Skip to main content

Meso- and Fine-Scale Modeling over Complex Terrain: Parameterizations and Applications

  • Chapter
  • First Online:
Mountain Weather Research and Forecasting

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This chapter discusses the current status, success, and especially challenges of applying mesoscale numerical models to simulate atmospheric processes over areas of complex terrain. These include thermally-induced circulations, gap flows, mountain waves, and boundary layer structure and evolution in mountainous regions. The choice of model configuration (e.g. choice of coordinate system, horizontal and vertical resolution, grid nesting, and lateral boundary conditions) and physical parameterizations (e.g. boundary layer, land surface, and radiation parameterizations) may affect the performance of mesoscale models in complex terrain. Application of large-eddy simulation (LES) to complex-terrain processes is also discussed. Examples of model simulations related to several recent field studies in mountainous areas are used to illustrate the issues and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, R, and C. Meneveau. 1999. Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model. Flow, Turb. and Combustion. 62,: 201–225.

    Google Scholar 

  • André, J. C., J. P. Goutorbe and A. Perrier, 1986: HAPEX-MOBLIHY: a hydrological atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Amer. Meteor. Soc., 67, 138–144.

    Google Scholar 

  • Andre, A., 1991: A TKE-dissipation model for the atmospheric boundary layer. Bound.-Layer Meteorol., 56, 207–221

    Google Scholar 

  • Andren, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann. 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Q. J. R. Meteorol. Soc. 120, 1457–1484.

    Google Scholar 

  • Apsley, D. D., and I. P. Castro, 1997: A limited length scale k-ε model for the neutral and stably stratified atmospheric boundary layer. Bound.-Layer Meteorol. 83, 75–98.

    Google Scholar 

  • Banta, R. M., L. S. Darby, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, B. W. Orr, 2004: Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. J. Appl. Meteor., 43, 1348–1365

    Google Scholar 

  • Banta, R. M. and R. T. Gannon, 1995: Influence of soil moisture on simulations of katabatic flow. Theor. Appl. Climatol. 52, 85–94.

    Google Scholar 

  • Banta, R. M., and A. B. White, 2003: Mixed-height differences between land use types: Depedence on wind speed. J. Geophys. Res. 108, No. D10,4321

    Google Scholar 

  • Banta, R., L. Olivier, P. Gudiksen, and R. Lange, 1996: Implications of Small-Scale Flow Features to Modeling Dispersion over Complex Terrain. J. Appl. Meteor., 35, 330–342.

    Google Scholar 

  • Bardina, J., J. H. Ferziger, and W. C. Reynolds, 1983: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Technical Report. Department of Mechanical Engineering, Stanford University, Stanford, California.

    Google Scholar 

  • Basu, S, and F Porte-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 2074–2091.

    Google Scholar 

  • Beare, RJ, MK MacVean, AAM Holtslag, J Cuxart, I Esau, JC Golaz, MA Jimenez, et al. 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247–272.

    Google Scholar 

  • Bélair, S. P. Lacarrère, J. Noilhan, V. Masson, and J. Stein, 1998: High-Resolution Simulation of Surface and Turbulent Fluxes during HAPEX-MOBILHY. Mon. Wea. Rev., 126: 2234–2253.

    Google Scholar 

  • Benoit, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125, 2382–2415.

    Google Scholar 

  • Berg, L.K., and S. Zhong, 2005: Sensitivity of MM5-Simulated Boundary Layer Characteristics to Turbulence Parameterizations. J. Appl. Meteor., 44, 1467–1483.

    Google Scholar 

  • Bergström, H., and N. Juuso, 2006: A study of valley winds using the MIUU meso-scale model. Wind Energy, 9, 109–129.

    Google Scholar 

  • Betts, A. K., and J. H. Ball, 1992: FIFE-1987 mean time series, Data diskette. (available from Atmospheric Research, R.D. #3, Box 3125, Pittsford, VT 05763.

    Google Scholar 

  • Betts, A. K., J. I. Ball, and Beljaars, 1993: Comparison between the land surface response of the ECMWF model and the FIFE-1987 data. Quart. J. Roy. Meteor. Soc., 119, 975–1001.

    Google Scholar 

  • Bischoff-Gauß, I. N. Kalthoff, S. Khodayar, M. Fiebig-Wittmaack, S. Montecinos, 2006: Model simulations of the boundary-layer evolution over an arid Andes valley, Bound.-Layer Meteor., 128, 357–379.

    Google Scholar 

  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9, 265–278.

    Google Scholar 

  • Blackadar A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, Gordon and Breach, 50–85.

    Google Scholar 

  • Blumen, W. (ed.), 1990: Atmospheric Processes Over Complex Terrain. Meteor. Monogr., Vol. 23, No. 45. Amer. Meteor. Soc., Boston, MA, 323pp

    Google Scholar 

  • Boone, A. B. Decharme, F. Guichard, P. de Rosnay, G. Balsamo, A. Beljaars, F. Chopin, T. Orgeval, J. Polcher, C. Delire, A. Ducharne, S. Gascoin, M. Grippa, L. Jarlan, L. Kergoat, E. Mougin, Y. Gusev, O. Nasonova, P. Harris, C. Taylor, A. Norgaard, I. Sandholt, C. Ottlé, I. Poccard-Leclercq, S. Saux-Picart, and Y. Xue, 2009: The AMMA land surface model intercomparison project (ALMIP), Bull. Amer. Meteor. Soc., 90, 1865–1880.

    Google Scholar 

  • ———, F. Habets, J. Noilhan, D. Clark, P. Dirmeyer, S. Fox, Y. Gusev, I. Haddeland, R. Koster, D. Lohmann, S. Mahanama, K. Mitchell, O. Nosonova, G.-Y. Neu, A. Pitman, J. Polcher, A. B. Shmakin, K. Tanaka, B. van den Hurk, S. Verant, D. Verseghy, P. Viterbo, and Z.-L. Yang, 2004: The Rhône-aggregation land surface scheme intercomparison project: An overview. J. Climate, 17, 187–208.

    Google Scholar 

  • Bou-Zeid, E, C Meneveau, and M Parlange. 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17.

    Google Scholar 

  • Bowling, L. C., and Coauthors 2003: Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2e. 1: Experimental description and summary intercomparisons. Global Planet.Change, 38, 1–30.

    Google Scholar 

  • Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98, 411–441.

    Google Scholar 

  • Brulfert, G, C Chemel, E Chaxel, and JP Chollet, 2005: Modelling photochemistry in alpine valleys. Atmos. Chem. Phys., 5, 2341–2355.

    Google Scholar 

  • Burk, S.D., and W.T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117, 2305–2324.

    Google Scholar 

  • Cabot W. and P. Moin, 2000: Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turb. and Combustion. 63, 269–291.

    Google Scholar 

  • Cederwall, R. T., 2001: Large-eddy simulation of the evolving stable boundary layer over flat terrain. Stanford University.

    Google Scholar 

  • ———, and R. L. Street, 1999: Turbulence modification in the evolving stable boundary layer: a large-eddy simulation. 13th Symposium on Boundary Layers and Turbulence, Amer. Meteorol. Soc.: 223–226.

    Google Scholar 

  • Chen, F., K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.Y. Duan, M. Ek, and A. Betts, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251–7268.

    Google Scholar 

  • Chen, T. H. and Coauthors, 1997: Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J. Climate, 10, 1194–1215.

    Google Scholar 

  • Chen, Y., F. L. Ludwig, and R. L. Street, 2004: Stably stratified flows near a notched transverse ridge across the Salt Lake Valley. J. Appl. Meteor. 43, 1308–1328.

    Google Scholar 

  • Chin, S. H-N, M.J. Leach, G. A. Sugiyama, and J. A. Fernando, 2001: A preliminary study of surface cold bias in COAMPS. Preprints, Ninth Conference on Mesoscale Processes, Amer. Meteorol. Soc.: 30 July – 2 August, Fort Lauderdale, FL.

    Google Scholar 

  • Chow, F.K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 2058–2077.

    Google Scholar 

  • ———, A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue. 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity studies. J. Appl. Meteor. Climatol., 45, 63–86.

    Google Scholar 

  • ———, and R. L. Street, 2009: Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein Hill. J. Appl. Meteor. Climatol. 48, 1050–1065.

    Google Scholar 

  • Colette, A., F.K. Chow, and R.L. Street, 2003: A Numerical Study of Inversion-Layer Breakup and the Effects of Topographic Shading in Idealized Valleys. J. Appl. Meteor., 42, 1255–1272.

    Google Scholar 

  • Colle, B.A., K.J. Westrick, and C.F. Mass, 1999: Evaluation of MM5 and Eta-10 Precipitation Forecasts over the Pacific Northwest during the Cool Season. Wea. Forecasting, 14, 137–154.

    Google Scholar 

  • Côté, J., J.G. Desmarais, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results. Mon. Wea. Rev., 126, 1397–1418

    Google Scholar 

  • ———, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation. Mon. Wea. Rev., 126, 1373–1395.

    Google Scholar 

  • Cotton, W.R., G. Thompson, and P.W. Mieike, 1994: Real-Time Mesoscale Prediction on workstations. Bull. Amer. Meteor. Soc., 75, 349–362.

    Google Scholar 

  • Cullen, M. J. P., 1993: The unified forecast/climate model. Meteor. Mag., 122, 81–94.

    Google Scholar 

  • Dai, Y. X. Zeng, R. E. Dickinson, I. Baker, G. B. Bonan, M. G. Bosilovich, A. S. Denning, P. A. Dirmeyer, P. R. Houser, G. Niu, K. W. Oleson, C. A. Schlosser, Z-L Yang, 2003: The Common Land Model, Bull. Amer. Meteor. Soc., 84, 1013–1023

    Google Scholar 

  • Daniels, M. H., F. K. Chow, and G. S. Poulos, 2006: Effects of soil moisture initialization on simulations of atmospheric boundary layer evolution in owens valley. Paper 7.2. 12th Conference on Mountain Meteorology, Amer. Meteor. Soc.

    Google Scholar 

  • Anderson, R., and C. Meneveau, 1999: Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model. Flow Turbulence and Combustion, 62, 201–225.

    Google Scholar 

  • Andren, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Q. J. R. Meteorol. Soc., 120, 1457–1484.

    Google Scholar 

  • Bardina, J., J. H. Ferziger, and W. C. Reynolds, 1983: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Department of Mechanical Engineering, Stanford University, Stanford, California,.

    Google Scholar 

  • Basu, S., and F. Porte-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 2074–2091.

    Google Scholar 

  • Beare, R. and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247–272, doi:10.1007/s10546-004-2820-6.

    Google Scholar 

  • Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Physics of Fluids, 17, doi:10.1063/1.1839152.

    Google Scholar 

  • Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98, 411–441.

    Google Scholar 

  • Brulfert, G., C. Chemel, E. Chaxel, and J. Chollet, 2005: Modelling photochemistry in alpine valleys. Atmospheric Chemistry and Physics, 5, 2341–2355.

    Google Scholar 

  • Cederwall, R. T., 2001: Large-eddy simulation of the evolving stable boundary layer over flat terrain. Stanford University.

    Google Scholar 

  • Cederwall, R. T., and R. L. Street, 1999: Turbulence modification in the evolving stable boundary layer: a large-eddy simulation. 13th Symposium on Boundary Layers and Turbulence, American Meteorological Society, 223–226.

    Google Scholar 

  • Chen, Y., F. L. Ludwig, and R. L. Street, 2004: Stably stratified flows near a notched transverse ridge across the Salt Lake Valley. J. Appl. Meteor., 43, 1308–1328.

    Google Scholar 

  • Chow, F. K., and R. L. Street, 2009: Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein Hill. J. Appl. Meteor. Climatol., in press.

    Google Scholar 

  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 2058–2077.

    Google Scholar 

  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity studies. J. Appl. Meteor. Clim., 45, 63–86.

    Google Scholar 

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor., 18, 495–527.

    Google Scholar 

  • Delege, Y. 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statistically stable conditions. Bound.-Layer Meteor. 82, 23–48.

    Google Scholar 

  • Deng, A., D. R. Stauffer, J. R. Zielonka and G. K. Hunter, 2008: A Comparison of high-resolution mesoscale forecasts using MM5 and WRF-ARW. The 9th WRF Users’ Workshop, June 23–27, Boulder, CO

    Google Scholar 

  • Denis, B., R. Laprise, and D. Caya, 2003: Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Climate Dynamics, 20, 107–126.

    Google Scholar 

  • De Wekker, S. F. J., 2002: Structure and morphology of the convective boundary layer in mountainous terrain. Dissertation, University of British Columbia, Department of Earth and Ocean Sciences, Vancouver, Canada, 191 pp.

    Google Scholar 

  • ———, 2008: Observational and Numerical Evidence of Depressed Convective Boundary Layer Heights near a Mountain Base. J. Appl. Meteor. Clim. 47, 1017–1026.

    Google Scholar 

  • ———, S. Zhong, J. D. Fast, and C. D. Whiteman, 1998: A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J. Appl. Meteor., 37, 606–622.

    Google Scholar 

  • ———, D.G. Steyn, J.D. Fast, M.W. Rotach, and S. Zhong, 2005: The performance of RAMS in representing the convective boundary layer structure in a very steep valley. Env. Fluid Mech. 5, 35–62.

    Google Scholar 

  • Deardorff, J. W. 1970: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480.

    Google Scholar 

  • ———, 1972. Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91–115.

    Google Scholar 

  • ———. 1978: Efficient prediction of ground surface temperature and moisture with inclusion of layer vegetation. J. Geophy. Res., 83, 1889–1903.

    Google Scholar 

  • ———. 1980: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor. 18, 495–527.

    Google Scholar 

  • Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J. and Wilson, M. F. 1986: Biosphere-atmosphere transfer scheme (BATS) for the NCAR Community Climate Model. National Center for Atmospheric Research, Boulder, CO. Tech Note/TN-275+STR.

    Google Scholar 

  • Ding, L., R. Calhoun, and R. Street, 2003: Numerical simulation of strongly stratified flow over a three-dimensional hill. Bound.-Layer Meteor., 107, 81–114.

    Google Scholar 

  • Ding, L., and R. L. Street, 2003: Numerical study of the wake structure behind a three-dimensional hill. J. Atmos. Sci., 60, 1678–1690.

    Google Scholar 

  • Esau, I., 2004: Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure. Environmental Fluid Mechanics, 4, 273–303.

    Google Scholar 

  • Doran, J.C., and S. Zhong, 2000: Thermally Driven Gap Winds into the Mexico City Basin. J. Appl. Meteor., 39, 1330–1340.

    Google Scholar 

  • ———, J.D. Fast, and J. Horel, 2002: The VTMX 2000 Campaign. Bull. Amer. Meteor. Soc., 83, 537–551.

    Google Scholar 

  • Doyle, J.D., and D.R. Durran, 2007: Rotor and Subrotor Dynamics in the Lee of Three-Dimensional Terrain. J. Atmos. Sci., 64, 4202–4221

    Google Scholar 

  • Dubayah, R., and S. Loechel, 1997: Modeling topographic solar radiation using GOES data. J. Appl. Meteor., 36, 141–154.

    Google Scholar 

  • Dudhia, J. 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107.

    Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851.

    Google Scholar 

  • Fast, J.D., 2003: Forecasts of Valley Circulations Using the Terrain-Following and Step-Mountain Vertical Coordinates in the Meso-Eta Model. Wea. Forecasting, 18, 1192–1206.

    Google Scholar 

  • ———, and L.S. Darby, 2004: An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements during VTMX 2000. J. Appl. Meteor., 43, 420–436.

    Google Scholar 

  • Ferziger, J.H. and M. Peric. 2002: Computational Methods for Fluid Dynamics. Springer-Verlag, 3rd edition: Berlin.

    Google Scholar 

  • Findikakis, A.N. and R.L. Street. 1979: Algebraic model for subgrid-scale turbulence in stratified flows. J. Atmos. Sci., 36, 1934–1949.

    Google Scholar 

  • Freedman, F. R., and M. Z. Jacobson, 2002: Modification of the standard ε-equation for the stable ABL through enforced consistency with Monin-Obukhov similarity theory. Bound.-Layer Meteor., 106, 383–410.

    Google Scholar 

  • Fu, P., S. Zhong, C. D. Whiteman, T. M. Horst, and X. Bian, 2010: An observational study of turbulence inside a closed basin. J. Geophys. Res., 115, D23106, 15 pp.

    Google Scholar 

  • Gallus, W. A., 2000: The impact of step orography on flow in the Eta model: two contrasting examples. Weather and Forecasting, 15, 630–637.

    Google Scholar 

  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3, 1760–1765.

    Google Scholar 

  • Ghosal, S., T. S. Lund, P. Moin, and K. Akselvoll, 1995: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech., 286, 229–255.

    Google Scholar 

  • Golaz, J., J. D. Doyle, and S. Wang, 2009: One-Way Nested Large-Eddy Simulation over the Askervein Hill. J. Adv. Model Earth Syst., 1, 1–6.

    Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifthgeneration Penn State/NCAR mesoscale model (MM5), NCAR Tech. Not., NCAR/TN-397+IA, 114 pp.

    Google Scholar 

  • Grubišic, V., J.D. Doyle, J. Kuettner, S. Mobbs, R.B. Smith, C.D. Whiteman, R. Dirks, S. Czyzyk, S.A. Cohn, S. Vosper, M. Weissmann, S. Haimov, S.F.J. De Wekker, L.L. Pan, and F.K. Chow, 2008: The Terrain-Induced Rotor Experiment. Bull. Amer. Meteor. Soc., 89, 1513–1533.

    Google Scholar 

  • Gullbrand, J., and F. K. Chow, 2003: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495, 323–341.

    Google Scholar 

  • Hanna, S. R. and R. Yang, 2001: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40, 1095–1104.

    Google Scholar 

  • Harlow, F. H. and Nakayama, P. I. 1967. Turbulence transport equations, Phys. Fluids 10, 2323.

    Google Scholar 

  • Hauge, G., and L. R. Hole, 2003: Implementation of slope irradiance in Mesoscale Model version 5 and its effect on temperature and wind fields during the breakup of a temperature inversion. J. Geophys. Res., 108, D2, 4058.

    Google Scholar 

  • Henderson-Sellers, A., Z. L. Yang, and R. Dickinson, 1993: The Project for Intercomparison of Land-surface Parameterization Schemes. Bull. Amer. Meteor. Soc., 74, 1335–1349.

    Google Scholar 

  • ———, A. J. Pitman, P. K. Love, P. Irannejad, and T. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489–503.

    Google Scholar 

  • Hodur, R.M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 1414–1430.

    Google Scholar 

  • Holt, T., and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterization for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761–780.

    Google Scholar 

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842.

    Google Scholar 

  • Hong, S.Y., and H.L. Pan, 1996: Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322–2339.

    Google Scholar 

  • ———, Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318–2341.

    Google Scholar 

  • Horel, J. D., and C. V. Gibson, 1994: Analysis and simulation of winter storm over Utah, Weather and Forecasting, 9, 479–494.

    Google Scholar 

  • Horst, T., J. Kleissl, D. Lenschow, C. Meneveau, C. Moeng, M. Parlange, P. Sullivan, and J. Weil, 2004: HATS: Field observations to obtain spatially filtered turbulence fields from crosswind Arrays of sonic anemometers in the atmospheric surface layer. J. Atmos. Sci., 61, 1566–1581.

    Google Scholar 

  • Huang, C.-Y., and S. Raman, 1989: Application of the E-ε closure model to simulations of mesoscale topographic effects. Bound.-Layer Meteor., 49, 169–195.

    Google Scholar 

  • Iizuka, S., and H. Kondo, 2004: Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain. Atmos. Envir., 38, 7083–7091.

    Google Scholar 

  • Iqbal, M, 1983: An Introduction to Solar Radiation, Academic, San Diego, California.

    Google Scholar 

  • Jacquemin B. and J. Noilhan, 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound. Layer. Meteor., 52, 93–134.

    Google Scholar 

  • Janjić, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Wea. Rev. 122, 927–945.

    Google Scholar 

  • Juneja, A., and J. G. Brasseur, 1999: Characteristics of subgrid-resolved-scale dynamics in anistropic turbulence, with application to rough-wall boundary layers. Phys. Fluids, 11, 3054–3068.

    Google Scholar 

  • Kăllberg, P. Ed., 1990: The HIRLAM level 1 system. Documentation manual,160 pp. [Available from SMHI, S 60176 Norrköping, Sweden]

    Google Scholar 

  • Kirkpatrick, M. P., A. S. Ackerman, D. E. Stevens, and N. N. Mansour, 2006: On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-topped atmospheric boundary layer. J. Atmos. Sci., 63, 526–546.

    Google Scholar 

  • Klemp, J. B. and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78–107.

    Google Scholar 

  • Klemp, J. B. and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 403–444.

    Google Scholar 

  • Klemp, J., Dudhia, J. & Hassiotis, A., 2008. An Upper Gravity-Wave Absorbing Layer for NWP Applications. Mon. Wea. Rev., 136(10), 3987–4004.

    Google Scholar 

  • Kondo, J., and N. Okusa, 1990: A Simple Numerical Prediction Model of Nocturnal Cooling in a Basin with Various Topographic Parameters. J. Appl. Meteor., 29, 604–619.

    Google Scholar 

  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151–182.

    Google Scholar 

  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 1052–1068.

    Google Scholar 

  • Koster, R.D., and P.C.D. Milly, 1997: The Interplay between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models. J. Climate, 10, 1578–1591.

    Google Scholar 

  • Kuwagata, T., and F. Kimura, 1997: Daytime Boundary Layer Evolution in a Deep Valley. Part II: Numerical Simulation of the Cross-Valley Circulation. J. Appl. Meteor., 36, 883–895.

    Google Scholar 

  • Lacser A. and S. P. S. Arya, 1986: A comparative assessment of mixing-length parameterizations in the stably stratified nocturnal boundary layer (NBL). Bound.-Layer Meteor., 36, 53–70.

    Google Scholar 

  • Lafore, J. P., J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron, C. Fischer, P. Héreil, P. Mascart, V. Masson, J. P. Pinty, J. L. Redelsperger, E. Richard and J. Vilà-Guerau de Arellano, 1997: The Meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Annals Geophysicae. 16, 90–109.

    Google Scholar 

  • Lesieur, M., Metais, O., and P. Comte, 2005: Large-eddy simulations of turbulence. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148–172.

    Google Scholar 

  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 4, 633–635.

    Google Scholar 

  • Lopes, A., J. Palma, and F. Castro, 2007: Simulation of the askervein flow. Part 2: Large-eddy simulations. Bound.-Layer Meteor., 125, 85–108.

    Google Scholar 

  • Ludwig, F., F. Chow, and R. Street, 2009: Effect of Turbulence Models and Spatial Resolution on Resolved Velocity Structure and Momentum Fluxes in Large-Eddy Simulations of Neutral Boundary Layer Flow. J. Appl. Meteor. Clim., 48, 1161–1180.

    Google Scholar 

  • Lundquist, K.A., Chow, F.K., and J.K. Lundquist. 2010. An immersed boundary method for the Weather Research and Forecasting model. Mon. Wea. Rev., 138(3), 796–817.

    Google Scholar 

  • Mahrer, Y., 1984: An Improved Numerical Approximation of the Horizontal Gradients in a Terrain-Following Coordinate System, Mon. Wea. Rev., 112, 918–922.

    Google Scholar 

  • Mahfouf, J. F., E. Richard, P. Mascart, E. C. Nickerson, and R. Rosset, 1987: A comparative study of various parameterization of the planetary boundary layer in a numerical mesoscale model, J. Appl. Meteor.., 26, 1671–1695.

    Google Scholar 

  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 51–78.

    Google Scholar 

  • Mason, P., and S. Derbyshire, 1990: Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary-Layer. Bound.-Layer Meteor., 53, 117–162.

    Google Scholar 

  • Mass, C.F., and Y.H. Kuo, 1998: Regional Real-Time Numerical Weather Prediction: Current Status and Future Potential. Bull. Amer. Meteor. Soc., 79, 253–263.

    Google Scholar 

  • ———,D. Ovens, K. Westrick, and B.A. Colle, 2002: Does Increasing Horizontal Resolution Produce More Skillful Forecasts? Bull. Amer. Meteor. Soc., 83, 407–430.

    Google Scholar 

  • ———, M. Albright, D. Ovens, R. Steed, M. MacIver, E. Grimit, T. Eckel, B. Lamb, J. Vaughan, K. Westrick, P. Storck, B. Colman, C. Hill, N. Maykut, M. Gilroy, S.A. Ferguson, J. Yetter, J.M. Sierchio, C. Bowman, R. Stender, R. Wilson, and W. Brown, 2003: Regional Environmental Prediction Over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84, 1353–1366.

    Google Scholar 

  • Matzinger, N., M. Andretta, E. Van Gorsel, R. Vogt, A. Ohmura, and M. W. Rotach, 2003: Surface radiation budget in an alpine valley. Quart. J . Roy. Meteor. Soc., 129, 877895.

    Google Scholar 

  • Maxwell, R.M., Chow, F.K., and S.J. Kollet. 2007. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. in Water Res. 30, 2447–2466.

    Google Scholar 

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851– 875.

    Google Scholar 

  • ———, and ———, 1974: A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. J. Atmos. Sci., 31, 1791–1806.

    Google Scholar 

  • Meneveau, C., T. Lund, and W. Cabot, 1996: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319, 353–385.

    Google Scholar 

  • Meneveau, C, T. S. Lund, and W. H. Cabot, 1996: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319, 353–385.

    Google Scholar 

  • Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P.C. Shafran, W. Ebisuzaki, D. Jović, J. Woollen, E. Rogers, E.H. Berbery, M.B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi, 2006: North American Regional Reanalysis, Bull. Amer. Meteorol. Soc., 87, 343–360.

    Google Scholar 

  • Michioka, T., and F. Chow, 2008: High-Resolution Large-Eddy Simulations of Scalar Transport in Atmospheric Boundary Layer Flow over Complex Terrain. J. Appl. Meteor. Clim., 47, 3150–3169.

    Google Scholar 

  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 2052–2062.

    Google Scholar 

  • Moeng, C. -H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062.

    Google Scholar 

  • Moeng, C., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 2295–2311.

    Google Scholar 

  • ———, and J.C. Wyngaard, 1984: Statistics of Conservative Scalars in the Convective Boundary Layer. J. Atmos. Sci., 41, 3161–3169.

    Google Scholar 

  • ———, and ———, 1989: Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling. J. Atmos. Sci., 46, 2311–2330

    Google Scholar 

  • ———, J Dudhia, J Klemp, and P Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 2295–2311.

    Google Scholar 

  • Müller, M.D., and D. Scherer, 2005: A Grid- and Subgrid-Scale Radiation Parameterization of Topographic Effects for Mesoscale Weather Forecast Models. Mon. Wea. Rev., 133, 1431–1442.

    Google Scholar 

  • Nakayama, A., K. Hori, and R. L. Street, 2004a: Filtering and large eddy simulation of flow over irregular rough surface. Proc. 2004 Summer Program, Center for Turbulence Research, Stanford, CA, NASA Ames–Stanford University, 145–156.

    Google Scholar 

  • Nakayama, A., H. Noda, and K. Maeda, 2004b: Similarity of instantaneous and filtered velocity fields in the near wall region of zero-pressure gradient boundary layer. Fluid Dynamics Research 35, 299–321.

    Google Scholar 

  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401–427.

    Google Scholar 

  • Noilhan, J. and S. Planton, 1989: A simple parameterzation of land surface process for mesoscale models. Mon. Wea. Rev., 117, 536–549.

    Google Scholar 

  • Noppel, H., and F. Fiedler, 2002: Mesoscale Heat Transport Over Complex Terrain By Slope Winds – A Conceptual Model And Numerical Simulations. Bound.-Layer Meteor., 104, 73–97.

    Google Scholar 

  • Nutter, P., M. Xue, and D. Stensrud, 2004: Application of Lateral Boundary Condition Perturbations to Help Restore Dispersion in Limited-Area Ensemble Forecasts. Mon. Wea. Rev., 132, 2378–2390.

    Google Scholar 

  • Oliphant, A. J., R. A. Spronken-Smith, A. P. Sturman, and I. F. Owens, 2003: Spatial variability of surface radiation fluxes in mountainous terrain. J. Appl. Meteor., 42, 113–128.

    Google Scholar 

  • Oncley, S. P., T. Foken, R. Vogt, C. Bernhofer, W. Kohsiek, H. Liu, A. Pitacco, D. Grantz, and L. Riberio, 2002: The energy balance experiment EBEX-2000. 25th Conference on Agriculture and Forest Meteorology. Amer. Meteor. Soc., May 19–24, Norfolk, VA.

    Google Scholar 

  • Ookouchi, Y., M. Segal, R.C. Kessler, and R.A. Pielke, 1984: Evaluation of Soil Moisture Effects on the Generation and Modification of Mesoscale Circulations. Mon. Wea. Rev., 112, 2281–2292.

    Google Scholar 

  • Patton, E.G., P.P. Sullivan, and C.H. Moeng, 2005: The Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. J. Atmos. Sci., 62, 2078–2097.

    Google Scholar 

  • Pielke, R. A., 2002: Mesoscale meteorological modeling. Academic Press, 704 pp.

    Google Scholar 

  • Pielke, R. A., W. R. Cotton, R. L. Walko, C. J. Tremback, W. A. Lyons, L. D. Grasso, M. E. Nicholls, M. D. Moran, D. A. Wesley, T. J. Lee, and J. H. Copeland, 1992: A comprehensive meteorological modeling system – RAMS. Meteor. Atmos. Phys., 49, 69–91.

    Google Scholar 

  • Piomelli, U., and E. Balaras, 2002: Wall-layer models for large-eddy simulations. Annual Review of Fluid Mechanics, 34, 349–374.

    Google Scholar 

  • Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479–510.

    Google Scholar 

  • Pleim, J. E. and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Envir., 26, 965–981.

    Google Scholar 

  • Pope, S. B. 2000: Turbulent flows. Cambridge University Press, Cambridge.

    Google Scholar 

  • Porte-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261–284.

    Google Scholar 

  • Poulos, G.S., J. E. Bossert, T. B. McKee, R. A. Pielke, 2000: The Interaction of Katabatic Flow and Mountain Waves. Part I: Observations and Idealized Simulations, J. Atmos. Sci, 57, 1919–1936,

    Google Scholar 

  • Rotach, M. W. and Coauthors, 2004: Turbulence structure and exchange processes in an Alpine Valley: The Riviera Project. Bull. Amer. Met. Soc., 85, 1367–1385.

    Google Scholar 

  • Sagaut, P., 2002: Large eddy simulation for incompressible flows. Springer-Verlag, 2nd edition: Berlin.

    Google Scholar 

  • Saiki, E., C. Moeng, and P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95, 1–30.

    Google Scholar 

  • Sarghini, F., U. Piomelli, and E. Balaras, 1999: Scale-similar models for large-eddy simulations. Phys. Fluids, 11, 1596–1607.

    Google Scholar 

  • Savage, L., S. Zhong, W. Yao, W. Brown, T. Horst, and C. Whiteman, 2008: An observational and numerical study of a regional-scale downslope flow in northern Arizona. J. Geophys. Res. Atmos., 113, D14114, 17pp.

    Google Scholar 

  • Scherer, D., and E. Parlow, 1994: Terrain as an important controlling factor for climatological, meterological and hydrological process in NW-Spitsbergen. Ann. of Geomorphology, 97, 175–193.

    Google Scholar 

  • Schmidli, J., G. S. Poulos, M. H. Daniels, and F. K. Chow, 2009: External influences on nocturnal thermally driven flows in a deep valley. J. Appl. Meteor. Climatol., 48, 3–23.

    Google Scholar 

  • Schmidli, J., Billings, B.J., Chow, F.K., De Wekker, S.F.J., Doyle, J.D., Grubisic, V., Holt, T.R., Jiang, Q., Lundquist, K.A., Sheridan, P., Vosper, S., Whiteman, C.D., Wyszogrodzki, A.A., Zaengl, G. 2010. Intercomparison of mesoscale model simulations of the daytime valley wind system. Mon. Wea. Rev., 139, 1389–1409.

    Google Scholar 

  • Schumann, U., 1990: Large-Eddy Simulation of the Up-Slope Boundary-Layer. Quart. J. Roy. Meteor. Soc., 116, 637–670.

    Google Scholar 

  • Sellers, P. J., F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, 1992: An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), J. Geophys. Res., 97, 345–18,371.

    Google Scholar 

  • ———, Y. Mintz, Y. Sud, and A. Dalcher, 1986: A Simple Biosphere Model (SIB) for Use within General Circulation Models. J. Atmos. Sci., 43, 505–531.

    Google Scholar 

  • Seluchi, M. E. and S. C. Chou, 2001: Evaluation of two Eta model versions for weather forecasting over South America. Geofisica International, 40, 219–237.

    Google Scholar 

  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study (LMOS). J. Appl. Meteorol. 39, 412–426.

    Google Scholar 

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019–3032.

    Google Scholar 

  • Skamarock, W., and J. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.

    Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99–152.

    Google Scholar 

  • Smith, C., and E. Skyllingstad, 2005: Numerical simulation of katabatic flow with changing slope angle. Mon. Wea. Rev., 133, 3065–3080.

    Google Scholar 

  • Smith, C., and E. Skyllingstad, 2009: Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation. J. Atmos. Sci., 66, 3147–3164.

    Google Scholar 

  • Steppeler, J., G. Doms, U. Schattler, H.W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM, Meteorol. Atmos. Phys., 82, 75–96.

    Google Scholar 

  • Stull, R. B., 1984: Transilient Turbulence Theory. Part I: The Concept of Eddy-Mixing across Finite Distances. J. Atmos. Sci., 41, 3351–3367.

    Google Scholar 

  • Stull, R. B., 1988: An introduction to boundary layer meteorology. Kluwer Academic Publishers, Boston,.

    Google Scholar 

  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247–276.

    Google Scholar 

  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C. H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482, 101–139.

    Google Scholar 

  • Sullivan, P.P. and E.G. Patton, 2008: A highly parallel algorithm for turbulence simulations in planetary boundary layers: Results with meshes up to 10243. 18th Conference on Boundary Layer and Turbulence, Amer. Meteor. Soc., Stockholm, Sweden.

    Google Scholar 

  • Sun, W. Y., and C. Z. Chang, 1986: Diffusion model for a convective layer. 1. Numerical simulation of convective boundary layer. J. Clim. Appl. Meteorol., 25, 1445–1453.

    Google Scholar 

  • Twine, T. E., W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. Meyers, J. H. Prueger, and P. J. Starke, 2000: Correcting eddy covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279–300.

    Google Scholar 

  • Thompson, J. F., 1984: Grid generation techniques in computational fluid dynamics. AIAA Journal, 22, 1505–1523

    Google Scholar 

  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148.

    Google Scholar 

  • Turner, J., S. Pendlebury, L. Cowled, K. Jacka, M. Jones, and P. Targett, 2000: Report on the First International Symposium on Operational Weather Forecasting in Antarctica. Bull. Amer. Meteor. Soc., 81, 75–94.

    Google Scholar 

  • Versephy D. L., 2007: Class – A Canadian land surface scheme for GCMs. I. Soil Model, Int. J. Climatol., 11, 111–133.

    Google Scholar 

  • Viterbo, P., and A.C. Beljaars, 1995: An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. J. Climate, 8, 2716–2748.

    Google Scholar 

  • Vosper, S. B. and A. R. Brown, 2008: Numerical simulations of sheltering in valley: the formation of nighttime cold air pools. Bound.-Layer Meteor ., 127, 429–448.

    Google Scholar 

  • Vreman, B., B. Geurts, and H. Kuerten, 1996: Large-eddy simulation of the temporal mixing layer using the Clark model. Theoretical and Computational Fluid Dynamics, 8, 309–324.

    Google Scholar 

  • Vrhovec, T., 1991: A cold air lake formation in a basin—A simulation with a mesoscale numerical model. Meteor. Atmos. Phys., 46, 91–99.

    Google Scholar 

  • ——, and A. Hrabar, 1996: Numerical simulations of dissipation of dry temperature inversions in basins. Geofizika, 13, 81–96.

    Google Scholar 

  • Wang, W., and N.L. Seaman, 1997: A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model. Mon. Wea. Rev., 125, 252–278.

    Google Scholar 

  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Met. Soc., 78, 2599–2617.

    Google Scholar 

  • Weigel, A. P., and M. W. Rotach, 2004: Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 2605–2628.

    Google Scholar 

  • Weigel, A. P., F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow Structure and Heat Budgets. J. Appl. Meteor. Clim., 45, 87–107.

    Google Scholar 

  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007a: The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere. BLM, 125, 227–244.

    Google Scholar 

  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007b: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. BLM, 123, 177–199.

    Google Scholar 

  • White, A. B.,R. J. Zamora, K. J. Olszyna, C. A. Russell, B. D. Templeman, and J.-W. Bao, 2001: Observations and numerical study of the morning transition: A case study from SOS99. 14th Symposium on Boundary Layer and Turbulence.

    Google Scholar 

  • Whiteman, 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, New York, 355pp.

    Google Scholar 

  • ———, 1982: Breakup of Temperature Inversions in Deep Mountain Valleys: Part I. Observations. J. Appl. Meteor., 21, 270–289.

    Google Scholar 

  • ———, and J.C. Doran, 1993: The Relationship between Overlying Synoptic-Scale Flows and Winds within a Valley. J. Appl. Meteor., 32, 1669–1682.

    Google Scholar 

  • ———, and S. Zhong, 2008: Downslope Flows on a Low-Angle Slope and Their Interactions with Valley Inversions. Part I: Observations. J. Appl. Meteor. Climatol., 47, 2023–2038.

    Google Scholar 

  • ———, C. D., S. Zhong, X. Bian, J. D. Fast, and J. C. Doran, 2000: Boundary-layer evolution and regional scale diurnal circulation over the Mexico Basin and Mexico Plateau. J. Geophy. Res., 105, 10081–10102.

    Google Scholar 

  • ———, A. Muschinski, S. Zhong, D. Fritts, S. W. Hoch, M. Hahnenberger, W. Yao, V. Hohreiter, M. Behn, Y. Cheon, C. B. Clements, T. W. Horst, W. O. J. Brown, and S. P. Oncley, 2008: METCRAX 2006 – Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 1665–1680.

    Google Scholar 

  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007c: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. BLM, submitted.

    Google Scholar 

  • Wong, V. C., and D. K. Lilly, 1994: A comparison of two dynamic subgrid closure methods for turbulent thermal-convection. Phys. Fluids, 6, 1016–1023.

    Google Scholar 

  • Wood, E. F., and Coauthors, 1998: The project for Intercomparison of Landsurface Parameterization Schemes (PILPS). Phase 2(c) Red–Arkansas River Basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change, 19, 115–136

    Google Scholar 

  • ———, D. P. Lettenmaier, and V. G. Zartarian, 1992: A landsurface parameterization with subgrid for general circulation models. J. Geophys. Res., 97, 2717–2728

    Google Scholar 

  • Wyngaard, J. C. and R.A. Brost, 1984: Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer. J. Atmos. Sci., 41, 102–112.

    Google Scholar 

  • Wyngaard, J. C., L. J. Peltier, and S. Khanna, 1998: LES in the surface layer: Surface fluxes, scaling, and SGS modeling. J. Atmos. Sci., 55, 1733–1754.

    Google Scholar 

  • Wyngaard, J. C., 2004: Toward numerical modeling in the “Terra Incognita.” JAS, 61, 1816–1826.

    Google Scholar 

  • Xue, M., D. Wong, J. Gao, K. Brewsker, K. Droegemier, 2003: The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorol. Atmos. Phys., 82, 139–170.

    Google Scholar 

  • ———, K. K. Droegemeier and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193.

    Google Scholar 

  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D. Wang, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143–165.

    Google Scholar 

  • Yamada, T., and G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 2309–2329.

    Google Scholar 

  • ———, 1977: A numerical experiment on pollutant dispersion in a horizontally homogeneous atmospheric boundary layer. Atmos. Environ. 11, 1015–1024.

    Google Scholar 

  • Yao, W. and S. Zhong, 2009: Nocturnal temperature inversions in a small, enclosed basin and their relationship to ambient atmospheric conditions. J. Meteor. Atmos. Phys., 103, 195–210.

    Google Scholar 

  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A Dynamic Mixed Subgrid-Scale Model and Its Application to Turbulent Recirculating Flows. Phys. Fluids, 5, 3186–3196.

    Google Scholar 

  • Zängl, G., 2002: An Improved Method for Computing Horizontal Diffusion in a Sigma-Coordinate Model and Its Application to Simulations over Mountainous Topography. Mon. Wea. Rev., 139, 1423–1432.

    Google Scholar 

  • ———, 2005: Formation of Extreme Cold-Air Pools in Elevated Sinkholes: An Idealized Numerical Process Study, Mon. Wea. Rev. 133, 925–941.

    Google Scholar 

  • ———, 2007: To what extent does increased model resolution improve simulated precipitation fields? A case study of two north-Alpine heavy-rainfall events. Meteorologische Zeitschrift, 16, 571–580.

    Google Scholar 

  • ———, and S.G. Chico, 2006: The Thermal Circulation of a Grand Plateau: Sensitivity to the Height, Width, and Shape of the Plateau. Mon. Wea. Rev., 134, 2581–2600.

    Google Scholar 

  • ———, B. Chimani, and C. Häberli, 2004: Numerical Simulations of the Foehn in the Rhine Valley on 24 October 1999 (MAP IOP 10). Mon. Wea. Rev., 132, 368–389.

    Google Scholar 

  • ———, J. Egger, and V. Wirth, 2001: Diurnal Winds in the Himalayan Kali Gandaki Valley. Part II: Modeling. Mon. Wea. Rev., 129, 1062–1080.

    Google Scholar 

  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.

    Google Scholar 

  • Zhong, S., and J. D. Fast, 2003: An evaluation of MM5, RAMS, and Meso Eta at sub-kilometer resolution using the VTMX field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131, 1301–1322.

    Google Scholar 

  • ———, X. Bian, and C. D. Whiteman, 2003: Time scale for cold-air pool breakup by turbulent erosion. Meteorologische Zeitschrift. 12, 229–233.

    Google Scholar 

  • ———, H-J. In, and C. B. Clements, 2007: The impact of physical parameterizations on simulated boundary layer structure in a coastal environment. J. Geophy. Res., 112, D13110.

    Google Scholar 

  • Zhong, S., and C. Whiteman, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modeling. J. Appl. Meteor. Clim., 47, 2039–2057.

    Google Scholar 

  • Zhou, B., and F. K. Chow, 2011: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 68(9), 2142–2155.

    Google Scholar 

  • Ding, L, R. J. Calhoun, and R. L. Street, 2003: Numerical simulation of strongly stratified flow over a three-dimensional hill. Bound.-Layer Meteor., 107, 81–114.

    Google Scholar 

  • ———, and R. L. Street. 2003. Numerical study of the wake structure behind a three-dimensional hill. J. Atmos. Sci., 60, 1678–1690.

    Google Scholar 

  • Esau, I., 2004: Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure. Environl Fluid Mech., 4, 273–303.

    Google Scholar 

  • Germano, M., U. Piomelli, P. Moin, and W. H Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids., 3, 1760–1765.

    Google Scholar 

  • Ghosal, S., T. S Lund, P. Moin, and K. Akselvoll. 1995. A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286: 229–255.

    Google Scholar 

  • Golaz, Jean-Christophe, James D Doyle, and Shouping Wang, 2009: One-Way Nested Large-Eddy Simulation over the Askervein Hill. J. Adv. Model. Earth Syst., 1, 1–6.

    Google Scholar 

  • Gullbrand, J., and F. K. Chow. 2003: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495 323–341.

    Google Scholar 

  • Horst, T. W, J. Kleissl, D. H. Lenschow, C. Meneveau, C. H. Moeng, M. B. Parlange, P. P. Sullivan, and J. C. Weil, 2004: HATS: Field observations to obtain spatially filtered turbulence fields from crosswind Arrays of sonic anemometers in the atmospheric surface layer. J. Atmos. Sci., 61, 1566–1581.

    Google Scholar 

  • Iizuka, S, and H. Kondo, 2004: Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain. Atmos. Environ., 38, 7083–7091.

    Google Scholar 

  • Juneja, A., and J. G. Brasseur, 1999: Characteristics of subgrid-resolved-scale dynamics in anistropic turbulence, with application to rough-wall boundary layers. Phys. Fluids, 11, 3054–3068.

    Google Scholar 

  • Kosović, B., 1997. Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151–182.

    Google Scholar 

  • ———, and J.A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci. 57, 1052–1068.

    Google Scholar 

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148–172.

    Google Scholar 

  • Lopes, AS, JMLM Palma, and FA Castro, 2007: Simulation of the Askervein flow. Part 2: Large-eddy simulations. Bound.-Layer Meteor., 125, 85–108.

    Google Scholar 

  • Ludwig, F.L., F.K. Chow, and R.L. Street, 2009: Effect of Turbulence Models and Spatial Resolution on Resolved Velocity Structure and Momentum Fluxes in Large-Eddy Simulations of Neutral Boundary Layer Flow. J. Appl. Meteor. Climatol., 48, 1161–1180

    Google Scholar 

  • Mason, P. J, and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 51–78.

    Google Scholar 

  • ———, and S.H. Derbyshire. 1990. Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary-Layer. Bound.-Layer Meteor., 53, 117–162.

    Google Scholar 

  • Michioka, T, and F. K. Chow, 2008: High-Resolution Large-Eddy Simulations of Scalar Transport in Atmospheric Boundary Layer Flow over Complex Terrain. J. Appl. Meteor. Climatol., 47, 3150–3169.

    Google Scholar 

  • Noppel, H., and F. Fiedler, 2002: Mesoscale Heat Transport Over Complex Terrain By Slope Winds – A Conceptual Model And Numerical Simulations. Bound.-Layer Meteor., 104, 73–97.

    Google Scholar 

  • Pielke, R. A. 2002. Mesoscale meteorological modeling. Academic Press, 704pp.

    Google Scholar 

  • Piomelli, U. and E. Balaras, 2002: Wall-layer models for large-eddy simulations. Ann. Rev. Fluid. Mech. 34, 349–374.

    Google Scholar 

  • Porte-Agel, F., C. Meneveau, and M. B Parlange, 2000: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261–284.

    Google Scholar 

  • Rotach, M.W., P. Calanca, G. Graziani, J. Gurtz, D.G. Steyn, R. Vogt, M. Andretta, A. Christen, S. Cieslik, R. Connolly, S.F.J. De Wekker, S. Galmarini, E.N. Kadygrov, V. Kadygrov, E. Miller, B. Neininger, M. Rucker, E. Van Gorsel, H. Weber, A. Weiss, and M. Zappa, 2004: Turbulence Structure and Exchange Processes in an Alpine Valley: The Riviera Project. Bull. Amer. Meteor. Soc., 85, 1367–1385.

    Google Scholar 

  • Saiki, EM, CH Moeng, and PP Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meetor., 95, 1–30.

    Google Scholar 

  • Sarghini, F., U. Piomelli, and E. Balaras. 1999. Scale-similar models for large-eddy simulations. Phys. Fluids 11, no. 6: 1596–1607.

    Google Scholar 

  • Savage, C. L., S. Zhong, W. Yao, W. J. O. Brown, T. W. Horst, and C. D. Whiteman, 2008: An observational and numerical study of a regional-scale downslope flow in Northern Arizona. J. Geophy. Res., 113, D14114, doi:10.1029/2007JD009623.

    Google Scholar 

  • Schmidli, J., G.S. Poulos, M.H. Daniels, and F.K. Chow, 2009: External Influences on Nocturnal Thermally Driven Flows in a Deep Valley. J. Appl. Meteor. Climatol., 48, 3–23.

    Google Scholar 

  • Schumann, U., 1990: Large-Eddy Simulation of the Up-Slope Boundary-Layer. Quart. J. Roy. Metero. Soc., 116, 637–670.

    Google Scholar 

  • ———., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comp. Phys., 227, 3465–3485.

    Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99–152.

    Google Scholar 

  • Smagorinsky, J., 1964: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–152.

    Google Scholar 

  • Smith, CM, and ED Skyllingstad, 2005: Numerical simulation of katabatic flow with changing slope angle. Mon. Wea. Rev., 133, 3065–3080.

    Google Scholar 

  • ———. 2009. Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation. J. Atmos. Sci., 66, 3147–3164.

    Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers.

    Google Scholar 

  • Sullivan, P. P, J. C McWilliams, and C. -H Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247–276.

    Google Scholar 

  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C. H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech. 482, 101–139.

    Google Scholar 

  • Sun, W. Y., and C. Z. Chang, 1986: Diffusion model for a convective layer. 1. Numerical simulation of convective boundary layer. J. Clim. Appl. Meteor., 25, 1445–1453.

    Google Scholar 

  • Vreman, B., B. Geurts, and H. Kuerten, 1996: Large-eddy simulation of the temporal mixing layer using the Clark model. Theoret. Comput. Fluid Dynamics, 8. 309–324.

    Google Scholar 

  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Met. Soc. 78, 2599–617.

    Google Scholar 

  • Weigel, A. P., and M. W. Rotach, 2004: Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 2605–2628.

    Google Scholar 

  • ———, F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets. J. Appl. Meteor. 45, 87–107.

    Google Scholar 

  • ———, F. K. Chow, and M. W. Rotach, 2007a: The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere. Bound.-Layer Meoteor., 125, 227–244.

    Google Scholar 

  • ———, F. K. Chow, and M. W. Rotach, 2007b. On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound.-Layer Meoteor., 123, 177–199.

    Google Scholar 

  • Wong, V. C., and D. K. Lilly, 1994: A comparison of two dynamic subgrid closure methods for turbulent thermal-convection. Phys. Fluids, 6, 1016–1023.

    Google Scholar 

  • ———, L.J. Peltier, and S. Khanna, 1998: LES in the Surface Layer: Surface Fluxes, Scaling, and SGS Modeling. J. Atmos. Sci., 55, 1733–1754.

    Google Scholar 

  • ———, 2004: Toward numerical modeling in the “Terra Incognita”. J. Atmos. Sci., 61, 1816–1826.

    Google Scholar 

  • Yamada, T., and G. Mellor, 1975: A Simulation of the Wangara Atmospheric Boundary Layer Data. J. Atmos. Sci., 32, 2309–2329.

    Google Scholar 

  • Zang, Y., R. L Street, and J. R Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, 5, 3186–3196.

    Google Scholar 

  • ———, and C. D. Whiteman, 2008: Downslope flows in a low-angle slope and their interactions with valley inversions. Part II: Numerical modeling. J. Appl. Meteor. Climatol. 47, 2039–2057.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of National Science Foundation Grants ATM-0646299 and 0837860 (for SZ) and 0645784 (for FKC) (Physical and Dynamic Meteorology Program). A special thanks to Dr. Jerome Fast at the Pacific Northwest National Laboratory for preparing several of the figures used in the chapter and for useful discussions. The authors also thank the anonymous reviewers for their thorough review and constructive comments, as well as Mike Kiefer, Megan Daniels, Nikola Marjanovic, Jason Simon, and Bowen Zhou for their careful proofreading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyuan Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhong, S., Chow, F.K. (2013). Meso- and Fine-Scale Modeling over Complex Terrain: Parameterizations and Applications. In: Chow, F., De Wekker, S., Snyder, B. (eds) Mountain Weather Research and Forecasting. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4098-3_10

Download citation

Publish with us

Policies and ethics