Skip to main content

Diurnal Mountain Wind Systems

  • Chapter
  • First Online:
Mountain Weather Research and Forecasting

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Diurnal mountain wind systems are local thermally driven wind systems that form over mountainous terrain and are produced by the buoyancy effects associated with the diurnal cycle of heating and cooling of the lower atmospheric layers. This chapter reviews the present scientific understanding of diurnal mountain wind systems, focusing on research findings published since 1988. Slope flows are examined first, as they provide a good introduction to the many factors affecting diurnal mountain wind systems. The energy budgets governing slope flows; the effects of turbulence, slope angle, ambient stability, background flows and slope inhomogeneities on slope flows; and the methods used to simulate slope flows are examined. Then, valley winds are reviewed in a similar manner and the diurnal phases of valley and slope winds and their interactions are summarized. Recent research on large-scale mountain-plain wind systems is reviewed, with an emphasis on the Rocky Mountains and the Alps. Winds occurring in closed basins and over plateaus are then discussed, and analogies between the two wind systems are outlined. This is followed by a discussion of forecasting considerations for diurnal mountain wind systems. Finally, the chapter concludes with a summary of open questions and productive areas for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Prandtl number Pr is a nondimensional number defined, for any fluid, as the ratio of the kinematic viscosity ν to the thermal diffusivity κ, i.e. Pr = ν/κ. As an extension, for turbulent flows the turbulent Prandtl number Pr t is defined as the ratio of the eddy viscosity K m to the eddy heat diffusivity K h : Pr t = K m /K h . Both of these numbers provide, for laminar and turbulent flows respectively, an estimate of the relative importance of convection versus diffusion in heat transfer processes involved with the flow.

References

  • Aigner, S., 1952: Die Temperaturminima im Gstettnerboden bei Lunz am See, Niederösterreich [The minimum temperatures in the Gstettner basin near Lunz, Lower Austria]. Wetter und Leben, Sonderheft, 34–37.

    Google Scholar 

  • Allwine, K. J., B. K. Lamb, and R. Eskridge, 1992: Wintertime dispersion in a mountainous basin at Roanoke, Virginia: Tracer study. J. Appl. Meteor., 31, 1295–1311.

    Google Scholar 

  • Amanatidis, G. T., K. H. Papadopoulos, J. G. Bartzis, and C. G. Helmis, 1992: Evidence of katabatic flows deduced from a 84 m meteorological tower in Athens, Greece. Bound.-Layer Metor., 58, 117–132.

    Google Scholar 

  • André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864–878.

    Google Scholar 

  • Andretta M., A. Weiss, N. Kljun, and M. W. Rotach, 2001: Near-surface turbulent momentum flux in an Alpine valley: Observational results. MAP newsletter, 15, 122–125.

    Google Scholar 

  • Andretta, M., A. H. Weigel, and M. W. Rotach, 2002: Eddy correlation flux measurements in an Alpine valley under different mesoscale circulations. Preprints 10th AMS Conf. Mountain Meteor., 17–21 June 2002, Park City, UT, 109–111.

    Google Scholar 

  • Anquetin, S., C. Guilbaud, and J.-P. Chollet, 1998: The formation and destruction of inversion layers within a deep valley. J. Appl. Meteor., 37, 1547–1560.

    Google Scholar 

  • Antonacci, A., and M. Tubino, 2005: An estimate of day-time turbulent diffusivity over complex terrain from standard weather data. Theor. Appl. Climatol., 80, 205–212.

    Google Scholar 

  • Arritt, R. W., J. M. Wilczak, and G. S. Young, 1992: Observations and numerical modeling of an elevated mixed layer. Mon. Wea. Rev., 120, 2869–2880.

    Google Scholar 

  • Aryal, R. K., B.-K. Leeb, R. Karki, A. Gurung, B. Baral, and S.-H. Byeonb, 2009: Dynamics of PM2.5 concentrations in Kathmandu Valley, Nepal. J. Haz. Mat., 168, 732–738.

    Google Scholar 

  • Atkinson, B. W., 1981: Meso-scale Atmospheric Circulations. Academic Press, 495pp.

    Google Scholar 

  • Atkinson, B. W., 1995: Orographic and stability effects on valley-side drainage flows. Bound.-Layer Meteor., 75, 403–428.

    Google Scholar 

  • Atkinson, B. W., and A. N. Shahub, 1994: Orographic and stability effects on day-time, valley-side slope flows. Bound.-Layer Meteor., 68, 275–300.

    Google Scholar 

  • Axelsen, S. L., and H. van Dop, 2008: Large-eddy simulation and observations of slope flow. Acta Geophysica. 57, 803–836.

    Google Scholar 

  • Axelsen, S. L., and H. van Dop, 2009: Large-eddy simulation of katabatic flow over an infinite slope. Acta Geophysica. 57, 837–856.

    Google Scholar 

  • Bader, D. C., and T. B. McKee, 1983: Dynamical model simulation of the morning boundary layer development in deep mountain valleys. J. Climate Appl. Meteor., 22, 341–351.

    Google Scholar 

  • Bader, D. C., and T. B. McKee, 1985: Effects of shear, stability and valley characteristics on the destruction of temperature inversions. J. Climate Appl. Meteor., 24, 822–832.

    Google Scholar 

  • Bader, D. C., and C. D. Whiteman, 1989: Numerical simulation of cross-valley plume dispersion during the morning transition period. J. Appl. Meteor., 28, 652–664.

    Google Scholar 

  • Baines, P. G., 2001: Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech., 443, 237–270.

    Google Scholar 

  • Baines, P. G., 2005: Mixing regimes for the flow of dense fluid down slopes into stratified environments. J. Fluid Mech., 538, 245–267.

    Google Scholar 

  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340–356.

    Google Scholar 

  • Banta, R., and W. R. Cotton, 1981: An analysis of the structure of local wind systems in a broad mountain basin. J. Appl. Meteor., 20, 1255–1266.

    Google Scholar 

  • Banta, R. M., and P. T. Gannon, 1995: Influence of soil moisture on simulations of katabatic flow. Theor. Appl. Climatol., 52, 85–94.

    Google Scholar 

  • Banta, R. M., L. D. Olivier, W. D. Neff, D. H. Levinson, and D. Ruffieux, 1995: Influence of canyon-induced flows on flow and dispersion over adjacent plains. Theor. Appl. Climatol., 52, 27–42.

    Google Scholar 

  • Banta, R. M., and Coauthors, 1997: Nocturnal cleansing flows in a tributary valley. Atmos. Environ., 31, 2147–2162.

    Google Scholar 

  • Banta, R. M., L. S. Darby, P. Kaufmann, D. H. Levinson, and C.-J. Zhu, 1999: Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 1069–1083.

    Google Scholar 

  • Banta, R. M., L. S. Darby, J. D. Fast, J. Pinto, C. D. Whiteman, W. J. Shaw, and B. D. Orr, 2004: Nocturnal low-level jet in a mountain basin complex. I: Evolution and effects on local flows. J. Appl. Meteor., 43, 1348–1365.

    Google Scholar 

  • Barr, S., and M. M. Orgill, 1989: Influence of external meteorology on nocturnal valley drainage winds. J. Appl. Meteor., 28, 497–517.

    Google Scholar 

  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in Central Nepal, June 2001. Mon. Wea. Rev., 131, 1408–1427.

    Google Scholar 

  • Barry, R. G., 2008: Mountain Weather And Climate, 3rd Edition. Cambridge University Press, 506pp.

    Google Scholar 

  • Bastin, S., and P. Drobinski, 2005: Temperature and wind velocity oscillations along a gentle slope during sea-breeze events. Bound.-Layer Meteor., 114, 573–594.

    Google Scholar 

  • Bergström, H., and N. Juuso, 2006: A study of valley winds using the MIUU mesoscale model. Wind Energy, 9, 109–129.

    Google Scholar 

  • Bertoldi, G., R. Rigon, and T. M. Over, 2006: Impact of watershed geomorphic characteristics on the energy and water budgets. J. Hydrometeor., 7, 389–403.

    Google Scholar 

  • Bhatt, B. C., and K. Nakamura, 2006: A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas. J. Geophys. Res., 111, D02115.

    Google Scholar 

  • Bianco, L., I. V. Djalalova, C. W. King, and J. M. Wilczak, 2011: Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s Central Valley. Bound.-Layer Meteor., 140, 491–511.

    Google Scholar 

  • Bica, B., and Coauthors, 2007: Thermally and dynamically induced pressure features over complex terrain from high-resolution analyses. J. Appl. Meteor. Climatol., 46, 50–65.

    Google Scholar 

  • Bischoff-Gauß, I., N. Kalthoff, and M. Fiebig-Wittmaack, 2006: The influence of a storage lake in the Arid Elqui valley in Chile on local climate. Theor. Appl. Climatol., 85, 227–241.

    Google Scholar 

  • Bischoff-Gauß, I., N. Kalthoff, S. Khodayar, M. Fiebig-Wittmaack, and S. Montecinos, 2008: Model simulations of the boundary-layer evolution over an arid Andes valley. Bound.-Layer Meteor., 128, 357–379.

    Google Scholar 

  • Bitencourt, D. P., and O. C. Acevedo, 2008: Modelling the interaction between a river surface and the atmosphere at the bottom of a valley. Bound.-Layer Meteor., 129, 309–321.

    Google Scholar 

  • Blumen, W. (Ed.), 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., 23 (no. 45), Amer. Meteor. Soc., Boston, Massachusetts.

    Google Scholar 

  • Bodine, D., P. M. Klein, S. C. Arms, and A. Shapiro, 2009: Variability of surface air temperature over gently sloped terrain. J. Appl. Meteor. Climatol., 48, 1117–1141.

    Google Scholar 

  • Bossert, J. E., 1997: An investigation of flow regimes affecting the Mexico City region. J. Appl. Meteor., 36, 119–140.

    Google Scholar 

  • Bossert, J. E., and W. R. Cotton, 1994a: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 1449–1471.

    Google Scholar 

  • Bossert, J. E., and W. R. Cotton, 1994b: Regional-scale flows in mountainous terrain. Part II: Simplified numerical experiments. Mon. Wea. Rev., 122, 1472–1489.

    Google Scholar 

  • Bossert, J. E., J. D. Sheaffer, and E. R. Reiter, 1989: Aspects of regional-scale flows in mountainous terrain. J. Appl. Meteorol., 28, 590–601.

    Google Scholar 

  • Brazel, A.J., H. J. S. Fernando, J. C. R. Hunt, N. Selover, B. C. Hedquist, and E. Pardyjak, 2005: Evening transition observations in Phoenix, Arizona. J. Applied Meteor., 44, 99–112.

    Google Scholar 

  • Brehm, M. 1986: Experimentelle und numerische Untersuchungen der Hangwindschicht und ihrer Rolle bei der Erwärmung von Tälern. [Experimental and numerical investigations of the slope wind layer and its role in the warming of valleys]. Wiss. Mitt. Nr. 54, dissertation, Universität München – Meteorologisches Institut, München, FRG.

    Google Scholar 

  • Brehm, M., and C. Freytag, 1982: Erosion of the night-time thermal circulation in an Alpine valley. Arch. Meteor. Geophys. Bioclimatol., Ser. B, 31, 331–352.

    Google Scholar 

  • Buettner, K. J. K., and N. Thyer, 1966: Valley winds in the Mount Rainier area. Arch. Meteor. Geophys. Bioclimatol., Ser. B, 14, 125–147.

    Google Scholar 

  • Burger, A., and E. Ekhart, 1937: Über die tägliche Zirkulation der Atmosphäre im Bereiche der Alpen [The daily atmospheric circulation in the Alpine region]. Gerl. Beitr., 49, 341–367.

    Google Scholar 

  • Burkholder, B. A., A. Shapiro and E. Fedorovich, 2009: Katabatic flow induced by a cross-slope band of surface cooling. Acta Geophysica, 57, 923–949.

    Google Scholar 

  • Carrega, P., 1995: A method for the reconstruction of mountain air temperatures with cartographic applications. Theor. Appl. Climatol., 52, 69–84.

    Google Scholar 

  • Catalano, F., and A. Cenedese, 2010: High-resolution numerical modeling of thermally driven slope winds in a valley with strong capping. J. Appl. Meteor. Climatol., 49, 1859–1880.

    Google Scholar 

  • Catalano, F., and C.-H. Moeng, 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor., 137, 49–75.

    Google Scholar 

  • Chemel, C., and J. P. Chollet, 2006: Observations of the daytime boundary layer in deep Alpine valleys. Bound.-Layer Meteor., 119, 239–262.

    Google Scholar 

  • Chemel, C., C. Staquet, and Y. Largeron, 2009: Generation of internal gravity waves by a katabatic wind in an idealized alpine valley. Meteor. Atmos Phys., 103, 187–194.

    Google Scholar 

  • Chen, Y., A. Hall, and K. N. Liou, 2006: Application of 3D solar radiative transfer to mountains. J. Geophys. Res., 111, D21111.

    Google Scholar 

  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue. 2006. High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 63–86.

    Google Scholar 

  • Ciolli, M., M. de Franceschi, R. Rea, A. Vitti, D. Zardi, and P. Zatelli, 2004: Development and application of 2D and 3D GRASS modules for simulation of thermally driven slope winds. Transactions in GIS, 8, 191–209.

    Google Scholar 

  • Clements, W. E., J. A. Archuleta, and D. E. Hoard, 1989: Mean structure of the nocturnal drainage flow in a deep valley. J. Appl. Meteor., 28, 457–462.

    Google Scholar 

  • Clements, C. B., C. D. Whiteman, and J. D. Horel, 2003: Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J. Appl. Meteor., 42, 752–768.

    Google Scholar 

  • Cogliati, M. G., and N. A. Mazzeo, 2005: Air flow analysis in the upper Rio Negro Valley (Argentina). Atmos. Res., 80, 263–279.

    Google Scholar 

  • Colette, A., F. K. Chow, and R. L. Street, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor., 42, 1255–1272.

    Google Scholar 

  • Coulter, R. L., and P. Gudiksen, 1995: The dependence of canyon winds on surface cooling and external forcing in Colorado’s Front Range. J. Appl. Meteor., 34, 1419–1429.

    Google Scholar 

  • Coulter, R. L., and T. J. Martin, 1996: Effects of stability on the profiles of vertical velocity and its variance in katabatic flow. Bound.-Layer Meteor., 81, 23–33.

    Google Scholar 

  • Coulter, R. L., M. Orgill, and W. Porch, 1989: Tributary fluxes into Brush Creek Valley. J. Appl. Meteor., 28, 555–568.

    Google Scholar 

  • Coulter, R. L., T. J. Martin, and W. M. Porch, 1991: A comparison of nocturnal drainage flow in three tributaries. J. Appl. Meteor., 30, 157–169.

    Google Scholar 

  • Cox, J. A. W., 2005: The sensitivity of thermally driven mountain flows to land-cover change. Dissertation, Univ. Utah, Meteorology Department. 109pp.

    Google Scholar 

  • Crawford, T. L., and R. J. Dobosy, 1992: A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Bound.-Layer Meteor., 59, 257–278.

    Google Scholar 

  • Cuxart, J., 2008: Nocturnal basin low-level jets: An integrated study. Acta Geophysica, 56, 100–113.

    Google Scholar 

  • Cuxart, J., and M. A. Jiménez, 2011: Deep radiation fog in a wide closed valley: Study by numerical modeling and remote sensing. Pure Appl. Geophys. In press. DOI: 10.1007/s00024-011-0365-4.

  • Cuxart, J., M. A. Jiménez, and D. Martínez, 2007: Nocturnal meso-beta basin and katabatic flows on a midlatitude island. Mon. Wea. Rev., 135, 918–932.

    Google Scholar 

  • Cuxart, J., J. Cunillera, M. A. Jiménez, D. Martínez, F. Molinos, and J. L. Palau, 2011: Study of mesobeta basin flows by remote sensing. Bound.-Layer Meteor. In press. DOI: 10.1007/s10546-011-9655-8.

  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 3874–3891.

    Google Scholar 

  • Darby, L. S., and R. M. Banta, 2006: The modulation of canyon flows by larger-scale influences. Ext. Abstr., 12th Conf. Mountain Meteor., Santa Fe, NM. Amer. Meteor. Soc., Boston, MA.

    Google Scholar 

  • Darby, L. S., K. J. Allwine, and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45, 740–753.

    Google Scholar 

  • Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421–450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141/ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp].

    Google Scholar 

  • Defant, F., 1951: Local Winds. In: Compendium of Meteorology, T. M. Malone (Ed.), Boston, Amer. Meteor. Soc., 655–672.

    Google Scholar 

  • de Foy, B., and Coauthors, 2008: Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys., 8, 1209–1224.

    Google Scholar 

  • de Franceschi, M., 2004: Investigation of atmospheric boundary layer dynamics in Alpine valleys. Ph.D. thesis in Environmental Engineering, University of Trento, Italy, 136pp. http://www.ing.unitn.it/dica/eng/monographs/index.php.

  • de Franceschi, M., and D. Zardi, 2003: Evaluation of cut-off frequency and correction of filter-induced phase lag and attenuation in eddy covariance analysis of turbulence data. Bound.-Layer Meteor., 108, 289–303.

    Google Scholar 

  • de Franceschi, M., and D. Zardi, 2009: Study of wintertime high pollution episodes during the Brenner-South ALPNAP measurement campaign. Meteor. Atmos. Phys., 103, 237–250.

    Google Scholar 

  • de Franceschi, M., G. Rampanelli, and D. Zardi, 2002: Further investigations of the “Ora del Garda” valley wind. 10th Conf. Mount. Meteor. and MAP Meeting, 13–21 June 2002, Park City, UT, Amer. Meteor. Soc., Boston, MA. Available at http://ams.confex.com/ams/pdfpapers/39949.pdf.

  • de Franceschi, M., G. Rampanelli, D. Sguerso, D. Zardi, and P. Zatelli, 2003: Development of a measurement platform on a light airplane and analysis of airborne measurements in the atmospheric boundary layer. Ann. Geophys., 46, 269–283.

    Google Scholar 

  • de Franceschi, M., D. Zardi, M. Tagliazucca, and F. Tampieri, 2009: Analysis of second order moments in the surface layer turbulence in an Alpine valley. Quart. J. Roy. Meteor. Soc., 135, 1750–1765.

    Google Scholar 

  • De Wekker, S. F. J., 2002: Structure and morphology of the convective boundary layer in mountainous terrain. Dissertation, University of British Columbia, Department of Earth and Ocean Sciences, Vancouver, Canada, 191pp.

    Google Scholar 

  • De Wekker, S. F. J., 2008: Observational and numerical evidence of depressed convective boundary layer heights near a mountain base. J. Appl. Meteor., 47, 1017–1026.

    Google Scholar 

  • De Wekker, S. F. J., and S. D. Mayor, 2009: Observations of atmospheric structure and dynamics in the Owens Valley of California with a ground-based, eye-safe, scanning aerosol lidar. J. Appl. Meteor. Climatol., 48, 1483–1499.

    Google Scholar 

  • De Wekker, S. F. J., and C. D. Whiteman, 2006: On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J. Appl. Meteor., 45, 813–820.

    Google Scholar 

  • De Wekker, S. F. J., S. Zhong, J. D. Fast, and C. D. Whiteman, 1998: A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J. Appl. Meteor., 37, 606–622.

    Google Scholar 

  • De Wekker, S. F. J., D. G. Steyn, J. D. Fast, M. W. Rotach, and S. Zhong, 2005: The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Environ. Fluid Mech., 5, 35–62.

    Google Scholar 

  • De Wekker S. F. J., A. Ameen, G. Song, B. B. Stephens, A. G. Hallar and I. B. McCubbin, 2009: A preliminary investigation of boundary layer effects on daytime atmospheric CO2 concentrations at a mountaintop location in the Rocky Mountains Acta Geophysica, 57, 904–922.

    Google Scholar 

  • Denby, B., 1999: Second-order modelling of turbulence in katabatic flows. Bound.-Layer Meteor., 92, 67–100.

    Google Scholar 

  • Deng, X., and R. Stull, 2005: A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon. Wea. Rev., 133, 389–408.

    Google Scholar 

  • Deng, X., and R. Stull, 2007: Assimilating surface weather observations from complex terrain into a high-resolution numerical weather prediction model. Mon. Wea. Rev., 135, 1037–1054.

    Google Scholar 

  • Dixit, P. N., and D. Chen, 2011: Effect of topography on farm-scale spatial variation in extreme temperatures in the Southern Mallee of Victoria, Australia. Theor. Appl. Climatol., 103, 533–542.

    Google Scholar 

  • Doran, J. C., 1991: The effect of ambient winds on valley drainage flows. Bound.-Layer Meteor., 55, 177–189.

    Google Scholar 

  • Doran, J. C., 1996: The influence of canyon winds on flow fields near Colorado’s Front Range. J. Appl. Meteor., 35, 587–600.

    Google Scholar 

  • Doran, J. C., and T. W. Horst, 1981: Velocity and temperature oscillations in drainage winds. J. Appl. Meteor., 20, 361–364.

    Google Scholar 

  • Doran, J. C., and S. Zhong, 2000: Thermally driven gap winds into the Mexico City basin. J. Appl. Meteor., 39, 1330–1340.

    Google Scholar 

  • Doran, J. C., M. L. Wesley, R. T. McMillen, and W. D. Neff, 1989: Measurements of turbulent heat and momentum fluxes in a mountain valley. J. Appl. Meteor., 28, 438–444.

    Google Scholar 

  • Doran, J. C., T. W. Horst, and C. D. Whiteman, 1990: The development and structure of nocturnal slope winds in a simple valley. Bound.-Layer Meteor., 52, 41–68.

    Google Scholar 

  • Doran, J. C., and Coauthors, 1998: The IMADA-AVER boundary-layer experiment in the Mexico City area. Bull. Amer. Meteor. Soc., 79, 2497–2508.

    Google Scholar 

  • Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537–551.

    Google Scholar 

  • Dorninger, M., Whiteman, C. D., B. Bica, S. Eisenbach, B. Pospichal, and R. Steinacker, 2011: Meteorological events affecting cold-air pools in a small basin. J. Appl. Meteor. Climatol. Accepted.

    Google Scholar 

  • Dosio, A., S. Emeis, G. Graziani, W. Junkermann, and A. Levy, 2001: Assessing the meteorological conditions of a deep Italian Alpine valley system by means of a measuring campaign and simulations with two models during a summer smog episode. Atmos. Environ., 35, 5441–5454.

    Google Scholar 

  • Duguay, C. R., 1993: Radiation modeling in mountainous terrain: Review and status. Mount. Res. Dev., 13, 339–357.

    Google Scholar 

  • Eckman, R. M., 1998: Observations and numerical simulations of winds in a broad forested valley. J. Appl. Meteor., 37, 206–219.

    Google Scholar 

  • Egger, J., 1987: Valley winds and the diurnal circulation over plateaus. Mon. Wea. Rev., 115, 2177–2186.

    Google Scholar 

  • Egger, J., 1990: Thermally forced flows: Theory. In W. Blumen (Ed.), Atmospheric Processes over Complex Terrain. Amer. Meteor. Soc., Boston, 43–57.

    Google Scholar 

  • Egger, J., S. Bajrachaya, U. Egger, R. Heinrich, J. Reuder, P. Shayka, H. Wendt, and V. Wirth, 2000: Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Mon. Wea. Rev., 128, 1106–1122.

    Google Scholar 

  • Egger, J., and Coauthors, 2002: Diurnal winds in the Himalayan Kali Gandaki valley. Part III: Remotely piloted aircraft soundings. Mon. Wea. Rev., 130, 2042–2058.

    Google Scholar 

  • Egger, J., and Coauthors, 2005: Diurnal circulation of the Bolivian Altiplano. Part I: Observations. Mon. Wea. Rev., 133, 911–924.

    Google Scholar 

  • Ekhart, E., 1944: Beiträge zur alpinen Meteorologie. [Contributions to Alpine Meteorology]. Meteor. Z., 61, 217–231. [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine Meteorology: Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141/ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp].

    Google Scholar 

  • Ekhart, E., 1948: De la structure thermique de l’atmosphere dans la montagne [On the thermal structure of the mountain atmosphere]. La Meteorologie, 4, 3–26. [English translation: Whiteman, C.D., and E. Dreiseitl: 1984. Alpine Meteorology: Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141/ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp].

    Google Scholar 

  • Emeis, S., C. Jahn, C. Münkel, C. Münsterer, and K. Schäfer, 2007: Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. Meteor. Z., 16, 415–424.

    Google Scholar 

  • Enger, L., D. Koračin, and X. Yang, 1993: A numerical study of boundary-layer dynamics in a mountain valley. Part 1: Model validation and sensitivity experiment. Bound.-Layer Meteor., 66, 357–394.

    Google Scholar 

  • Fast, J. D., 1995: Mesoscale modeling and four-dimensional data assimilation in areas of highly complex terrain. J. Appl. Meteor., 34, 2762–2782.

    Google Scholar 

  • Fast, J. D., 2003: Forecasts of valley circulations using the terrain-following and step-mountain vertical coordinates in the Meso-Eta model. Wea. Forecasting, 18, 1192–1206.

    Google Scholar 

  • Fast, J. D., and S. Zhong, 1998: Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin. J. Geophys. Res., 103 (D15), 18,927-18,946.

    Google Scholar 

  • Fast, J. D., and L. S. Darby, 2004: An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using Doppler lidar measurements during VTMX 2000. J. Appl. Meteor., 43, 420–436.

    Google Scholar 

  • Fast, J., S. Zhong, and C. D. Whiteman, 1996: Boundary layer evolution within a canyonland basin. Part II. Numerical simulations of nocturnal flows and heat budgets. J. Appl. Meteor., 35, 2162–2178.

    Google Scholar 

  • Fernando, H. J. S., 2010: Fluid dynamics of urban atmospheres in complex terrain. Ann. Rev. Fluid Mech., 42, 365–89.

    Google Scholar 

  • Fiedler, F., I. Bischoff-Gauß, N. Kalthoff, and G. Adrian, 2000: Modeling of the transport and diffusion of a tracer in the Freiburg-Schauinsland area. J. Geophys. Res., 105, D1, 1599–1610.

    Google Scholar 

  • Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques. Part I. Averaging and coordinate rotation. Bound.-Layer Meteor., 107, 1–48.

    Google Scholar 

  • Fitzjarrald, D. R., 1984: Katabatic winds in opposing flow. J. Atmos. Sci., 41, 1143–1158.

    Google Scholar 

  • Fleagle, R. G., 1950: A theory of air drainage. J. Meteor., 7, 227–232.

    Google Scholar 

  • Frei, C., and H. C. Davies, 1993: Anomaly in the Alpine diurnal pressure signal: Observations and theory. Quart. J. Roy. Meteor. Soc., 119, 1269–1289.

    Google Scholar 

  • Freytag, C., 1988: Atmosphärische Grenzschicht in einem Gebirgstal bei Berg- und Talwind. [Atmospheric boundary layer in a mountain valley during mountain and valley winds]. Wiss. Mitteil. Nr. 60, Münchener Universitätsschriften, Facultät für Physik, Universität München – Meteorologisches Institut, 197pp.

    Google Scholar 

  • Fritts, D. C., D. Goldstein, and T. Lund, 2010: High-resolution numerical studies of stable boundary layer flows in a closed basin: Evolution of steady and oscillatory flows in an axisymmetric Arizona Meteor Crater. J. Geophys. Res., 115, D18109.

    Google Scholar 

  • Furger, M., and Coauthors, 2000: The VOTALP Mesolcina Valley campaign 1996 – Concept, background and some highlights. Atmos. Environ., 34, 1395–1412.

    Google Scholar 

  • Garratt, J. R., and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci., 38, 2730–2746.

    Google Scholar 

  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 4272–4288.

    Google Scholar 

  • Geiger, R., R. H. Aron, and P. Todhunter, 2009: The Climate Near the Ground, 7th Edition. Roman and Littlefield Publishers, Maryland, 523pp.

    Google Scholar 

  • Giovannini, L., D. Zardi, and M. de Franceschi, 2011: Analysis of the urban thermal fingerprint of the city of Trento in the Alps. J. Appl. Meteor. Climatol., 50, 1145–1162.

    Google Scholar 

  • Gleeson, T. A., 1951: On the theory of cross-valley winds arising from differential heating of the slopes. J. Meteor., 8, 398–405.

    Google Scholar 

  • Gohm, A., F. Harnisch, J. Vergeiner, F. Obleitner, R. Schnitzhofer, A. Hansel, A. Fix, B. Neininger, S. Emeis, and K. Schäfer, 2009: Air pollution transport in an Alpine valley: Results from airborne and ground-based observations. Bound.-Layer Meteor., 131, 441–463.

    Google Scholar 

  • Grell, G. A., S. Emeis, W. R. Stockwell, T. Schoenemey, R. Forkel, J. Michalakes, R. Knoche, and W. Seidl, 2000: Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos. Environ., 34, 1435–1453.

    Google Scholar 

  • Grimmond, C. S. B., C. Souch, and M. D. Hubble, 1996: Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Research, 6, 45–57.

    Google Scholar 

  • Grisogono, B., 2003: Post-onset behaviour of the pure katabatic flow. Bound.-Layer Meteor., 107, 157–175.

    Google Scholar 

  • Grisogono, B., and J. Oerlemans, 2001a: A theory for the estimation of surface fluxes in simple katabatic flow. Quart. J. Roy. Meteor. Soc., 127, 2125–2139.

    Google Scholar 

  • Grisogono, B., and J. Oerlemans, 2001b: Katabatic flow: Analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci., 58, 3349–3354.

    Google Scholar 

  • Grisogono, B., L. Kraljevič, and A. Jeričevič, 2007: The low-level katabatic jet height versus Monin-Obukhov height. Quart. J. Roy. Meteor. Soc., 133, 2133–2136.

    Google Scholar 

  • Gross, G., 1984: Eine Erklärung des Phänomens Maloja-Schlange Mittels Numerischer Simulation. [An Explanation of the Maloja Snake (Cloud) Phenomenon by Means of a Numerical Simulation]. Dissertation, Technischen Hochschule Darmstadt, Darmstadt, FRG.

    Google Scholar 

  • Gross, G., 1985: An explanation of the Maloja-serpent by numerical simulation, Beitr. Phys. Atmos., 58, 441–457.

    Google Scholar 

  • Gross, G., 1990: On the wind field in the Loisach Valley–Numerical simulation and comparison with the LOWEX III data. Meteor. Atmos. Phys., 42, 231–247.

    Google Scholar 

  • Grossi, G., and L. Falappi, 2003: Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models. Hydrology and Earth System Sciences, 7, 920–936.

    Google Scholar 

  • Guardans, R., and I. Palomino, 1995: Description of wind field dynamic patterns in a valley and their relation to mesoscale and synoptic-scale situations. J. Appl. Meteor., 34, 49–67.

    Google Scholar 

  • Gustavsson, T., M. Karlsson, J. Bogren, and S. Lindqvist, 1998: Development of temperature patterns during clear nights. J. Appl. Meteor., 37, 559–571.

    Google Scholar 

  • Ha, K.-J., and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus, 55A, 317–327.

    Google Scholar 

  • Haiden, T., 1998: Analytical aspects of mixed-layer growth in complex terrain. Preprints, Eighth Conf. Mountain Meteorology, Amer. Meteor. Soc., Flagstaff, Arizona, 368–372.

    Google Scholar 

  • Haiden, T., 2003: On the pressure field in the slope wind layer. J. Atmos. Sci., 60, 1632–1635.

    Google Scholar 

  • Haiden, T., and C. D. Whiteman, 2005: Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteor., 44, 113–126.

    Google Scholar 

  • Haiden, T., C. D. Whiteman, S. W. Hoch, and M. Lehner, 2011: A mass-flux model of nocturnal cold air intrusions into a closed basin. J. Appl. Meteor. Climatol., 50, 933–943.

    Google Scholar 

  • Harnisch, F., A. Gohm, A. Fix, R. Schnitzhofer, A. Hansel, and B. Neininger, 2009: Spatial distribution of aerosols in the Inn Valley atmosphere during wintertime. Meteor. Atmos. Phys., 103, 215–228.

    Google Scholar 

  • Hauge, G., and L. R. Hole, 2003: Implementation of slope irradiance in Mesoscale Model version 5 and its effect on temperature and wind fields during the breakup of a temperature inversion. J. Geophys. Res., 108, D2, 4058.

    Google Scholar 

  • Hawkes, H. B., 1947: Mountain and valley winds with special reference to the diurnal mountain winds of the Great Salt Lake region. Dissertation, Ohio State University, 312pp.

    Google Scholar 

  • Helmis, C. G., and K. H. Papadopoulos, 1996: Some aspects of the variation with time of katabatic flows over a simple slope. Quart. J. Roy. Meteor. Soc., 122, 595–610.

    Google Scholar 

  • Henne, S., M. Furger, and A. S. H. Prévôt, 2005: Climatology of mountain venting-induced elevated moisture layers in the lee of the Alps. J. Appl. Meteor., 44, 620–633.

    Google Scholar 

  • Henne, S., W. Junkermann, J. M. Kariuki, J. Aseyo, and J. Klausen, 2008: The establishment of the Mt. Kenya GAW station: Installation and meteorological characterization. J. Appl. Meteor. Climatol., 47, 2946–2962.

    Google Scholar 

  • Higgins, W., and Coauthors, 2006: The NAME 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87, 79–94.

    Google Scholar 

  • Hiller, R., M. Zeeman, and W. Eugster, 2008: Eddy-covariance flux measurements in the complex terrain of an Alpine valley in Switzerland. Bound.-Layer Meteor., 127, 449–467.

    Google Scholar 

  • Hoch, S. W., and C. D. Whiteman, 2010: Topographic effects on the surface radiation balance in and around Arizona’s Meteor Crater. J. Appl. Meteor. Climat., 49, 1894–1905.

    Google Scholar 

  • Hoch, S. W., C. D. Whiteman, and B. Mayer, 2011: A systematic study of longwave radiative heating and cooling within valleys and basins using a three-dimensional radiative transfer model. J. Appl. Meteor. Climatol. In press.

    Google Scholar 

  • Holton, J. R., 1966: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199–205.

    Google Scholar 

  • Horst, T. W., and J. C. Doran, 1986: Nocturnal drainage flow on simple slopes. Bound.-Layer Meteor., 34, 263–286.

    Google Scholar 

  • Horst, T. W., and J. C. Doran, 1988: The turbulence structure of nocturnal slope flows. J. Atmos. Sci., 45, 605–616.

    Google Scholar 

  • Hughes, M., A. Hall, and G. Fovell, 2007: Dynamical controls on the diurnal cycle of temperature in complex topography, Clim. Dyn., 29, 277–292.

    Google Scholar 

  • Hunt, J. C. R., H. J. S. Fernando, and M. Princevac, 2003: Unsteady thermally driven flows on gentle slopes. J. Atmos. Sci., 60, 2169–2182.

    Google Scholar 

  • IIjima, Y., and M. Shinoda, 2000: Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. Int. J. Climatol., 20, 1471–1483.

    Google Scholar 

  • Iziomon, M. G., H. Mayer, W. Wicke, and A. Matzarakis, 2001: Radiation balance over low-lying and mountainous areas in southwest Germany. Theor. Appl. Climatol., 68, 219–231.

    Google Scholar 

  • Jiang, Q., and J. D. Doyle, 2008: Diurnal variation of downslope winds in Owens Valley during the Sierra Rotor experiment. Mon. Wea. Rev., 136, 3760–3780.

    Google Scholar 

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric boundary-layer flows: Their structure and measurement. Oxford University Press, New York, 289pp.

    Google Scholar 

  • Kalthoff, N., and Coauthors, 2002: Mesoscale wind regimes in Chile at 30° S. J. Appl. Meteor., 41, 953–970.

    Google Scholar 

  • Kalthoff, N., M. Fiebig-Wittmaack, C. Meißner, M. Kohler, M. Uriarte, I. Bischoff-Gauß, and E. Gonzales, 2006: The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J. Arid Environments, 65, 420–443.

    Google Scholar 

  • Kalthoff, N., and Coauthors, 2009: The impact of convergence zones on the initiation of deep convection: A case study from COPS. Atmos. Res., 93, 680 – 694.

    Google Scholar 

  • Kastendeuch, P. P., and P. Kaufmann, 1997: Classification of summer wind fields over complex terrain. Int. J. Climatol., 17, 521–534.

    Google Scholar 

  • Kastendeuch, P. P., P. Lacarrere, G. Najjar, J. Noilhan, F. Gassmann, and P. Paul, 2000: Mesoscale simulations of thermodynamic fluxes over complex terrain. Int. J. Climatol., 20, 1249–1264.

    Google Scholar 

  • Kaufmann, P., and R. O. Weber, 1996: Classification of mesoscale wind fields in the MISTRAL field experiment. J. Appl. Meteor., 35, 1963–1979.

    Google Scholar 

  • Kaufmann, P., and R. O. Weber, 1998: Directional correlation coefficient for channeled flow and application to wind data over complex terrain. J. Atmos. Oceanic. Technol., 15, 89–97.

    Google Scholar 

  • Kaufmann, P., and C. D. Whiteman, 1999: Cluster-analysis classification of wintertime wind patterns in the Grand Canyon region. J. Appl. Meteor., 38, 1131–1147.

    Google Scholar 

  • Kavčič, I., and B. Grisogono, 2007: Katabatic flow with Coriolis effect and gradually varying eddy diffusivity. Bound.-Layer Meteor., 125,377–387.

    Google Scholar 

  • Kelly, R. D., 1988: Asymmetric removal of temperature inversions in a high mountain valley. J. Appl. Meteor., 27, 664–673.

    Google Scholar 

  • Khodayar, S., N. Kalthoff, M. Fiebig-Wittmaack, and M. Kohler, 2008: Evolution of the atmospheric boundary-layer structure of an arid Andes valley. Meteor. Atmos. Phys., 99, 181–198.

    Google Scholar 

  • Kimura, F., and T. Kuwagata, 1993: Thermally induced wind passing from plain to basin over a mountain range. J. Appl. Meteor., 32, 1538–1547.

    Google Scholar 

  • Kimura, F., and T. Kuwagata, 1995: Horizontal heat fluxes over complex terrain computed using a simple mixed-layer model and a numerical model. J. Appl. Meteor., 34, 549–558.

    Google Scholar 

  • King, C. W., 1989: Representativeness of single vertical wind profiles for determining volume fluxes in valleys. J. Appl. Meteor., 28, 463–466.

    Google Scholar 

  • King, J. A., F. H. Shair, and D. D. Reible, 1987: The influence of atmospheric stability on pollutant transport by slope winds. Atmos. Environ., 21, 53–59.

    Google Scholar 

  • Kitada, T., and R. P. Regmi, 2003: Dynamics of air pollution transport in late wintertime over Kathmandu Valley, Nepal: As revealed with numerical simulation. J. Appl. Meteor., 42, 1770–1798.

    Google Scholar 

  • Koch, H. G., 1961: Die warme Hangzone. Neue Anschauungen zur nächtlichen Kaltluftschichtung in Tälern und an Hängen. [The warm slope zone. New views of the nocturnal cold air layer in valleys and on slopes]. Z. Meteor., 15, 151–171.

    Google Scholar 

  • Kolev, N., I. Grigorov, I. Kolev, P. C. S. Devara, P. E. Raj, and K. K. Dan, 2007: Lidar and sun photometer observations of atmospheric boundary-layer characteristics over an urban area in a mountain valley. Bound.-Layer Meteor., 124, 99–115.

    Google Scholar 

  • Kondo, H., 1990: A numerical experiment on the interaction between sea breeze and valley wind to generate the so-called “extended sea breeze.” J. Meteor. Soc. Japan, 68, 435–446.

    Google Scholar 

  • Kondo, J., and N. Okusa, 1990: A simple numerical prediction model of nocturnal cooling in a basin with various topographic parameters. J. Appl. Meteor., 29, 604–619.

    Google Scholar 

  • Kondo, J., T. Kuwagata, and S. Haginoya, 1989: Heat budget analysis of nocturnal cooling and daytime heating in a basin. J. Atmos. Sci., 19, 2917–2933.

    Google Scholar 

  • Koračin, D., and L. Enger, 1994: A numerical study of boundary-layer dyamics in a mountain valley. Part 2: Observed and simulated characteristics of atmospheric stability and local flows. Bound.-Layer Meteor., 69, 249–283.

    Google Scholar 

  • Kossmann, M., and A. P. Sturman, 2003: Pressure-driven channeling effects in bent valleys. J. Appl. Meteor., 42, 151–158.

    Google Scholar 

  • Kossman, M., A. P. Sturman, P. Zawar-Reza, H. A. McGowan, A. J. Oliphant, I. F. Owens, and R. A. Spronken-Smith, 2002: Analysis of the wind field and heat budget in an alpine lake basin during summertime fair weather conditions. Meteor. Atmos. Phys., 81, 27–52.

    Google Scholar 

  • Küttner, J., 1949: Periodische Luftlawinen. [Periodic air avalanches]. Meteor. Rundsch., 2, 183–184.

    Google Scholar 

  • Kuttler, W., A.-B. Barlag, and F. Roßmann, 1996: Study of the thermal structure of a town in a narrow valley. Atmos. Environ., 30, 365–378.

    Google Scholar 

  • Kuwagata, T., and J. Kondo, 1989: Observation and modeling of thermally induced upslope flow. Bound.-Layer Meteor., 49, 265–293.

    Google Scholar 

  • Kuwagata, T., and F. Kimura, 1995: Daytime boundary layer evolution in a deep valley. Part I: Observations in the Ina Valley. J. Appl. Meteor., 34, 1082–1091.

    Google Scholar 

  • Kuwagata, T., and F. Kimura, 1997: Daytime boundary layer evolution in a deep valley. Part II: Numerical simulation of the cross-valley circulation. J. Appl. Meteor., 36, 883–895.

    Google Scholar 

  • Lee, I. Y., R. L. Coulter, H. M. Park, and J.-H. Oh, 1995: Numerical simulation of nocturnal drainage flow properties in a rugged canyon. Bound.-Layer Meteor., 72, 305–321.

    Google Scholar 

  • Lee, S.-M., W. Giori, M. Princevac, and H. J. S. Fernando, 2006: Implementation of a stable PBL turbulence parameterization for the mesoscale model MM5: Nocturnal flow in complex terrain. Bound.-Layer Meteor., 119, 109–134.

    Google Scholar 

  • Lee, X., and X. Hu, 2002: Forest-air fluxes of carbon, water and energy over non-flat terrain. Bound.-Layer Meteor, 103, 277–301.

    Google Scholar 

  • Lehner, M., and A. Gohm, 2010: Idealised simulations of daytime pollution transport in a steep valley and its sensitivity to thermal stratification and surface albedo. Bound.-Layer Meteor., 134, 327–351.

    Google Scholar 

  • Lehner, M., C. D. Whiteman, and S. W. Hoch, 2010: Diurnal cycle of thermally driven cross-basin winds in Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 50, 729–744.

    Google Scholar 

  • Leone, J. M., Jr., and R. L. Lee, 1989: Numerical simulation of drainage flow in Brush Creek, Colorado. J. Appl. Meteor., 28, 530–542.

    Google Scholar 

  • Li, J.-G., and B. W. Atkinson, 1999: Transition regimes in valley airflows. Bound.-Layer Meteor., 91, 385–411.

    Google Scholar 

  • Li, Y., and R. B. Smith, 2010: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 2734–2751.

    Google Scholar 

  • Li, Y., R. B. Smith, and V. Grubišić, 2009: Using surface pressure variations to categorize the diurnal valley circulations: Experiments in Owens Valley. Mon. Wea. Rev., 137, 1753–1769.

    Google Scholar 

  • Lindkvist, L., and S. Lindqvist, 1997: Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agric. Forest Meteor., 87, 139–153.

    Google Scholar 

  • Lindkvist, L., T. Gustavsson, and J. Bogren, 2000: A frost assessment method for mountainous areas. Agric. Forest Meteor., 102, 51–67.

    Google Scholar 

  • Liu, X., A. Bai, and C. Liu, 2009: Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ. Res. Lett., 4, 045203.

    Google Scholar 

  • Löffler-Mang, M., M. Kossmann, R. Vögtlin, and F. Fiedler, 1997: Valley wind systems and their influences on nocturnal ozone concentrations. Beitr. Phys. Atmosph., 70, 1–14.

    Google Scholar 

  • Lu, R., and R. P. Turco, 1995: Air pollutant transport in a coastal environment – II. Three-dimensional simulations over Los Angeles basin. Atmos. Environ., 29, 1499–1518.

    Google Scholar 

  • Ludwig, F. L., J. Horel, and C. D. Whiteman, 2004: Using EOF analysis to identify important surface wind patterns in mountain valleys. J. Appl. Meteor., 43, 969–983.

    Google Scholar 

  • Lugauer, M., and P. Winkler, 2005: Thermal circulation in South Bavaria – climatology and synoptic aspects. Meteor. Z., 14, 15–30.

    Google Scholar 

  • Lugauer, M., and Coauthors, 2003: An overview of the VERTIKATOR project and results of Alpine pumping. Extended Abstracts, Vol. A, International Conf. on Alpine Meteor. and MAP-Meeting 2003, May 19–23, 2003, Brig, Switzerland. Publications of MeteoSwiss, No. 66, 129–132.

    Google Scholar 

  • Luhar, A. K., and S. K. Rao, 1993: Random-walk model studies of the transport and diffusion of pollutants in katabatic flows. Bound.-Layer Meteor., 66, 395–412.

    Google Scholar 

  • Magono, C., C. Nakamura, and Y. Yoshida, 1982: Nocturnal cooling of the Moshiri Basin, Hokkaido in midwinter. J. Meteor. Soc. Japan, 60, 1106–1116.

    Google Scholar 

  • Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39, 2701–2711.

    Google Scholar 

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375–396.

    Google Scholar 

  • Mahrt, L., 2006: Variation of surface air temperature in complex terrain. J. Appl. Meteor. Climatol., 45, 1481–1493.

    Google Scholar 

  • Mahrt, L. J., and S. Larsen, 1982: Small scale drainage flow. Tellus, 34, 579–587.

    Google Scholar 

  • Mahrt, L., D. Vickers, R. Nakamura, M. R. Soler, J. Sun, S. Burns, and D. H. Lenschow, 2001: Shallow drainage flows. Bound.-Layer Meteor., 101, 243–260.

    Google Scholar 

  • Maki, M., and T. Harimaya, 1988: The effect of advection and accumulation of downslope cold air on nocturnal cooling in basins. J. Meteor. Soc. Japan, 66, 581–597.

    Google Scholar 

  • Maki, M., T. Harimaya, and K. Kikuchi, 1986: Heat budget studies on nocturnal cooling in a basin. J. Meteor. Soc. Japan, 64, 727–740.

    Google Scholar 

  • Manins, P. C., 1992: Vertical fluxes in katabatic flows. Bound.-Layer Meteor., 60, 169–178.

    Google Scholar 

  • Manins, P. C., and B. L. Sawford, 1979a: Katabatic winds: A field case study. Quart. J. Roy. Meteor. Soc., 105, 1011–1025.

    Google Scholar 

  • Manins, P. C., and B. L. Sawford, 1979b: A model of katabatic winds. J. Atmos. Sci., 36, 619–630.

    Google Scholar 

  • Mannouji, N., 1982: A numerical experiment on the mountain and valley winds. J. Meteorol. Soc. Jap., 60, 1085–1105.

    Google Scholar 

  • Martínez, D., 2011: Topographically induced flows and nocturnal cooling in the atmospheric boundary layer. Doctoral dissertation. Department of Physics, University of the Balearic Islands.

    Google Scholar 

  • Martínez, D., and J. Cuxart, 2009: Assessment of the hydraulic slope flow approach using a mesoscale model. Acta Geophys., 57, 882–903.

    Google Scholar 

  • Martínez, D., J. Cuxart, and J. Cunillera, 2008: Conditioned climatology for stably stratified nights in the Lleida area. Tethys, 5, 13–24.

    Google Scholar 

  • Martínez, D., M. A. Jiménez, J. Cuxart, and L. Mahrt, 2010: Heterogeneous nocturnal cooling in a large basin under very stable conditions. Bound.-Layer Meteor., 137, 97–113.

    Google Scholar 

  • Marty, C., R. Philipona, C. Fröhlich, and A. Ohmura, 2002: Altitude dependence of surface radiation fluxes and cloud forcing in the alps: results from the alpine surface radiation budget network. Theor. Appl. Climatol., 72, 137–155.

    Google Scholar 

  • Matzinger, N., M. Andretta, E. van Gorsel, R. Vogt, A. Ohmura, and M. W. Rotach, 2003: Surface radiation budget of an Alpine valley. Quart. J. Roy. Meteor. Soc., 129, 877–895.

    Google Scholar 

  • Mayer, B., 2009: Radiative transfer in the cloudy atmosphere. Eur. Phys. J. Conf., 1, 75–99.

    Google Scholar 

  • Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations – Description and examples of use. Atmos. Chem. Phys., 5, 1855–1877.

    Google Scholar 

  • Mayer, B., S. W. Hoch, and C. D. Whiteman, 2010: Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona’s Meteor Crater. Atmos. Chem. Phys. Discuss., 10, 13373–13405.

    Google Scholar 

  • McGowan, H. A., 2004: Observations of anti-winds in a deep Alpine valley, Lake Tekapo, New Zealand. Arctic, Antarctic, and Alpine Res., 36, 495–501.

    Google Scholar 

  • McGowan, H. A., and A. P. Sturman, 1996: Interacting multi-scale wind systems within an alpine basin, Lake Tekapo. New Zealand. Meteor. Atmos. Phys., 58, 165–177.

    Google Scholar 

  • McGowan, H. A., I. F. Owens, and A. P. Sturman, 1995: Thermal and dynamic characteristics of alpine lake breezes, Lake Tekapo, New Zealand. Bound.-Layer Meteor., 76, 3–24.

    Google Scholar 

  • McKee, T. B., and R. D. O’Neal, 1989: The role of valley geometry and energy budget in the formation of nocturnal valley winds. J. Appl. Meteor., 28, 445–456.

    Google Scholar 

  • McNider, R. T., 1982: A note on velocity fluctuations in drainage flows. J. Atmos. Sci., 39, 1658–1660.

    Google Scholar 

  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 2513–2534.

    Google Scholar 

  • Moraes, O. L. L., O. C. Acevedo, R. Da Silva, R. Magnago, and A. C. Siqueira, 2004: Nocturnal surface-layer characteristics at the bottom of a valley. Bound.-Layer Meteor., 112, 159–177.

    Google Scholar 

  • Müller, M. D., and D. Scherer, 2005: A grid- and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models. Mon. Wea. Rev., 133, 1431–1442.

    Google Scholar 

  • Mursch-Radlgruber, E., 1995: Observations of flow structure in a small forested valley system. Theor. Appl. Climatol., 52, 3–17.

    Google Scholar 

  • Neff, W. D., and C. W. King, 1989: The accumulation and pooling of drainage flows in a large basin. J. Appl. Meteor., 28, 518–529.

    Google Scholar 

  • Nickus, U., and I. Vergeiner, 1984: The thermal structure of the Inn Valley atmosphere. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 33, 199–215.

    Google Scholar 

  • Noppel, H., and F. Fiedler, 2002: Mesoscale heat transport over complex terrain by slope winds – A conceptual model and numerical simulations. Bound.-Layer Meteor., 104, 73–97.

    Google Scholar 

  • O’Steen, L. B., 2000: Numerical simulation of nocturnal drainage flows in idealized valley-tributary systems. J. Appl. Meteor., 39, 1845–1860.

    Google Scholar 

  • Oerlemans, J., 1998: The atmospheric boundary layer over melting glaciers. Chapter 6 in: Clear and Cloudy Boundary Layers (Eds: A. A. M. Holtslag and P. G. Duynkerke), Royal Netherlands Academy of Arts and Sciences,129–153.

    Google Scholar 

  • Oerlemans, J., and B. Grisogono, 2002: Glacier winds and parameterisation of the related surface heat fluxes. Tellus A, 54, 440–452.

    Google Scholar 

  • Oerlemans, J., H. Björnsson, M. Kuhn, F. Obleitner, F. Palsson, C. J. P. P. Smeets, H. F. Vugts, and J. De Wolde, 1999: Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: An overview. Bound.-Layer Meteor., 92, 3–26.

    Google Scholar 

  • Oliphant, A. J., R. A. Spronken-Smith, A. P. Sturman, and I. F. Owens, 2003: Spatial variability of surface radiation fluxes in mountainous terrain. J. Appl. Meteor., 42, 113–128.

    Google Scholar 

  • Oliver, H. R., 1992: Studies of the energy budget of sloping terrain. Int. J. Climatol., 12, 55–68.

    Google Scholar 

  • Olyphant, G. A., 1986: Longwave radiation in mountainous areas and its influence on the energy balance of alpine snowfields. Water Resources Res., 22, 62–66.

    Google Scholar 

  • Oncley, S. P., and Coauthors, 2007: The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 1–28.

    Google Scholar 

  • Orgill, M. M., J. D. Kincheloe, and R. A. Sutherland, 1992: Influences on nocturnal valley drainage winds in Western Colorado valleys. J. Appl. Meteor., 31, 121–141.

    Google Scholar 

  • Pamperin, H., and G. Stilke, 1985: Nächtliche Grenzschicht und LLJ im Alpenvorland nahe dem Inntalausgang. [Nocturnal boundary layer and low level jet near the Inn Valley exit]. Meteor. Rundsch., 38, 145–156.

    Google Scholar 

  • Panday, A. K., 2006: The diurnal cycle of air pollution in the Kathmandu Valley, Nepal. Dissertation No. 37361. Massachusetts Institute of Technology. [http://hdl.handle.net/1721.1/37361]

  • Panday, A. K., and R. G. Prinn, 2009: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations, J. Geophys. Res., 114, D09305.

    Google Scholar 

  • Panday, A. K., R. G. Prinn, and C. Schär, 2009: Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results. J. Geophys. Res., 114, D21308.

    Google Scholar 

  • Papadopoulos, K. H., and C. G. Helmis, 1999: Evening and morning transition of katabatic flows. Bound.-Layer Meteor., 92, 195–227.

    Google Scholar 

  • Papadopoulos, K. H., C. G. Helmis, A. T. Soilemes, J. Kalogiros, P. G. Papageorgas, and D. N. Asimakopoulos, 1997: The structure of katabatic flows down a simple slope. Quart. J. Roy. Meteor. Soc., 123, 1581–1601.

    Google Scholar 

  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 2690–2699.

    Google Scholar 

  • Petkovšek, Z., 1992: Turbulent dissipation of cold air lake in a basin. Meteor. Atmos. Phys., 47, 237–245.

    Google Scholar 

  • Philipona, R., B. Dürr, and C. Marty, 2004: Greenhouse effect and altitude gradients over the Alps – by surface longwave radiation measurements and model calculated LOR. Theor. Appl. Climatol., 77, 1–7.

    Google Scholar 

  • Pielke, R. A., J. H. Rodriguez, J. L. Eastman, R. L. Walko, and R. A. Stocker, 1993: Influence of albedo variability in complex terrain on mesoscale systems. J. Climate, 6, 1798–1806.

    Google Scholar 

  • Pinto, J. O., D. B. Parsons, W. O. J. Brown, S. Cohn, N. Chamberlain, and B. Morley, 2006: Coevolution of down-valley flow and the nocturnal boundary layer in complex terrain. J. Appl. Meteor. Climatol., 45, 1429–1449.

    Google Scholar 

  • Piringer, M., and K. Baumann, 1999: Modifications of a valley wind system by an urban area – Experimental results. Meteor. Atmos. Phys., 71, 117–125.

    Google Scholar 

  • Plüss, C., and A. Ohmura, 1997: Longwave radiation on snow-covered mountainous surfaces. J. Appl. Meteor., 36, 818–824.

    Google Scholar 

  • Porch, W. M., R. B. Fritz, R. L. Coulter, and P. H. Gudiksen, 1989: Tributary, valley and sidewall air flow interactions in a deep valley. J. Appl. Meteor., 28, 578–589.

    Google Scholar 

  • Porch, W. M., W. E. Clements, and R. L. Coulter, 1991: Nighttime valley waves. J. Appl. Meteor., 30, 145–156.

    Google Scholar 

  • Pope, D., and C. Brough, 1996: Utah’s Weather and Climate. Publishers Press, 245pp.

    Google Scholar 

  • Pospichal, B., 2004: Struktur und Auflösung von Temperaturinversionen in Dolinen am Beispiel Grünloch [Structure and breakup of temperature inversions in Dolines, with an example from the Grünloch]. Diplomarbeit, Instit. Meteor. u. Geophysik, Univ. Wien, 69pp.

    Google Scholar 

  • Pospichal, B., S. Eisenbach, C. D. Whiteman, R. Steinacker, and M. Dorninger, 2003: Observations of the cold air outflow from a basin cold pool through a low pass. Ext. Abstr., Vol. A, Intl Conf. Alpine Meteor. and the MAP-Meeting 2003, Brig, Switzerland, 19–23 May 2003, 153–156. Available as MeteoSwiss Publication 66, MeteoSwiss, Zurich, Switzerland.

    Google Scholar 

  • Poulos, G. S., and S. Zhong, 2008. The observational history of small-scale katabatic winds in mid-latitudes. Geography Compass, 2, 1–24.

    Google Scholar 

  • Poulos, G. S., J. E. Bossert, T. B. McKee, and R. A. Pielke, 2000: The interaction of katabatic flow and mountain waves. Part I: Observations and idealized simulations. J. Atmos. Sci., 57, 1919–1936.

    Google Scholar 

  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555–581.

    Google Scholar 

  • Poulos, G. S., J. E. Bossert, T. B. McKee, and R. A. Pielke, Sr., 2007: The interaction of katabatic flow and mountain waves. Part II: Case study analysis and conceptual model. J. Atmos. Sci., 64, 1857–1879.

    Google Scholar 

  • Prabha, T. V., and E. Mursch-Radlgruber, 1999: Modeling of diffusion in a wide Alpine valley. Theor. Appl. Climatol. 64, 93–103.

    Google Scholar 

  • Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382pp.

    Google Scholar 

  • Prévôt, A. S. H., J. Staehelin, H. Richner, and T. Griesser, 1993: A thermally driven wind system influencing concentrations of ozone precursors and photo-oxidants at a receptor site in the Alpine foothills. Meteor. Z., N.F., 2, 167–177.

    Google Scholar 

  • Prévôt, A. S. H., J. Dommen, M. Bäumle, and M. Furger, 2000: Diurnal variations of volatile organic compounds and local circulation systems in an Alpine valley. Atmos. Environ., 34, 1413–1423.

    Google Scholar 

  • Princevac, M., and H. J. S. Fernando, 2007: A criterion for the generation of turbulent anabatic flows. Phys. Fluids, 19, 105102.

    Google Scholar 

  • Princevac, M., and H. J. S. Fernando, 2008: Morning breakup of cold pools in complex terrain. J. Fluid Mech., 616, 99–109.

    Google Scholar 

  • Princevac, M., H. J. S. Fernando, and C. D. Whiteman, 2005: Turbulent entrainment into natural gravity-driven flows. J. Fluid Mech., 533, 259–268.

    Google Scholar 

  • Princevac, M., J. C. R. Hunt, and H. J. S. Fernando, 2008: Quasi-steady katabatic winds on slopes in wide valleys: Hydraulic theory and observations. J. Atmos. Sci., 65, 627–643.

    Google Scholar 

  • Räisänen, P., 1996: The effect of vertical resolution on clear-sky radiation calculations: tests with two schemes. Tellus, 48A, 403–423.

    Google Scholar 

  • Rakovec, J., J. Merše, S. Jernej, and B. Paradiž, 2002: Turbulent dissipation of the cold-air pool in a basin: Comparison of observed and simulated development. Meteor. Atmos. Phys., 79, 195–213.

    Google Scholar 

  • Ramanathan, N., and K. Srinivasan, 1998: Simulation of airflow in Kashmir valley for a summer day. J. Appl. Meteor., 37, 497–508.

    Google Scholar 

  • Rampanelli, G., 2004: Diurnal thermally-induced flows in Alpine valleys. Ph.D. thesis in Environmental Engineering, University of Trento, Italy.

    Google Scholar 

  • Rampanelli, G., and D. Zardi, 2004: A method to determine the capping inversion of the convective boundary layer. J. Appl. Meteor., 43, 925–933.

    Google Scholar 

  • Rampanelli, G., D. Zardi, and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61, 3097–3111.

    Google Scholar 

  • Rao, S. K., and M. A. Schaub, 1990: Observed variations of σθ and σϕ in the nocturnal drainage flow in a deep valley. Bound.-Layer Meteor., 51, 31–48.

    Google Scholar 

  • Rao, K. S., and H. F. Snodgrass, 1981: A nonstationary nocturnal drainage flow model. Bound.-Layer Meteor., 20, 309–320.

    Google Scholar 

  • Reeves, H. D., and D. J. Stensrud, 2009: Synoptic-scale flow and valley cold pool evolution in the Western United States. Wea. Forecasting, 24, 1625–1643.

    Google Scholar 

  • Regmi, R. P., T. Kitada, and G. Kurata, 2003: Numerical simulation of late wintertime local flows in Kathmandu Valley, Nepal: Implication for air pollution transport. J. Appl. Meteor., 42, 389–403.

    Google Scholar 

  • Reiter, E. R., and M. Tang, 1984: Plateau effects on diurnal circulation patterns. Mon. Wea. Rev., 112, 638–651.

    Google Scholar 

  • Reuder, J., and J. Egger, 2006: Diurnal circulation of the South American Altiplano: Observations in a valley and at a pass. Tellus A, 58, 254–262.

    Google Scholar 

  • Reuten, C., 2008: Uplsope flow systems: Scaling, structure, and kinematics in tank and atmosphere. VDM Verlag Dr. Mueller e.K., Saarbrücken, Germany, 200pp.

    Google Scholar 

  • Reuten, C., D. G. Steyn, K. B. Strawbridge, and P. Bovis, 2005: Observations of the relation between upslope flows and the convective boundary layer in steep terrain. Bound.-Layer Meteor., 116, 37–61.

    Google Scholar 

  • Reuten, C., D. G. Steyn, and S. E. Allen, 2007: Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems. J. Geophys. Res., 112, D11114.

    Google Scholar 

  • Rotach, M. W., and D. Zardi, 2007: On the boundary layer structure over complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937–948.

    Google Scholar 

  • Rotach M. W., and Coauthors, 2004: Turbulence structure and exchange processes in an Alpine valley: The Riviera project. Bull. Amer. Meteor. Soc., 85, 1367–1385.

    Google Scholar 

  • Rotach, M. W., M. Andretta, P. Calanca, A. P. Weigel, and A. Weiss, 2008: Turbulence characteristics and exchange mechanisms in highly complex terrain. Acta Geophysicae, 56, 194–219.

    Google Scholar 

  • Rucker, M., R. M. Banta, and D. G. Steyn, 2008: Along-valley structure of daytime thermally driven flows in the Wipp Valley. J. Appl. Meteor. Climatol., 47, 733–751.

    Google Scholar 

  • Sakiyama, S. K., 1990: Drainage flow characteristics and inversion breakup in two Alberta mountain valleys. J. Appl. Meteor., 29, 1015–1030.

    Google Scholar 

  • Salerno, R., 1992: Analysis of flow and pollutant dispersion by tracer experiments in south Alpine valleys. Theor. Appl. Climatol. 45, 19–35.

    Google Scholar 

  • Sasaki, T., and Coauthors, 2004: Vertical moisture transport above the mixed layer around the mountains in western Sumatra. Geophys. Res. Lett., 31, L08106.

    Google Scholar 

  • Savage, L. C., III, S. Zhong, W. Yao, W. J. O. Brown, T. W. Horst, and C. D. Whiteman, 2008: An observational and numerical study of a regional-scale downslope flow in northern Arizona. J. Geophys. Res., 113, D14114.

    Google Scholar 

  • Savijärvi H., and J. Liya, 2001: Local winds in a valley city. Bound.-Layer Meteor., 100, 301–319.

    Google Scholar 

  • Schicker, I., and P. Seibert, 2009. Simulation of the meteorological conditions during a winter smog episode in the Inn Valley. Meteor. Atmos. Phys., 103, 203–214.

    Google Scholar 

  • Schmidli, J., and R. Rotunno, 2010: Mechanisms of along-valley winds and heat exchange over mountainous terrain. J. Atmos. Sci., 67, 3033–3047.

    Google Scholar 

  • Schmidli, J., G. S. Poulos, M. H. Daniels, and F. K. Chow, 2009a: External Influences on nocturnal thermally driven flows in a deep valley. J. Appl. Meteor. Climatol., 48, 3–23.

    Google Scholar 

  • Schmidli, J., B. Billings, F. K. Chow, J. Doyle, V. Grubišić, T. Holt, Q. Jiang, K. A. Lundquist, P. Sheridan, S. Vosper, S. F. J. de Wekker, C. D. Whiteman, A. A. Wyszogrodzki, and G. Zängl, 2010: Intercomparison of mesoscale model simulations of the daytime valley wind system. Mon. Wea. Rev., 139, 1389–1409.

    Google Scholar 

  • Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116, 637–670.

    Google Scholar 

  • Serafin, S., 2006: Boundary-layer processes and thermally driven flows over complex terrain. Ph.D. thesis in Environmental Engineering, Univ. of Trento, Italy, 200pp. http://www.ing.unitn.it/dica/eng/monographs/index.php.

  • Serafin, S., and D. Zardi, 2010a: Structure of the atmospheric boundary layer in the vicinity of a developing upslope flow system: A numerical model study. J Atmos. Sci., 67, 1171–1185.

    Google Scholar 

  • Serafin, S., and D. Zardi, 2010b: Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley. J Atmos. Sci., 67, 3739–3756.

    Google Scholar 

  • Serafin, S., and D. Zardi, 2010c: Daytime development of the boundary layer over a plain and in a valley under fair weather conditions: a comparison by means of idealized numerical simulations J Atmos. Sci., 68, 2128–2141.

    Google Scholar 

  • Shapiro, A., and E. Fedorovich, 2007: Katabatic flow along a differentially cooled sloping surface. J. Fluid Mech., 571, 149–175.

    Google Scholar 

  • Shapiro, A., and E. Fedorovich, 2008: Coriolis effects in homogeneous and inhomogeneous katabatic flows. Quart. J. Roy. Meteor. Soc., 134, 353–370.

    Google Scholar 

  • Shapiro, A., and E. Fedorovich, 2009: Nocturnal low-level jet over a shallow slope. Acta Geophysica, 57, 950–980.

    Google Scholar 

  • Sharp, J., and C. F. Mass, 2004: Columbia Gorge gap winds: Their climatological influence and synoptic evolution. Wea. Forecasting, 19, 970–992.

    Google Scholar 

  • Sievers, U., 2005: Das Kaltluftabflussmodell KLAM_21 – Theoretische Grundlagen, Anwendung und Handhabung des PC-Modells [The cold air drainage model KLAM_21 – Theoretical basis, application, and operation of the PC model]. Berichte des Deutschen Wetterdienstes no. 227, Offenbach am Main, Germany, 101pp.

    Google Scholar 

  • Simpson, J. E., 1999: Gravity currents, 2nd Edition. Cambridge Univ. Press, 259pp.

    Google Scholar 

  • Skyllingstad, E. D., 2003: Large-eddy simulation of katabatic flows. Bound.-Layer Meteor., 106, 217–243.

    Google Scholar 

  • Smith, C. M., and E. D. Skyllingstad, 2005: Numerical simulation of katabatic flow with changing slope angle. Mon. Wea. Rev., 133, 3065–3080.

    Google Scholar 

  • Smith, R., and Coauthors, 1997: Local and remote effects of mountains on weather: research needs and opportunities. Bull. Amer. Meteor. Soc., 78, 877–892.

    Google Scholar 

  • Soler, M. R., C. Infante, P. Buenestado, and L. Mahrt, 2002: Observations of nocturnal drainage flow in a shallow gully. Bound.-Layer Meteor., 105, 253–273.

    Google Scholar 

  • Spengler, T., J. H. Schween, M. Ablinger, G. Zängl, and J. Egger, 2009: Thermally driven flows at an asymmetric valley exit: Observations and model studies at the Lech Valley exit. Mon. Wea. Rev., 137, 3437–3455.

    Google Scholar 

  • Start, G. E., C. R. Dickson, and L. L. Wendell, 1975: Diffusion in a canyon within rough mountainous terrain. J. Appl. Meteor., 14, 333–346.

    Google Scholar 

  • Steinacker, R., 1984: Area-height distribution of a valley and its relation to the valley wind. Contrib. Atmos. Phys., 57, 64–71.

    Google Scholar 

  • Steinacker, R., and Coauthors, 2006: A mesoscale data analysis and downscaling method over complex terrain. Mon. Wea. Rev., 134, 2758–2771.

    Google Scholar 

  • Steinacker, R., and Coauthors, 2007: A sinkhole field experiment in the eastern Alps. Bull. Amer. Meteor. Soc., 88, 701–716.

    Google Scholar 

  • Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian, 2002: A climatological study of thermally driven wind systems of the US Intermountain West. Bull. Amer. Meteor. Soc., 83, 699–708.

    Google Scholar 

  • Stone, G. L., and D. E. Hoard, 1989: Low frequency velocity and temperature fluctuations in katabatic valley flows. J. Appl. Meteor., 28, 477–488.

    Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670pp.

    Google Scholar 

  • Sturman, A. P., and H. A. McGowan, 1995: An assessment of boundary-layer air mass characteristics associated with topographically-induced local wind systems. Bound.-Layer Meteor., 74, 181–193.

    Google Scholar 

  • Sturman, A. P., H. A. McGowan, and R. A. Spronken-Smith, 1999: Mesoscale and local climates. Progress Physical Geography, 23, 611–635.

    Google Scholar 

  • Sturman, A. P., and Coauthors, 2003a: The Lake Tekapo Experiment (LTEX): An investigation of atmospheric boundary layer processes in complex terrain. Bull. Amer. Meteor. Soc., 84, 371–380.

    Google Scholar 

  • Sturman, A. P., and Coauthors, 2003b: Supplement to the Lake Tekapo Experiment (LTEX): An investigation of atmospheric boundary layer processes in complex terrain. Bull. Amer. Meteor. Soc., 84, 381–383.

    Google Scholar 

  • Sun, J., S. P. Burns, A. C. Delany, S. P. Oncley, T. W. Horst, and D. H. Lenschow, 2003: Heat balance in the nocturnal boundary layer during CASES-99. J. Appl. Meteor., 42, 1649–1666.

    Google Scholar 

  • Szintai, B., P. Kaufmann, and M. Rotach, 2010: Simulation of pollutant transport in complex terrain with a numerical weather prediction–particle dispersion model combination. Bound.-Layer Meteor., 137, 373–396.

    Google Scholar 

  • Taylor, J. R., M. Kossmann, D. J. Low, and P. Zawar-Reza, 2005: Summertime easterly surges in southeastern Australia: A case study of thermally forced flow. Austr. Met. Mag., 54, 213–223.

    Google Scholar 

  • Thompson, B. W., 1986: Small-scale katabatics and cold hollows. Weather, 41, 146–153.

    Google Scholar 

  • Trachte, K., T. Nauss, and J. Bendix, 2010: The impact of different terrain configurations on the formation and dynamics of katabatic flows: Idealised case studies. Bound.-Layer Meteor., 134, 307–325.

    Google Scholar 

  • Triantafyllou, A. G., C. G. Helmis, D. N. Asimakopoulos, and A. T. Soilemes, 1995: Boundary layer evolution over a large and broad mountain basin. Theor. Appl. Climatol., 52, 19–25.

    Google Scholar 

  • Urfer-Henneberger, C., 1970: Neure Beobachtungen über die Entwicklung des Schönwetterwindsystems in einem V-förmigen Alpental (Dischmatal bei Davos). [New observations of the development of a clear weather wind system in a v-shaped mountain valley (Dischma Valley near Davos)]. Arch. Meteor. Geophys. Bioclimatol., Ser. B, 18, 21–42.

    Google Scholar 

  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence and oscillations in the stable boundary layer over land. Part III. A classification for observations during CASES-99. J. Atmos. Sci., 60, 2509–2522.

    Google Scholar 

  • Van den Broeke, M. R., 1997a: Momentum, heat and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J. Appl. Meteor., 36, 763–774.

    Google Scholar 

  • Van den Broeke, M. R., 1997b: Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Bound.-Layer Meteor., 83, 183–205.

    Google Scholar 

  • Van Gorsel, E., 2003: Aspects of flow characteristics and turbulence in complex terrain. Results from the MAP-Riviera project. Dissertation. University of Basel, Geography Department. ISBN 3-85977-247-1. 58pp.

    Google Scholar 

  • Van Gorsel, E., A. Christen, C. Feigenwinter, E. Parlow, and R. Vogt, 2003a: Daytime turbulence statistics above a steep forested slope. Bound.-Layer Meteor., 109, 311–329.

    Google Scholar 

  • Van Gorsel, E., R. Vogt, A. Christen, and M. W. Rotach, 2003b: Low frequency temperature and velocity oscillations in katabatic winds. Ext. Abstr., Vol A, Int. Conf. Alpine Meteor. and MAP Meeting 2003. Publ. MeteoSwiss, No. 66, 251–254.

    Google Scholar 

  • Varvayanni, M., J. G. Bartzis, N. Catsaros, P. Deligianni, and C. E. Elderkin, 1997: Simulation of nocturnal drainage flows enhanced by deep canyons: The Rocky Flats case. J. Appl. Meteor., 36, 775–791.

    Google Scholar 

  • Vergeiner, I., 1983: Dynamik alpiner Windsysteme. [Dynamics of Alpine wind systems]. Bericht zum forschungsvorhaben “3556” des Fonds zur Forderung der wissenschaftlichen Forschung, Wien, Austria, 129pp.

    Google Scholar 

  • Vergeiner, I., 1987: An elementary valley wind model. Meteor. Atmos. Phys., 36, 255–263.

    Google Scholar 

  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds – observations and elementary thoughts. Meteor. Atmos. Phys., 36, 264–286.

    Google Scholar 

  • Vertacnik, G, I. Sinjur, and M. Ogrin, 2007: Temperature comparison between some Alpine dolines in winter time. ICAM 2007. http://www.cnrm.meteo.fr/icam2007/html/PROCEEDINGS/ICAM2007/extended/manuscript_95.pdf

  • Viana, S., E. Terradellas, and C. Yagüe, 2010: Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci., 67, 3949–3966.

    Google Scholar 

  • Vosper, S. B., and A. R. Brown, 2008: Numerical simulations of sheltering in valleys: The formation of nighttime cold-air pools. Bound.-Layer Meteor., 127, 429–448.

    Google Scholar 

  • Vrhovec, T., 1991: A cold air lake formation in a basin – a simulation with a mesoscale numerical model. Meteor. Atmos. Phys., 46, 91–99.

    Google Scholar 

  • Wagner, A., 1932: Neue Theorie der Berg- und Talwinde [New theory of mountain and valley winds]. Meteor. Z., 49, 329–341.

    Google Scholar 

  • Wagner, A., 1938: Theorie und Beobachtung der periodischen Gebirgswinde. [Theory and observation of periodic mountain winds]. Gerlands Beitr. Geophys. (Leipzig), 52, 408–449. [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine Meteorology: Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141/ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121pp].

    Google Scholar 

  • Weber, R. O., and P. Kauffmann, 1995: Automated classification scheme for wind fields. J. Appl. Meteor., 34, 1133–1141.

    Google Scholar 

  • Weber, R. O., and P. Kaufmann, 1998: Relationship of synoptic winds and complex terrain flows during the MISTRAL field experiment. J. Appl. Meteor., 37, 1486–1496.

    Google Scholar 

  • Weigel, A. P., 2005: On the atmospheric boundary layer over highly complex topography. Dissertation No. 15972, ETH, Zurich. [http://e-collection.ethbib.ethz.ch/view/eth:27927].

  • Weigel, A. P., and M. W. Rotach, 2004: Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 2605–2627.

    Google Scholar 

  • Weigel, A. P., F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II. Flow structure and heat budgets. J. Appl. Meteor. Climatol., 45, 87–107.

    Google Scholar 

  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound.-Layer Meteor., 123, 177–199.

    Google Scholar 

  • Weissmann, M., F. J. Braun, L. Gantner, G. J. Mayr, S. Rahm, and O. Reitebuch, 2005: The Alpine mountain-plain circulation: Airborne Doppler lidar measurements and numerical simulations. Mon. Wea. Rev., 33, 3095–3109.

    Google Scholar 

  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteor., 21, 270–289.

    Google Scholar 

  • Whiteman, C. D., 1986: Temperature inversion buildup in Colorado’s Eagle valley. Meteor. Atmos. Physics, 35, 220–226.

    Google Scholar 

  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. In: W. Blumen, Editor, AMS Meteorological Monographs, 45 (23), 5–42.

    Google Scholar 

  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, New York, 355pp.

    Google Scholar 

  • Whiteman, C. D., and T. B. McKee, 1982: Breakup of temperature inversions in deep mountain valleys: Part II. Thermodynamic model. J. Appl. Meteor., 21, 290–302.

    Google Scholar 

  • Whiteman, C. D., and E. Dreiseitl, 1984: Alpine Meteorology. Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141/ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp.

    Google Scholar 

  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 1669–1682.

    Google Scholar 

  • Whiteman, C. D., and X. Bian, 1998: Use of radar profiler data to investigate large-scale thermally driven flows into the Rocky Mountains. Proc. Fourth Int. Symp. on Tropospheric Profiling: Needs and Technologies, Snowmass, CO.

    Google Scholar 

  • Whiteman, C. D., and S. Zhong, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. I. Observations. J. Appl. Meteor. Climatol., 47, 2023–2038.

    Google Scholar 

  • Whiteman, C. D., K. J. Allwine, L. J. Fritschen, M. M. Orgill, and J. R. Simpson, 1989a: Deep valley radiation and surface energy budget microclimates. I. Radiation. J. Appl. Meteor., 28, 414–426.

    Google Scholar 

  • Whiteman, C. D., K. J. Allwine, M. M. Orgill, L. J. Fritschen, and J. R. Simpson, 1989b: Deep valley radiation and surface energy budget microclimates. II. Energy budget. J. Appl. Meteor., 28, 427–437.

    Google Scholar 

  • Whiteman, C. D., T. B. McKee, and J. C. Doran, 1996: Boundary layer evolution within a canyonland basin. Part I. Mass, heat, and moisture budgets from observations. J. Appl. Meteor., 35, 2145–2161.

    Google Scholar 

  • Whiteman, C. D., X. Bian, and J. L. Sutherland, 1999a: Wintertime surface wind patterns in the Colorado River valley. J. Appl. Meteor., 38, 1118–1130.

    Google Scholar 

  • Whiteman, C. D., X. Bian, and S. Zhong, 1999b: Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J. Appl. Meteor., 38, 1103–1117.

    Google Scholar 

  • Whiteman, C. D., S. Zhong, and X. Bian, 1999c: Wintertime boundary-layer structure in the Grand Canyon. J. Appl. Meteor., 38, 1084–1102.

    Google Scholar 

  • Whiteman, C. D., S. Zhong, X. Bian, J. D. Fast, and J. C. Doran, 2000: Boundary layer evolution and regional-scale diurnal circulations over the Mexico Basin and Mexican Plateau. J. Geophys. Res., 105, 10081–10102.

    Google Scholar 

  • Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia Basin. Wea. Forecasting, 16, 432–447.

    Google Scholar 

  • Whiteman, C. D., S. Eisenbach, B. Pospichal, and R. Steinacker, 2004a: Comparison of vertical soundings and sidewall air temperature measurements in a small Alpine basin. J. Appl. Meteor., 43, 1635–1647.

    Google Scholar 

  • Whiteman, C. D., B. Pospichal, S. Eisenbach P. Weihs, C. B. Clements, R. Steinacker, E. Mursch-Radlgruber, and M. Dorninger, 2004b: Inversion breakup in small Rocky Mountain and Alpine basins. J. Appl. Meteor., 43, 1069–1082.

    Google Scholar 

  • Whiteman, C. D., T. Haiden, B. Pospichal, S. Eisenbach, and R. Steinacker, 2004c: Minimum temperatures, diurnal temperature ranges and temperature inversions in limestone sinkholes of different size and shape. J. Appl. Meteor., 43, 1224–1236.

    Google Scholar 

  • Whiteman, C. D., S. F. J. De Wekker, and T. Haiden, 2007: Effect of dewfall and frostfall on nighttime cooling in a small, closed basin. J. Appl. Meteor., 46, 3–13.

    Google Scholar 

  • Whiteman, C. D., and Coauthors, 2008: METCRAX 2006 – Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 1665–1680.

    Google Scholar 

  • Whiteman, C.D., S.W. Hoch, and G.S. Poulos, 2009: Evening temperature rises on valley floors and slopes: Their causes and their relationship to the thermally driven wind system. J. Appl. Meteor. Climatol., 48, 776–788.

    Google Scholar 

  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold air intrusions into Arizona’s Meteor Crater: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49, 1894–1905.

    Google Scholar 

  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127–150.

    Google Scholar 

  • Winkler, P., M. Lugauer, and O. Reitebuch, 2006: Alpines Pumpen [Alpine pumping]. Promet (Deutscher Wetterdienst), 32, 34–42. [In German].

    Google Scholar 

  • Wong, R. K. W., and K. D. Hage, 1995: Numerical simulation of pollutant dispersion in a small valley under conditions with supercitical Richardson number. Bound.-Layer Meteor., 73, 15–33.

    Google Scholar 

  • Wotawa, G., and H. Kromp-Kolb, 2000: The research project VOTALP – general objectives and main results. Atmos. Environ., 34, 1319–1322.

    Google Scholar 

  • Wu, P., M. Hara, J.I. Hamada, M.D. Yamanaka, and F. Kimura, 2009: Why a large amount of rain falls over the sea in the vicinity of western Sumatra island during nighttime. J. Appl. Meteor. Climatol., 48, 1345–1361.

    Google Scholar 

  • Yang, K., T. Koike, H. Fujii, T. Tamura, X. Xu, L. Bian, and M Zhou, 2004: The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: Observations and simulations. J. Meteor. Soc. Japan, 82, 1777–1792.

    Google Scholar 

  • Yao, W. Q., and S. Zhong, 2009: Nocturnal temperature inversions in a small enclosed basin and their relationship to ambient atmospheric conditions. Meteor. Atmos. Phys., 103, 195–210.

    Google Scholar 

  • Ye, Z., M. Segal, J. R. Garratt, and R. A. Pielke, 1989: On the impact of cloudiness on the characteristics of nocturnal downslope flows. Bound.-Layer Meteor., 49, 23–51.

    Google Scholar 

  • Ye, Z. J., J. R. Garratt, M. Segal, and R. A. Pielke, 1990: On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows. Bound.-Layer Meteor., 51, 77–97.

    Google Scholar 

  • Yoshino, M. M., 1975: Climate in a Small Area. Tokyo, University of Tokyo Press, 549pp.

    Google Scholar 

  • Zammett, R. J., and A. C. Fowler, 2007: Katabatic winds on ice sheets: A refinement of the Prandtl model. J. Atmos. Sci., 64, 2707–2716.

    Google Scholar 

  • Zängl, G., 2003: The impact of upstream blocking, drainage flow and the geostrophic pressure gradient on the persistence of cold-air pools. Quart. J. Roy. Meteor. Soc., 129, 117–137.

    Google Scholar 

  • Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations. Meteor. Atmos. Phys., 87, 241–256.

    Google Scholar 

  • Zängl, G., 2005: Wintertime cold-air pools in the Bavarian Danube Valley Basin: Data analysis and idealized numerical simulations. J. Appl. Meteor., 44, 1950–1971.

    Google Scholar 

  • Zängl, G., 2008: The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley. Meteor. Atmos. Phys., 105, 37–53.

    Google Scholar 

  • Zängl, G., and J. Egger, 2005: Diurnal circulation of the Bolivian Altiplano. Part II: Theoretical and model investigations. Mon. Wea. Rev., 133, 3624–3643.

    Google Scholar 

  • Zängl, G., and S. G. Chico, 2006: The thermal circulation of a grand plateau: Sensitivity to the height, width, and shape of the plateau. Mon. Wea. Rev., 134, 2581–2600.

    Google Scholar 

  • Zängl, G., and S. Vogt, 2006: Valley-wind characteristics in the Alpine Rhine Valley: Measurements with a wind-temperature profiler in comparison with numerical simulations. Meteor. Z., 15, 179–186.

    Google Scholar 

  • Zängl, G., J. Egger, and V. Wirth, 2001: Diurnal winds in the Himalayan Kali Gandaki Valley. Part II. Modeling. Mon. Wea. Rev., 129, 1062–1080.

    Google Scholar 

  • Zardi, D., 2000: A model for the convective boundary layer development in an Alpine valley, Proceedings, 26th Int. Conf. Alpine Meteor. ICAM2000, Innsbruck, Austria, 11–15 September 2000. Österreichische Beiträge zur Meteorologie und Geophysik. Heft Nr. 23/Publ. Nr. 362. ISSN 1016–6254.

    Google Scholar 

  • Zardi, D., R. Gerola, F. Tampieri, and M. Tubino, 1999: Measurement and modelling of a valley wind system in the Alps. Proceedings of the 13th AMS Symposium on Boundary Layers and Turbulence. 10–15 January 1999, Dallas, TX, 2831.

    Google Scholar 

  • Zaremba, L. L., and J. J. Carroll, 1999: Summer wind flow regimes over the Sacramento Valley. J. Appl. Meteor., 38, 1463–1473.

    Google Scholar 

  • Zawar-Reza, P., and A. P. Sturman, 2006a: Numerical analysis of a thermotopographically-induced mesoscale circulation in a mountain basin using a non-hydrostatic model. Meteor. Atmos. Phys., 93, 221–233.

    Google Scholar 

  • Zawar-Reza, P., and A. P. Sturman, 2006b: Two-dimensional numerical analysis of a thermally generated mesoscale wind system observed in the MacKenzie Basin, New Zealand. Aust. Meteor. Mag., 55, 19–34.

    Google Scholar 

  • Zawar-Reza, P., H. McGowan, A. Sturman, and M. Kossman, 2004: Numerical simulations of wind and temperature structure within an Alpine lake basin, Lake Tekapo, New Zealand. Meteor. Atmos. Phys., 86, 245–260.

    Google Scholar 

  • Zhong, S., and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131, 1301–1322.

    Google Scholar 

  • Zhong, S., and C. D. Whiteman, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. II. Numerical modeling. J. Appl. Meteor. Climatol., 47, 2039–2057.

    Google Scholar 

  • Zhong, S., C. D. Whiteman, X. Bian, W. J. Shaw, and J. M. Hubbe, 2001: Meteorological processes affecting evolution of a wintertime cold air pool in the Columbia Basin. Mon. Wea. Rev., 129, 2600–2613.

    Google Scholar 

  • Zhong, S., X. Bian, and C. D. Whiteman, 2003: Time scale for cold-air pool breakup by turbulent erosion. Meteor. Z., 12, 229–233.

    Google Scholar 

  • Zhong, S., C. D. Whiteman, and X. Bian, 2004: Diurnal evolution of three-dimensional wind and temperature structure in California’s Central Valley. J. Appl. Meteor., 43, 1679–1699.

    Google Scholar 

  • Zoumakis, N. M., and G. A. Efstathiou, 2006a: Parameterization of inversion breakup in idealized valleys. Part I: The adjustable model parameters. J. Appl. Meteor. Climatol., 45, 600–608.

    Google Scholar 

  • Zoumakis, N. M., and G. A. Efstathiou, 2006b: Parameterization of inversion breakup in idealized valleys. Part II: Thermodynamic model. J. Appl. Meteor. Climatol., 45, 609–623.

    Google Scholar 

  • Zoumakis, N. M., G. A. Efstathiou, A. G. Kelessis, J. Triandafyllis, D. Papas, M. Chasapis, M. Petrakakis, P. Karavelis, 2006: A simple scheme for daytime estimates of surface energy budget in complex terrain. Fresenius Environmental Bulletin, 15, 923–927.

    Google Scholar 

Download references

Acknowledgments

We thank the book editors for the opportunity to contribute to this book and the associated 2008 Mountain Weather Workshop. Special thanks go to authors and organizations which provided figures for this chapter. The University of Trento and Prof. Dino Zardi are thanked for providing the financial support and warm hospitality for Dr. Whiteman’s 2-month visit to the University of Trento in 2008 to begin the collaborative work on this chapter. Moreover D. Zardi is grateful to the University of Trento for granting him a sabbatical leave during the academic year 2009/2010. We greatly appreciate the editorial assistance of Johanna Whiteman, the initial reviews of portions of this chapter by Thomas Haiden, Thomas W. Horst, Stephan De Wekker, Tina Katopodes Chow, and Stefano Serafin and the valuable comments provided by anonymous reviewers. Dr. Whiteman wishes to acknowledge partial funding support from National Science Foundation grants ATM-0837870 and ATM-0444205 and from the National Oceanic and Atmospheric Administration’s National Weather Service CSTAR grant NA07NWS4680003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Zardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zardi, D., Whiteman, C.D. (2013). Diurnal Mountain Wind Systems. In: Chow, F., De Wekker, S., Snyder, B. (eds) Mountain Weather Research and Forecasting. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4098-3_2

Download citation

Publish with us

Policies and ethics