Skip to main content

Elementary Concepts and Tools

  • Chapter
  • First Online:
Micromechanics of Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 186))

  • 4489 Accesses

Abstract

This chapter provides a brief introduction to micromechanics. Following an overview of several descriptors of microstructural geometry is an outline of the procedures that predict overall response of a heterogeneous aggregate in terms of phase volume averages of local strain or stress fields. Applied loads include uniform overall strain or stress and a piecewise uniform distribution of eigenstrains or transformation strains in the phases. Derivations of theorems, formulae and connections that will frequently be used in subsequent chapters are presented in Sects. 3.7, 3.8 and 3.9. A summary of the overall and local response estimates appears in the concluding Sect. 3.10. Many symbols used in this and following chapters are summarized in Table 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer.

    Google Scholar 

  • Benveniste, Y., & Dvorak, G. J. (1992a). Uniform fields and universal relations in piezoelectric composites. Journal of the Mechanics and Physics of Solids, 40, 1295–1312.

    Article  MathSciNet  MATH  Google Scholar 

  • Beran, M. J. (1968). Statistical continuum theories. New York: Interscience Publishers.

    MATH  Google Scholar 

  • Berryman, J. G. (1987). Relationship between specific surface area and spatial correlation functions for anisotropic porous media. Journal of Mathematics and Physics, 28, 244–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Betti, E. (1872). Teori della elasticita. Il Nnuovo Cimento (Series 2), pp. 7–10.

    Google Scholar 

  • Brdička, M. (1959). Mechanika kontinua (in Czech), ČSAV, Czechoslovak Academy of Sciences, Prague.

    Google Scholar 

  • Bufon, G. (1777). Essai d’arithmétique morale. Supplément à l’Historie Naturelle.

    Google Scholar 

  • Chen, T., & Zheng, Q. S. (2000). Universal connections of elastic fibrous composites: Some new results. International Journal of Solids and Structures, 37, 2591–2602.

    Article  MATH  Google Scholar 

  • Clark, A. L. (1933). Buffon’s needle problem. Canadian Journal of Research 9, 402, and 11, 438.

    Google Scholar 

  • Debye, P., Anderson, H. R., & Brumberger, H. (1975). Scattering by an inhomogeneous solid. II. The correlation function and its applications. Journal of Applied Physics, 20, 518–525.

    Article  Google Scholar 

  • Drugan, W. J. (2000). Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli of elastic composites. Journal of the Mechanics and Physics of Solids, 48, 1359–1387.

    Article  MathSciNet  MATH  Google Scholar 

  • Drugan, W. J., & Willis, J. R. (1996). A micromechanics-based nonlocal constituive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44, 497–524.

    Article  MathSciNet  MATH  Google Scholar 

  • Dvorak, G. J. (1983). Metal matrix composites: Plasticity and fatigue. In Z. Hashin & C. T. Herakovich (Eds.), Mechanics of composite materials: Recent advances (pp. 73–91). New York: Pergamon Press.

    Chapter  Google Scholar 

  • Dvorak, G. J. (1986). Thermal expansion of elastic-plastic composite materials. ASME Journal of Applied Mechanics, 53, 737–743.

    Article  MATH  Google Scholar 

  • Dvorak, G. J. (1990). On uniform fields in heterogeneous media. Proceedings of the Royal Society of London A, 431, 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Elvin, A. A. (1996). Number of grains required to homogenize elastic properties of polycrystalline ice. Mechanics of Materials, 22, 51–64.

    Article  Google Scholar 

  • Eshelby, J. D. (1961). Elastic inclusions and inhomogeneities. In I. N. Sneddon, & R. Hill (Eds.), Progress in solid mechanics (Vol. 2, Chap. III). Amsterdam: North-Holland, pp. 89–140.

    Google Scholar 

  • Gusev, A. A. (1997). Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids, 45, 1449–1459.

    Article  MATH  Google Scholar 

  • Hazanov, S., & Huet, C. (1994). Order relationships for boundary condition effects in heterogeneous bodies smaller than representative volume. Journal of the Mechanics and Physics of Solids, 42, 1995–2011.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1].

    Google Scholar 

  • Hill, R. (1963b). New derivations of some elastic extremum principles. In Progress in applied mechanics. W. Prager 60th anniversary colume. London: McMillan & Co., pp. 99–106.

    Google Scholar 

  • Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.

    Article  MathSciNet  Google Scholar 

  • Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.

    Article  Google Scholar 

  • Huet, C. (1990). Application of variational concepts to size effects in elastic hetero-geneous bodies. Journal of the Mechanics and Physics of Solids, 38, 813–841.

    Article  MathSciNet  Google Scholar 

  • Kendal, M. G., & Moran, P. A. P. (1962). Geometrical probability. London: Charles Griffin & Co. Ltd.

    Google Scholar 

  • Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials (in Russian). Mekhanika Tverdogo Tela, 2, 88–94.

    Google Scholar 

  • Lu, B., & Torquato, S. (1990). Local volume fraction fluctuations in heterogeneous media. The Journal of Chemical Physics, 93, 3452–3459.

    Article  Google Scholar 

  • Mura, T. (1987). Micromechanics of defects in solids (2nd ed.). Dordrecht: Martinus Nijhoff.

    Book  Google Scholar 

  • Nygårds, M. (2003). Number of grains necessary to homogenize elastic materials with cubic symmetry. Mechanics of Materials, 35, 1049–1053.

    Article  Google Scholar 

  • Ostoja-Starzewski, M. (1998). Random field models of heterogeneous materials. International Journal of Solids and Structures, 35, 2429–2455.

    Article  MATH  Google Scholar 

  • Pecullan, S., Gibiansky, L. V., & Torquato, S. (1999). Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. Journal of the Mechanics and Physics of Solids, 47, 1509–1542.

    Article  MathSciNet  MATH  Google Scholar 

  • Percus, J. K., & Yevick, G. J. (1958). Analysis of classical statistical mechanics by means of collective coordinates. Physical Review, 110, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Quintanilla, J., & Torquato, S. (1997). Local volume fraction fluctuations in random media. The Journal of Chemical Physics, 106, 2741–2751.

    Article  Google Scholar 

  • Ramanathan, T., Liu, H., & Brinson, L. C. (2005). Functionalized SWNT polymer nanocomposites for dramatic property improvement. Journal of Polymer Science: Polymer Physics, 43, 2269–2279.

    Article  Google Scholar 

  • Ramanathan, T., Abdala, A. A., Stankovich, S., et al. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327–331.

    Article  Google Scholar 

  • Rayleigh, L. (1873). Some general theorems relating to vibrations. Proceedings of the London Mathematical Society, 4, 357–368.

    Google Scholar 

  • Ren, Z.-Y., & Zheng, Q.-S. (2002). A quantitative study on minimum sizes of representative volume elements of cubic polycrystals-numerical experiments. Journal of the Mechanics and Physics of Solids, 50, 881–893.

    Article  MATH  Google Scholar 

  • Ren, Z.-Y., & Zheng, Q.-S. (2004). Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals. Mechanics of Materials, 36, 1217–1229.

    Article  Google Scholar 

  • Rice, J. R. (1970). On the structure of stress-strain relations for time-dependent plastic deformation of metals. ASME Journal of Applied Mechanics, 37, 728–737.

    Article  Google Scholar 

  • Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8, 157–173.

    Article  Google Scholar 

  • Sokolnikoff, I. S. (1956). Mathematical theory of elasticity. New York: Mc Graw-Hill Book Co.

    MATH  Google Scholar 

  • Tobochnik, J., & Chapin, P. M. (1988). Monte Carlo simulation of hard spheres near random closest packing using spherical boundary conditions. The Journal of Chemical Physics, 88, 5824–5830.

    Article  Google Scholar 

  • Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties. New York: Springer.

    Book  Google Scholar 

  • Torquato, S., & Stell, G. (1985). Microstructure of two-phase random media: V. The n-point matrix probability functions for impenetrable spheres. The Journal of Chemical Physics, 82, 980–987.

    Article  Google Scholar 

  • Verlet, L. (1972). Perturbation theory for the thermodynamic properties of simple liquids. Molecular Physics, 24, 1013–1024.

    Article  Google Scholar 

  • Visscher, W. M., & Bolstrelli, M. (1972). Random packing of equal and unequal spheres in two and three dimensions. Nature, 239, 504–507.

    Article  Google Scholar 

  • Wertheim, M. S. (1963). Exact solution of the Percus-Yevick integral equation for hard spheres. Physical Review Letters, 10, 321–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Zaoui, A., & Masson, R. (1998). Modelling stress-dependent transformation strains of heterogeneous materials. In Y. A. Bahei-El-Din & G. J. Dvorak (Eds.), IUTAM symposium on transformation problems in composite and active materials (pp. 3–16). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.

    Google Scholar 

  • Debye, P., Anderson, H. R., & Brumberger, H. (1975). Scattering by an inhomogeneous solid. II. The correlation function and its applications. Journal of Applied Physics, 28, 679–683.

    Article  Google Scholar 

  • Walpole, L. J. (1985b). Evaluation of the elastic moduli of a transversely isotropic aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33(6), 623–636.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dvorak, G.J. (2013). Elementary Concepts and Tools. In: Micromechanics of Composite Materials. Solid Mechanics and Its Applications, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4101-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4101-0_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4100-3

  • Online ISBN: 978-94-007-4101-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics