Skip to main content

Part of the book series: Literacy Studies ((LITS,volume 6))

  • 2319 Accesses

Abstract

The field of numerical cognition has seen an upsurge of research in the last two decades. Such research furnished the scientific community with knowledge about the basis of numerical abilities and the brain mechanisms involved. Nevertheless, it has little influence on math education. Also, treatment and remediation of cases of math learning disabilities have not been well established. This is due, in part, to the lack or rather scant connections between cognitive neuroscientists and educators and in part to the difficulty in translating cognitive neuroscience knowledge into methods and tools to be used in daily educational and remedial practice. The current part of the book is aimed at (a) describing the neurocognitive characteristics of typical and atypical development of numerical abilities, and (b) translating this knowledge to educational issues and remediation of atypical developing children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. Trends in Cognitive Science, 10, 146–151.

    Article  Google Scholar 

  • Berch, D. B. (2005). Making sense of number sense: Implication for children with mathematical disabilities. Journal of Learning Disabilities, 38, 333–339.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., & Frith, U. (2005). The learning brain: Lessons for education: A précis. Developmental Science, 8, 459–471.

    Article  PubMed  Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18.

    Article  PubMed  Google Scholar 

  • Dehaene, S. (2009). Origins of mathematical intuitions: The case of arithmetic. Annals of the New York Academy of Sciences, 1156, 232–259.

    Article  PubMed  Google Scholar 

  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P. K., et al. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428–1446.

    Article  PubMed  Google Scholar 

  • Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews Neuroscience, 7, 406–413.

    Article  PubMed  Google Scholar 

  • Kaufmann, L., & Nuerk, H. C. (2005). Numerical development: Current issues and future perspectives. Psychology Science, 47(1), 142–170.

    Google Scholar 

  • Kroesbergen, E. H., Van Luit, J. E. H., Van Lieshout, E. C. D. M., Van Loosbroek, E., & Van de Rijt, B. A. M. (2009). Individual differences in early numeracy: The role of executive functions and subitizing. Journal of Psychoeducational Assessment, 27, 226–236.

    Article  Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9 year old students. Cognition, 93, 99–125.

    Article  PubMed  Google Scholar 

  • Nelson, W., Reyna, V. F., Fagerlin, A., Lipkus, I., & Peters, E. (2008). Clinical implications of numeracy: Theory and practice. Annals of Behavioral Medicine, 35, 261–274.

    Article  PubMed  Google Scholar 

  • Rayner, K., Foorman, B. R., Perfetti, C. H., Pesetsky, D., & Seidenberg, M. S. (2001). How psychological science informs the teaching of reading. Psychological Science in the Public Interest, 2, 31–74.

    Article  Google Scholar 

  • Rousselle, L., & Noel, M. P. (2007). Basic numerical skills in children with mathematical learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102, 361–395.

    Article  PubMed  Google Scholar 

  • Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitude: A study of developmental dyscalculia. Neuropsychology, 19, 641–648.

    Article  PubMed  Google Scholar 

  • Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Educational Psychology, 98, 854–867.

    Article  Google Scholar 

  • Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity may not mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99.

    Article  PubMed  Google Scholar 

  • Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.

    Article  PubMed  Google Scholar 

  • von Aster, M., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49, 868–873.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Rubinsten Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rubinsten, O. (2012). Numerical Cognition: From Development to Intervention. In: Breznitz, Z., Rubinsten, O., Molfese, V., Molfese, D. (eds) Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices. Literacy Studies, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4086-0_11

Download citation

Publish with us

Policies and ethics