winans SC (1994) Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol Microbiol 14:655–668

    Article  PubMed  CAS  Google Scholar 

  • Polcaro CM, Brancaleoni E, Donati E, Frattoni M, Galli E, Migliore L, Rapana P (2008) Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium. B Environ Contam Toxicol 81(2):180–184

    Article  CAS  Google Scholar 

  • Primrose SB, Twyman RM (eds) (2006) Principles of gene manipulation and genomics, 7th edn. Blackwell Publishing, Malden

    Google Scholar 

  • Puchta H (1998) Repair of genomic double-strand breaks in somatic cells by one-side invasion of homologous sequences. Plant J 13:331–339

    Article  CAS  Google Scholar 

  • Raquel MH, Oliveira MM (1996) Kiwifruit leaf protoplasts competent for plant regeneration and direct DNA transfer. Plant Sci 121:107–114

    Article  CAS  Google Scholar 

  • Rashkova S, Spudlich GM, Christie PJ (1997) Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179:583–591

    PubMed  CAS  Google Scholar 

  • Ream W (2002) Agrobacterium genetics. In: Streips UN, Yasbin RE (eds) Modern microbial genetics, 2nd edn. Wille-Liss Inc., New York, pp 323–348

    Chapter  Google Scholar 

  • Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T-region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci U S A 80:1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Reece RJ (ed) (2004) Analysis of genes and genomes. Wiley, Chichester, pp 1–459

    Google Scholar 

  • Reinhard E (1974) Biotransformations by plant tissue cultures. In: Street HE (ed) Tissue culture and plant science. Academic, London, pp 433–459

    Google Scholar 

  • Roberts RJ (1976) Restriction endonucleases. Crit Rev Biochem Mol 4(2):123–164

    Article  CAS  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112

    PubMed  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) lntegration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 93:126–130

    Article  PubMed  CAS  Google Scholar 

  • Rugini E, Muganu M, Pesce PG (2000) Transformation of Actinidia species (kiwifruit). In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic, Dordrecht, pp 191–226

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 51–586

    Google Scholar 

  • Schrott M (1995) Selectable marker and reporter genes. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer Lab Manual, Berlin, pp 325–336

    Google Scholar 

  • Seligman L, Manoil C (1994) An amphipathic sequence determinant of membrane protein topology. J Biol Chem 269:19888–19896

    PubMed  CAS  Google Scholar 

  • Sharma KK, Gupta S, Kuhad RC (2006) Agrobacterium-mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi. Biotechnol Appl Biochem 43(3):181–186

    Article  PubMed  CAS  Google Scholar 

  • Shaw CH, Ashby AM, Brown A, Royal C, Loake GJ, Shaw C (1988) virA and virG are Ti plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Mol Microbiol 2:413–417

    Article  PubMed  CAS  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    PubMed  CAS  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Nagamine A, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium tumefaciens genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci U S A 87:6684–6688

    Article  PubMed  CAS  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Shinsuke S, Machica Y (1993) Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268:26552–26558

    PubMed  CAS  Google Scholar 

  • Shirasu K, Kado CI (1993a) Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett 111(2–3):287–294

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Kado CI (1993b) The virB operon of the Agrobacterium tumefaciens virulence region has sequence similarities to B, C and D open reading frames downstream of the pertussis toxin-operon and to the DNA transfer-operons of broad-host-range conjugative plasmids. Nucleic Acids Res 21(2):353–354

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Morel P, Kado CI (1990) Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Mol Microbiol 4:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Koukolikova-Nicola Z, Hohn B, Kado CI (1994) An inner-membrane-associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjugative transfer genes. Mol Microbiol 11:581–588

    Article  PubMed  CAS  Google Scholar 

  • Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci U S A 89:11837–11841

    Article  PubMed  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 24:671–673

    Article  Google Scholar 

  • Smith HO, Wilcox KW (1970) A restriction enzyme from Hemophilus influenzae I. Purification and general properties. J Mol Biol 51:379–391

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences of DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  PubMed  CAS  Google Scholar 

  • Stableford BM (2004) Historical dictionary of science fiction literature. Scarecrow Press, Lanham, p 133

    Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–1454

    PubMed  CAS  Google Scholar 

  • Stachel SE, Zambryski PC (1986) virA and virG control the plant induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46:325–333

    Article  PubMed  CAS  Google Scholar 

  • Stephens KM, Roush C, Nester EW (1995) Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence. J Bacteriol 177:27–36

    PubMed  CAS  Google Scholar 

  • Stirn S, Lörz H (2006) Genetically modified plants. In: Heller KJ (ed) Genetically engineered food methods and detection. 2nd Updated and Enlarged Edition. Wiley- VCH Verlag GmbH & Co KgaA, Weinheim, pp 27–63

    Google Scholar 

  • Stomp AM, Loopstra C, Chilton WS, Sederoff RR, Moore LW (1990) Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol 92:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Sule S, Lehockzy J, Jenser G, Nagy P, Burr TJ (1995) Infection of grapevine roots by Agrobacterium vitis and Meloidogyne hapla. J Phytopathol 143:169–171

    Article  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213(6):981–989

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF, Panagopoulos CG, Gordon MP, Nester EW (1980) Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283:794–796

    Article  Google Scholar 

  • Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169:3209–3216

    PubMed  CAS  Google Scholar 

  • Thompson DV, Melchers LS, Idler KB, Schilperoort RA, Hooykaas PJJ (1988) Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nucleic Acids Res 16:4621–4636

    Article  PubMed  CAS  Google Scholar 

  • Tinland E, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14:3585–3595

    PubMed  CAS  Google Scholar 

  • Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW (1989) The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171:6845–6849

    PubMed  CAS  Google Scholar 

  • Turk SCHJ, van Lange RP, Regensburg-Tuink TJG, Hooykaas PJJ (1994) Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol Biol 25:899–907

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Christou P, Stoger E (2002) Genetic transformation of plants and their cells. In: Marja K, Caldentey KM, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 111–141

    Google Scholar 

  • Tzfira M, Vaidya CV (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    Article  PubMed  CAS  Google Scholar 

  • Uğraş T, Gözükirmizi N (1999) Expression and inheritance of GUS gene in transgenic tobacco plants. Turk J Bot 23:297–302

    Google Scholar 

  • Utkhede RS, Smith EM (1993) Evaluation of biological and chemical treatments for control of crown gall on young apple-trees in the Kootenay Valley of British-Columbia. J Phytopathol 137(4):265–271

    Article  CAS  Google Scholar 

  • Uttaro AD, Cangelosi GA, Geremia RA, Nester EW, Ugalde RA (1990) Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J Bacteriol 172:1640–1646

    PubMed  CAS  Google Scholar 

  • van der Meer IM (2006) Agrobacterium-mediated transformation of petunia leaf discs. In: Vargas VML, Flota FV (eds) Plant cell culture protocols methods in molecular biology, 2nd edn. Humana Press Inc., Totowa, pp 265–272

    Google Scholar 

  • van Haaren MJJ, Sedee NJA, de Boer HA, Schilperoort RA, Hooykaas PJJ (1988) Bidirectional transfer from a 24 bp border repeat of Agrobacterium tumefaciens. Nucleic Acids Res 16:10225–10236

    Article  PubMed  Google Scholar 

  • van Larebeke N, Engler G, Holsters M, van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    Article  PubMed  Google Scholar 

  • van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10:12–36

    Article  Google Scholar 

  • Vargas VML, Flota FV (2006) An introduction to plant cell culture back to the future. In: Vargas VML, Flota FV (eds) Plant cell culture protocols methods in molecular biology, 2nd edn. Humana Press Inc., Totowa, pp 3–8

    Google Scholar 

  • Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector system. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2nd edn. Kluwer Academic, Dordrecht, pp 1–19

    Google Scholar 

  • Wanichananan P, Teerakathiti T, Roytrakul S, Kirdmanee C, Peyachoknagul S (2010) A highly efficient method for Agrobacterium mediated transformation in elite rice varieties (Oryza sativa L spp indica). Afr J Biotechnol 9(34):5488–5495

    CAS  Google Scholar 

  • Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon NP, Nester EW (1988) Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263(12):5804–5814

    PubMed  CAS  Google Scholar 

  • Watson JD, Gilman M, Witkowsky J, Zoller M (1992) Genetic engineering of plants. In: Watson JD, Gilman M, Witkowsky J, Zoller M (eds) Recombinant DNA. WH Freeman and Company, New York, pp 273–276

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Whatley MH, Spress LD (1977) Role of bacterial lipopolysaccharide in attachment of Agrobacterium to moss. Plant Physiol 60:765–766

    Article  PubMed  CAS  Google Scholar 

  • White PR, Braun AC (1942) A cancerous neoplasm of plants: autonomous bacteria-free crown-gall tissue. Cancer Res 2:597–617

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Winans SC (1992) Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 56:12–31

    PubMed  CAS  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170:4047–4054

    PubMed  CAS  Google Scholar 

  • Winans SC, Mantis NJ, Chen CY, Han DC (1994) Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens. Res Microbiol 145:461–473

    Article  PubMed  CAS  Google Scholar 

  • Wolanin PM, Thomason PA, Stock JB (2002) Histidine kinases: key signal transducers outside the animal kingdom. Genome Biol 3:1–8

    Article  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294(5550):2317–2323

    Article  PubMed  CAS  Google Scholar 

  • Wu W (1995a) PCR techniques and applications. In: Kaufman PB, Wu W, Kim D, Cseke L (eds) Handbook of molecular and cellular methods in biology and medicine. CRC Press, Boca Raton, pp 243–262

    Google Scholar 

  • Wu W (1995b) Electrophoresis, blotting, and hybridization. In: Kaufman PB, Wu W, Kim D, Cseke L (eds) Handbook of molecular and cellular methods in biology and medicine. CRC Press, Boca Raton, pp 87–122

    Google Scholar 

  • Wu W, Welsh MJ (1996a) Expression of the 25-kDa heat-shock protein (HSP27) correlates with resistance to the toxicity of cadmium chloride, mercuric chloride, cisplatinum (II)-diammine dichloride, or sodium arsenite in mouse embryonic stem cells transfected with sense or antisense HSP27 cDNA. Toxicol Appl Pharmacol 141:330–339

    PubMed  CAS  Google Scholar 

  • Wu W, Welsh MJ (1996b) A method for rapid staining and destaining of polyacrylamide gels. Biotechniques 20(3):386–388

    PubMed  CAS  Google Scholar 

  • Wu LL, Song I, Karuppiah N, Kaufman PB (1993) Kinetic induction of oat shoot pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by the polymerase chain reaction. Plant Mol Biol 21:1175–1179

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Welsh MJ, Kaufman PB, Zhang HH (eds) (2004) Gene biotechnology, 2nd edn. CRC Press LLC, Boca Raton, pp 1–523

    Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon from Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 7:471–477

    Article  Google Scholar 

  • Yibrah HS, Gronroos R, Lindroth A, Franzen H, Clapham D, von Arnold S (1996) Agrobacterium rhizogenes mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res 5:75–85

    Article  CAS  Google Scholar 

  • Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    Article  PubMed  CAS  Google Scholar 

  • Zale J (2008) Transgenic plant analysis. In: Stewart CN Jr (ed) Plant biotechnology and genetics. Wiley, Hoboken, pp 275–290

    Chapter  Google Scholar 

  • Zambryski P (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43:465–490

    Article  CAS  Google Scholar 

  • Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, van Montagu M, Goodman HM (1980) Tumor DNA structure in plant cells transformed by A tumefaciens. Science 209:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    PubMed  CAS  Google Scholar 

  • Zauner S, Creasap JE, Burr TJ, Ullrich CI (2006) Inhibition of crown gall induction by Agrobacterium vitis strain F2/5 in grapevine and Ricinus. Vitis 45(3):131–139

    Google Scholar 

  • Zhiming R, Zheng M, Wei S, Huiying F, Jian Z (2008) Transformation of industrialized strain Candida glycerinogenes with resistant gene zeocin via Agrobacterium tumefaciens. Curr Microbiol 57(1):12–17

    Article  PubMed  CAS  Google Scholar 

  • Zhou XR, Christie PJ (1997) Suppression of mutant phenotypes of the Agrobacterium tumefaciens VcirB11 ATPase by overproduction of VirB proteins. J Bacteriol 179:5835–5842

    PubMed  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz A (2001) Odyssey of Agrobacterium T-DNA. Acta Biochem Pol 48(3):623–635

    CAS  Google Scholar 

  • Zorreguieta A, Geremia RA, Cavaignac S, Cangelosi GA, Nester EW, Ugalde RA (1988) Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant Microbe Interact 1:121–127

    Article  PubMed  CAS  Google Scholar 

  • Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Zupan JR, Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16:279–295

    CAS  Google Scholar 

  • Zupan JR, Citovsky V, Zambryski P (1996) Agrobacterium VirE2 protein mediates nuclear uptake of ssDNA in plant cells. Proc Natl Acad Sci U S A 93:2392–2397

    Article  PubMed  CAS  Google Scholar 

  • Zupan JR, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I would like to express my special thanks to Professor Sebahattin Özcan (Ankara University, Agronomy Department), Dr. İlhan Doğan (Izmir Institute of Technology, Department of Molecular Biology and Genetics), Dr. Ülkühan Yaşar (Bartin University, Department of Environmental Engineering) and Dr. Göksel Demir (Bahçeşehir University, Department of Environmental Engineering) for a critical reading of this chapter and for their valuable suggestions. My thanks go to İlke Ertem (Biologist) for his assistance in drawing figures, Melike Isci (Marmara University) for rearranging the references. I am also thankful to Dr. Ayse Zeynep Isik for linguistic corrections and Bahçeşehir University, for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim İlker Özyiğit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Özyiğit, İ.İ. (2012). Agrobacterium tumefaciens and its Use in Plant Biotechnology. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_12

Download citation

Publish with us

Policies and ethics