Skip to main content

Biological Control of Arthropods and Its Application in Vineyards

  • Chapter
  • First Online:
Book cover Arthropod Management in Vineyards:

Abstract

Biological control has been defined as: The action of parasites, predators or pathogens in maintaining another organisms population density at a lower average than would occur in their absence (De Bach 1964). Therefore, successful biological control of arthropod pests relies on the presence and viability of effective predators, parasitoids and/or entomopathogens in sufficient numbers and at critical seasonal periods to provide population regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA, Ponti L, Nicholls CI (2005) Manipulating vineyard biodiversity for improved insect pest management: case studies from northern California. Int J Biodivers Sci Manag 1:191–203

    Google Scholar 

  • Arakaki N, Yamazawa H, Wakamura S (2011) The egg parasitoid Telenomus euproctidis (Hymenoptera: Scelionidae) uses sex pheromone released by immobile female tussock moth Orgyia postica (Lepidoptera: Lymantriidae) as kairomone. Appl Entomol Zool 46:195–200

    CAS  Google Scholar 

  • Austin AD, Johnson NF, Dowton M (2005) Systematics, evolution, and biology of scelionid and platygastrid wasps. Annu Rev Entomol 50:553–582

    PubMed  CAS  Google Scholar 

  • Bahlai CA, Sears MK (2009) Population dynamics of Harmonia axyridis and Aphis glycines in Niagara Peninsula soybean fields and vineyards. J Entomol Soc Ont 140:27–39

    Google Scholar 

  • Bedding RA, Miller LA (1981) Use of a nematode, Heterorhabditis heliothidis, to control black vine weevil, Otiorhynchus sulcatus, in potted plants. Ann Appl Biol 99:211–216

    Google Scholar 

  • Begum M, Gurr GM, Wratten SD, Hedberg PR, Nicol HI (2006) Using selective food plants to maximize biological control of vineyard pests. J Appl Ecol 43:547–554

    Google Scholar 

  • Bell VA, Brightwell RJ, Lester PJ (2006) Increasing vineyard floral resources may not enhance localised biological control of the leafroller Epiphyas postvittana (Lepidoptera: Tortricidae) by Dolichogenidea spp. (Hymenoptera: Braconidae) parasitoids. Biocontrol Sci Technol 16:1031–1042

    Google Scholar 

  • Belshaw R (1994) Life history characteristics of Tachinidae (Diptera) and their effect on polyphagy. In: Hawkins BA, Sheehan W (eds) Parasitoid community ecology. Oxford University Press, Oxford, pp 145–162

    Google Scholar 

  • Berndt LA, Wratten SD, Frampton C (2000) The use of buckwheat flowers to enhance efficiency of leafroller parasitoids in a New Zealand vineyard. In: Hoddle MS (ed) Proceedings of the California conference on biological control II, Riverside, CA, pp 121–123, 11–12 July 2000

    Google Scholar 

  • Berndt LA, Wratten SD, Scarratt SL (2006) The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera: Tortricidae) in New Zealand vineyards. Biol Control 37:50–55

    Google Scholar 

  • Bolduc E, Buddle CM, Bostanian NJ, Vincent C (2005) Ground-dwelling spider fauna (Araneae) of two vineyards in southern Quebec. Environ Entomol 34:635–645

    Google Scholar 

  • Böll S, Schwappach P, Herrmann JV (2006) Planting dog roses – an efficient method to promote mymarid populations in vineyards? IOBC/WPRS Bull 29(11):175–181

    Google Scholar 

  • Booth LH, Bithell SL, Wratten SD, Heppelthwaite VJ (2003) Vineyard pesticides and their effects on invertebrate biomarkers and bioindicator species in New Zealand. Bull Environ Contam Toxicol 71:1131–1138

    PubMed  CAS  Google Scholar 

  • Bostanian NJ, Larocque N (2001) Laboratory tests to determine the intrinsic toxicity of four fungicides and two insecticides to the predacious mite Agistemus fleschneri. Phytoparasitica 29:215–222

    CAS  Google Scholar 

  • Campos L, Franco JC, Monteiro A, Lopes C (2006) Influence of cover cropping on arthropods associated to a vineyard in Estremadura. Cien Tec Vitivinic 21:33–46

    Google Scholar 

  • Chambers RJ (1988) Syrphidae. In: Minks AK, Harrewijn P (eds) Aphids, their biology, natural enemies and control, vol 2B. Elsevier, Amsterdam, pp 259–270

    Google Scholar 

  • Clark RD, Grant PR (1968) An experimental study of the role of spiders as predators in a forest litter community. Ecology 49:1152–1154

    Google Scholar 

  • Cooper ML, Daane KM, Nelson EH, Varela LG, Battany MC, Tsutsui ND, Rust MK (2008) Liquid baits control Argentine ants sustainably in coastal vineyards. Calif Agric 62:177–183

    Google Scholar 

  • Corbett A, Rosenheim JA (1996) Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol Entomol 21:155–164

    Google Scholar 

  • Costello MJ (2007) Impact of sulfur on density of Tetranychus pacificus (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae) in a central California vineyard. Exp Appl Acarol 42:197–208

    PubMed  CAS  Google Scholar 

  • Costello MJ, Daane KM (1998) Influence of ground covers on spider (Araneae) populations in a table grape vineyard. Ecol Entomol 23:33–40

    Google Scholar 

  • Costello MJ, Daane KM (1999) Abundance of spiders and insect predators on grapes in central California. J Arachnol 27:531–538

    Google Scholar 

  • Costello MJ, Daane KM (2003) Spider and leafhopper (Erythroneura spp.) response to vineyard ground cover. Environ Entomol 32:1085–1098

    Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112

    PubMed  CAS  Google Scholar 

  • Daane KM, Costello MJ (1998) Can cover crops reduce leafhopper abundance in vineyards? Calif Agric 52:27–33

    Google Scholar 

  • Daane KM, Yokota GY (1997) Release strategies affect survival and distribution of green lacewings (Neuroptera: Chrysopidae) in augmentation programs. Environ Entomol 26:455–464

    Google Scholar 

  • Daane KM, Yokota GY, Zheng Y, Hagen KS (1996) Inundative release of common green lacewings (Neuroptera: Chrysopidae) to suppress Erythroneura variabilis and E. elegantula (Homoptera: Cicadellidae) in vineyards. Environ Entomol 25:1224–1234

    Google Scholar 

  • Daane KM, Sime KR, Fallon J, Cooper ML (2007) Impacts of Argentine ants on mealybugs and their natural enemies in California’s coastal vineyards. Ecol Entomol 32:583–596

    Google Scholar 

  • Daane KM, Cooper ML, Triapitsyn SV, Walton VM, Yokota GY, Haviland DR et al (2008a) Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex. Calif Agric 62:167–176

    Google Scholar 

  • Daane KM, Bentley WJ, Millar JG, Walton VM, Cooper ML, Biscay P, Yokota GY (2008b) Integrated management of mealybugs in California vineyards. Acta Hortic 785:235–252

    Google Scholar 

  • De Bach P (1964) The scope of biological control. In: De Bach P (ed) Biological control of insect pests and weeds. Chapman and Hall, London, pp 3–20

    Google Scholar 

  • De Bach P, Hagen KS (1964) Manipulation of entomophagous species. In: De Bach P (ed) Biological control of insect pests and weeds. Chapman and Hall, London, pp 429–455

    Google Scholar 

  • Dib H, Simon S, Sauphanor B, Capowiez Y (2010) The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in southeastern France. Biol Control 55:97–109

    Google Scholar 

  • Elzen GW, King EG (1999) Periodic release and manipulation of natural enemies. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 253–270

    Google Scholar 

  • Engel VR, Ohnesorge B (1994) The role of alternative food and microclimate in the system Typhlodromus pyri (Acari, Phytoseiidae) – Panonychus ulmi (Acari, Tetranychidae) on grape vines. II. Field experiments. J Appl Entomol 118:224–238

    Google Scholar 

  • English-Loeb GM (1990) Plant drought stress and outbreaks of spider mites: a field test. Ecology 71:1401–1411

    Google Scholar 

  • English-Loeb G, Rhainds M, Martinson T, Ugine T (2003) Influence of flowering cover crops on Anagrus parasitoids (Hymenoptera: Mymaridae) and Erythroneura leafhoppers (Homoptera: Cicadellidae) in New York vineyards. Agric For Entomol 5:173–181

    Google Scholar 

  • Etzel LK, Legner EF (1999) Culture and colonization. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 125–198

    Google Scholar 

  • Federici BA (1999) A perspective on pathogens as biological control agents for insect pests. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 517–548

    Google Scholar 

  • Feener DH, Brown BV (1997) Diptera as parasitoids. Annu Rev Entomol 42:73–97

    PubMed  CAS  Google Scholar 

  • Fisher TW (1963) Mass culture of Cryptolaemus and Leptomastix, natural enemies of citrus mealybugs. University of California, Berkeley, CA. Agric Exp Stn Bull 797:1–38

    Google Scholar 

  • Fisher TW, Andres LA (1999) Quarantine. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 103–124

    Google Scholar 

  • Fisher JR, Bruck DJ, Bañados P, Dale A (2009) Biology and control of root weevils on berry and nursery crops in Oregon. Acta Hortic 777:345–351

    Google Scholar 

  • Frank SD, Shrewsbury PM, Denno RF (2011) Plant versus prey resources: influence on omnivore behavior and herbivore suppression. Biol Control 57:229–235

    Google Scholar 

  • Gabel B, Renczés V (1985) Factors affecting the monitoring of flight activity of Lobesia botrana and Eupoecilia ambiguella (Lepidoptera, Tortricidae) by pheromone traps. Acta Entomol Bohemoslov 82:269–277

    Google Scholar 

  • Gadino AN, Walton VM, Dreves AJ (2011) Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: Phytoseiidae), in laboratory bioassays. J Econ Entomol 104:970–977

    PubMed  CAS  Google Scholar 

  • Galvan TL, Burkness EC, Koch RL, Hutchison WD (2009) Multicolored Asian lady beetle (Coleoptera: Coccinellidae) activity and wine grape phenology: implications for pest management. Environ Entomol 38:1563–1574

    PubMed  CAS  Google Scholar 

  • Glenn DC, Hoffmann AA (1997) Developing a commercially viable system for biological control of light brown apple moth (Lepidoptera: Tortricidae) in grapes using endemic Trichogramma (Hymenoptera: Trichogrammatidae). J Econ Entomol 90:370–382

    Google Scholar 

  • Gusberti MM, Jermini E, Wyss E, Linder C (2008) Efficacy of insecticides against Scaphoideus titanus in organic vineyards and their side effects. Rev Suisse Vitic Arboric Hortic 40:173–177

    Google Scholar 

  • Gutierrez AP, Caltagirone LE, Meikle W (1999) Evaluation of results. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 243–252

    Google Scholar 

  • Gutierrez AP, Daane KM, Ponti L, Walton VM, Ellis CK (2008) Prospective evaluation of the biological control of vine mealybug: refuge effects and climate. J Appl Ecol 45:524–536

    Google Scholar 

  • Hagen KS, Mills NJ, Gordh G, McMurtry JA (1999) Terrestrial arthropod predators of insect and mite pests. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 383–503

    Google Scholar 

  • Hanna R, Zalom FG, Roltsch WJ (2003) Relative impact of spider predation and cover crop on population dynamics of Erythroneura variabilis in a raisin grape vineyard. Entomol Exp Appl 107:177–191

    Google Scholar 

  • Hernandez P, Daane KM, Lawson A, Yokota G (2005) Efficacy of several pesticides of table grape to control the black widow spider Latrodectus hesperus (Araneae: Theridiidae) collected from California table grape vineyards. The 2005 ESA annual meeting and exhibition, Fort Lauderdale, FL, 15–18 Dec 2005. http://www.esa.confex.com/esa/2005/techprogram/paper_21957.htm

  • Hogg BN, Daane KM (2010) The role of dispersal from natural habitat in determining spider abundance and diversity in California vineyards. Agric Ecosyst Environ 135:260–267

    Google Scholar 

  • Hogg BN, Daane KM (2011a) Diversity and invasion within a predator community: impacts on herbivore suppression. J Appl Ecol 48:453–461

    Google Scholar 

  • Hogg BN, Daane KM (2011b) Ecosystem services in the face of invasion: the persistence of native and nonnative spiders in an agricultural landscape. Ecol Appl 21:565–576

    PubMed  Google Scholar 

  • Hogg BN, Gillespie RG, Daane KM (2010) Regional patterns in the invasion success of Cheiracanthium spiders (Miturgidae) in vineyard ecosystems. Biol Invasions 12:2499–2508

    Google Scholar 

  • Hoy MA, Barnett WW, Reil WO, Castro D, Cahn D, Hendricks LC et al (1982) Large-scale releases of pesticide-resistant spider mite predators. Calif Agric 36:8–10

    Google Scholar 

  • Huffaker CB, Simmonds FJ, Liang JE (1976) The theoretical and empirical basis of biological control. In: Huffaker CB, Messenger PS (eds) Theory and practice of biological control. Academic, New York, pp 42–78

    Google Scholar 

  • Ibrahim R, Holst H, Basedow T (2004) Natural occurrence and distribution of Trichogramma spp. in vineyards of Rheingau (Hessia, Germany). Mitt Dtscher Ges Allg Entomol 14:213–216

    Google Scholar 

  • Isaia M, Bona F, Badino G (2006) Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astigiana (northwest Italy). Environ Entomol 35:297–307

    Google Scholar 

  • James DG (2006) Methyl salicylate is a field attractant for the goldeneyed lacewing, Chrysopa oculata. Biocontrol Sci Technol 16:107–110

    Google Scholar 

  • James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50:871–880

    CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628

    PubMed  CAS  Google Scholar 

  • James DG, Whitney J (1991) Biological control of grapevine mites in inland south-eastern Australia. Aust N Z Wine Ind J 6:3

    Google Scholar 

  • Jenkins PE, Isaacs R (2007a) Cutting wild grapevines as a cultural control strategy for grape berry moth (Lepidoptera: Tortricidae). Environ Entomol 36:187–194

    PubMed  Google Scholar 

  • Jenkins PE, Isaacs R (2007b) Reduced-risk insecticides for control of grape berry moth (Lepidoptera: Tortricidae) and conservation of natural enemies. J Econ Entomol 100:855–865

    PubMed  CAS  Google Scholar 

  • Jepsen SJ, Rosenheim JA, Matthews CE (2007a) The impact of sulfur on the reproductive success of Anagrus spp. parasitoids in the field. BioControl 52:599–612

    CAS  Google Scholar 

  • Jepsen SJ, Rosenheim JA, Bench ME (2007b) The effect of sulfur on biological control of the grape leafhopper, Erythroneura elegantula, by the egg parasitoid Anagrus erythroneurae. BioControl 52:721–732

    CAS  Google Scholar 

  • Johann L, Klock CL, Ferla NJ, Botton M (2009) Mites (Acari) associated with grapevine (Vitis vinifera L.) in Rio Grande do Sul. Pontifícia Universidade Católica do Rio Grande do Sul, Faculdade de Biociências, Porto Alegre, Brazil. Biociencias 17(1):1–19

    Google Scholar 

  • Khan ZR, James DG, Midega CAO, Pickett JA (2008) Chemical ecology and conservation biological control. Biol Control 45:210–224

    CAS  Google Scholar 

  • Kirchmair M, Neuhauser S, Strasser H, Voloshchuk N, Hoffmann M, Huber L (2009) Biological control of grape phylloxera – a historical review and future prospects. Acta Hortic 816:13–17

    Google Scholar 

  • Koclu T, Altindisli FO, Ozsemerci F (2005) The parasitoids of the European grapevine moth (Lobesia botrana Den.-Schiff.) and predators in the mating disruption-treated vineyards in Turkey. OILB/SROP Bull 28(7):293–297

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    PubMed  CAS  Google Scholar 

  • Laurin M-C, Bostanian NJ (2007) Laboratory studies to elucidate the residual toxicity of eight insecticides to Anystis baccarum (Acari: Anystidae). J Econ Entomol 100:1210–1214

    PubMed  CAS  Google Scholar 

  • Lefebvre M, Bostanian NJ, Thistlewood HMA, Mauffette Y, Racette G (2011) A laboratory assessment of toxic attributes of six ‘reduced risk insecticides’ on Galendromus occidentalis (Acari: Phytoseiidae). Chemosphere 84:25–30

    PubMed  CAS  Google Scholar 

  • Legner EF, Bellows TS (1999) Exploration for natural enemies. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 87–102

    Google Scholar 

  • Loughner R, Goldman K, Loeb G, Nyrop J (2008) Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties. Exp Appl Acarol 45:111–122

    PubMed  CAS  Google Scholar 

  • Lucas É, Labrie G, Vincent C, Kovach J (2007) The multicolored Asian ladybird beetle: beneficial or nuisance organism? In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CABI, Wallingford, pp 38–52

    Google Scholar 

  • Mani M, Thorntakarya TS (1988) Studies on the safety of different pesticides to the grape mealybug natural enemies, Anagyrus dactylopii (How.) and Scymnus coccivora Ayyar. Indian J Plant Prot 16:205–210

    CAS  Google Scholar 

  • Mansour R, Suma P, Mazzeo G, Buonocore E, Lebdi KG, Russo A (2010) Using a kairomone-based attracting system to enhance biological control of mealybugs (Hemiptera: Pseudococcidae) by Anagyrus sp. near pseudococci (Hymenoptera: Encyrtidae) in Sicilian vineyards. J Entomol Acarol Res 42:161–170

    Google Scholar 

  • Marchesini E, Mori N, Pasini M, Bassi A (2008) Selectivity of Rynaxypyr® towards beneficial arthropods in different agroecosystems. In: Brunelli A (ed) Giornate fitopatologiche, vol 1. Cervia (RA), 12–14 Marzo, Bologna, pp 71–76

    Google Scholar 

  • Martinez M, Coutinot D, Hoelmer K, Denis J (2006) Suitability of European Diptera tachinid parasitoids of Lobesia botrana (Denis & Schiffermüller) and Eupoecilia ambiguella (Hübner) (Lepidoptera Tortricidae) for introduction against grape berry moth, Paralobesia viteana(Clemens) (Lepidoptera Tortricidae), in North America. Istituto Sperimentale per la Zoologia Agraria, Firenze, Italy, Redia 89:87–97

    Google Scholar 

  • McMurtry JA (1982) The use of phytoseiids for biological control: progress and future prospects. In: Hoy MA (ed) Recent advances in knowledge of the phytoseiidae, vol 3284. University of California Press, Berkeley, pp 23–48

    Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    PubMed  CAS  Google Scholar 

  • Mgocheki N, Addison P (2009a) Effect of contact pesticides on vine mealybug parasitoids, Anagyrus sp. near pseudococci (Girault) and Coccidoxenoides perminutus (Timberlake) (Hymenoptera: Encyrtidae). S Afr J Enol Vitic 30:110–116

    CAS  Google Scholar 

  • Mgocheki N, Addison P (2009b) Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol Control 49:180–185

    Google Scholar 

  • Miliczky E, Horton DR (2007) Natural enemy fauna (Insecta, Araneae) found on native sagebrush steppe plants in eastern Washington with reference to species also found in adjacent apple and pear orchards. Pan-Pac Entomol 83:50–65

    Google Scholar 

  • Mills NJ (1982) Voracity, cannibalism and coccinellid predation. Ann Appl Biol 101:144–148

    Google Scholar 

  • Mills NJ, Daane KM (2005) Non-pesticide alternatives (biological and cultural controls) can suppress crop pests. Calif Agric 59:23–28

    Google Scholar 

  • Murphy BC, Rosenheim JA, Grannett J (1996) Habitat diversification for improving biological control: abundance of Anagrus epos (Hymenoptera: Mymaridae) in grape vineyards. Environ Entomol 25:495–504

    Google Scholar 

  • Murphy BC, Rosenheim JA, Dowell RV, Grannett J (1998) Habitat diversification tactic for improving biological control: parasitism of the western grape leafhopper. Entomol Exp Appl 87:225–235

    Google Scholar 

  • Mustu M, Kilincer N, Ulgenturk S, Kaydan MB (2008) Feeding behavior of Cryptolaemus montrouzieri on mealybugs parasitized by Anagyrus pseudococci. Phytoparasitica 36:360–367

    Google Scholar 

  • Nagarkatti S, Tobin C, Saunders MC, Muza AJ (2003) Release of native Trichogramma minutum to control grape berry moth. Can Entomol 135:589–598

    Google Scholar 

  • Nash MA, Hoffmann AA, Thomson LJ (2010) Identifying signature of chemical applications on indigenous and invasive non-target arthropod communities in vineyards. Ecol Appl 20:1693–1703

    PubMed  Google Scholar 

  • Nelson EH, Daane KM (2007) Improving liquid bait programs for Argentine ant control: bait station density. Environ Entomol 36:1475–1484

    PubMed  Google Scholar 

  • Nicholls CI, Parrella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc Ecol 16:133–146

    Google Scholar 

  • Nicholls CI, Altieri MA, Ponti L (2008) Enhancing plant diversity for improved insect pest management in northern California organic vineyards. Acta Hortic 785:263–278

    Google Scholar 

  • Obrycki JJ, Kring TJ (1998) Predaceous Coccinellidae in biological control. Annu Rev Entomol 43:295–321

    PubMed  CAS  Google Scholar 

  • Ponti L, Ricci C, Veronesi F, Torricelli R (2005) Natural hedges as an element of functional biodiversity in agroecosystems: the case of a central Italy vineyard. Bull Insectol 58:19–23

    Google Scholar 

  • Posenato G, Marchesini E, Graziani N, Vandini G, Ferrari D, Parrilla MM et al (2003) Use of dinocap in control strategy against powdery mildew and side effects on predatory mites. Informatore Agrario 59:73–78

    Google Scholar 

  • Prasad RP, Snyder WE (2006) Polyphagy complicates conservation biological control that targets generalist predators. J Appl Ecol 43:343–352

    Google Scholar 

  • Price PW (1997) Insect ecology. Wiley, New York

    Google Scholar 

  • Prischmann DA, James DG, Wright LC, Teneyck RD, Snyder WE (2005a) Effects of chlorpyrifos and sulfur on spider mites (Acari: Tetranychidae) and their natural enemies. Biol Control 33:324–334

    CAS  Google Scholar 

  • Prischmann DA, James DG, Gingras SN, Snyder WE (2005b) Diversity and abundance of insects and spiders on managed and unmanaged grapevines in southcentral Washington State. Pan-Pac Entomol 81:131–144

    Google Scholar 

  • Rabb RL, Guthrie FE (1970) Concepts of pest management. North Carolina State University Press, Raleigh

    Google Scholar 

  • Reid CD, Lampman RL (1989) Olfactory responses of Orius insidiosus (Hemiptera: Anthocoridae) to volatiles of corn silks. J Chem Ecol 15:1109–1115

    Google Scholar 

  • Remund U, Boller E (1996) Importance of hedgerow plants for the egg parasitoids of the green grapevine leafhopper in eastern Switzerland. Obst-und Weinbau 132:238–241

    Google Scholar 

  • Reuter OM (1913) Lebensgewohnheiten und Instinkte der Insekten. Friedlander, Berlin

    Google Scholar 

  • Riddick EW, Mills NJ (1994) Potential of adult carabids (Coleoptera: Carabidae) as predators of fifth-instar codling moth (Lepidoptera: Tortricide) in apple orchards in California. Environ Entomol 23:1338–1345

    Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320

    Google Scholar 

  • Rigamonti IE (2006) Preliminary observations on the role of botanical diversity on the presence of egg parasitoids of grape leafhoppers in northern Italy. IOBC/WPRS Bull 29(11):187–192

    Google Scholar 

  • Scarratt SL, Wratten SD (2004) Using a rubidium marker to study the dispersal of a parasitoid from floral resources. In: Hoddle MS (ed) Proceedings of the California conference on biological control IV, Berkeley, CA, pp 137–140, 13–15 July 2004

    Google Scholar 

  • Scarratt SL, Wratten SD, Shishehbor P (2008) Measuring parasitoid movement from floral resources in a vineyard. Biol Control 46:107–113

    Google Scholar 

  • Schwartz A (1993) Occurrence of natural enemies of phytophagous mites on grapevine leaves following application of fungicides for disease control. S Afr J Enol Vitic 14:16–17

    CAS  Google Scholar 

  • Sharley DJ, Hoffmann AA, Thomson LJ (2008) The effects of soil tillage on beneficial invertebrates within the vineyard. Agric For Entomol 10:233–243

    Google Scholar 

  • Shibao M, Ehara S, Hosomi A, Tanaka H (2006) Effect of insecticide application on the population density of yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) and Euseius sojaensis (Ehara) (Acari: Phytoseiidae) on grapes. Jpn J Appl Entomol Zool 50:247–252

    CAS  Google Scholar 

  • Slone DH, Croft BA (2000) Changes in intraspecific aggregation and the coexistence of predaceous apple mites. Oikos 91:153–161

    Google Scholar 

  • Smith HS (1923) Successful introduction and establishment of the ladybird, Scymnus bineavatus Mulsant, in California. J Econ Entomol 16:516–518

    Google Scholar 

  • Stavrinides MC, Mills NJ (2009) Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biol Control 48:267–273

    CAS  Google Scholar 

  • Stavrinides M, Daane KM, Lampien B, Mills NJ (2010) Plant water stress, leaf temperature and spider mite (Acari: Tetranychidae) outbreaks in California vineyards. Environ Entomol 39:1232–1241

    PubMed  Google Scholar 

  • Stutz S, Entling MH (2011) Effects of the landscape context on aphid-ant-predator interactions on cherry trees. Biol Control 57:37–43

    Google Scholar 

  • Szentkiralyi F (2001) Lacewings in fruit and nut crops. In: McEwen P, New TR, Whittington AE (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 172–238

    Google Scholar 

  • Tauber MJ, Tauber CA, Daane KM, Hagen KS (2000) New tricks for old predators: implementing biological control with Chrysoperla. Am Entomol 46:26–38

    Google Scholar 

  • Thiéry D, Xuéreb A, Villemant C, Sentenac G, Delbac L, Kuntzman P, Lozzia C (2001) The parasites of grape tortricids: noticed on several species present in 3 French vine regions. OILB/SROP Bull 24:135–141

    Google Scholar 

  • Thomson LJ (2006) Influence of reduced irrigation on beneficial invertebrates in vineyards. Aust J Exp Agric 46:1389–1395

    Google Scholar 

  • Thomson LJ, Hoffmann AA (2007) Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agric For Entomol 9:173–179

    Google Scholar 

  • Thomson LJ, Hoffmann AA (2009) Vegetation increases the abundance of natural enemies in vineyards. Biol Control 49:259–269

    Google Scholar 

  • Thomson LJ, Hoffmann AA (2010) Natural enemy responses and pest control: importance of local vegetation. Biol Control 52:160–166

    Google Scholar 

  • Thomson LJ, Glenn DC, Hoffmann AA (2000) Effects of sulfur on Trichogramma egg parasitoids in vineyards: measuring toxic effects and establishing release windows. Aust J Exp Agric 40:1165–1171

    CAS  Google Scholar 

  • Tollerup K, Rust MK, Klotz JH (2007) Formica perpilosa, an emerging pest in vineyards. J Agric Urban Entomol 24:147–158

    Google Scholar 

  • Triapitsyn SV (1998) Anagrus (Hymenoptera: Mymaridae) egg parasitoids of Erythroneura spp. and other leafhoppers (Homoptera: Cicadellidae) in North American vineyards and orchards: a taxonomic review. Trans Am Entomol Soc 124:96–97

    Google Scholar 

  • Waage JK, Carl KP, Mills NJ, Greathead DJ (1984) Rearing entomophagous insects. In: Singh P, Moore RF (eds) Handbook of insect rearing, vol 1. Elsevier, Amsterdam, pp 45–66

    Google Scholar 

  • Walton VM (2003) Development of an integrated pest management system for vine mealybug, Planococcus ficus (Signoret), in vineyards in the Western Cape Province, South Africa. PhD dissertation, University of Stellenbosch, South Africa

    Google Scholar 

  • Walton VM, Pringle KL (1999) Effects of pesticides used on table grapes on the mealybug parasitoid Coccidoxenoides peregrinus. S Afr J Enol Vitic 20:31–34

    CAS  Google Scholar 

  • Walton VM, Pringle KL (2001) Effects of pesticides and fungicides used on grapevines on the mealybug predatory beetle Nephus ‘boschianus’ (Coccinellidae, Scymnini). S Afr J Enol Vitic 22:107–110

    CAS  Google Scholar 

  • Williams LI, Martinson TE (2000) Colonization of New York vineyards by Anagrus spp. (Hymenoptera: Mymaridae): overwintering biology, within-vineyard distribution of wasps, and parasitism of grape leafhopper, Erythroneura spp. (Homoptera: Cicadellidae), eggs. Biol Control 18:136–146

    Google Scholar 

  • Wilson LT, Carmean I, Flaherty DL (1991) Aphelopus albopictus Ashmead (Hymenoptera: Dryinidae): abundance, parasitism, and distribution in relation to leafhopper hosts in grapes. Hilgardia 59:16

    Google Scholar 

  • Xuéreb A, Thiéry D (2006) Does natural larval parasitism of Lobesia botrana (Lepidoptera: Tortricidae) vary between years, generation, density of the host and vine cultivar? Bull Entomol Res 96:105–110

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniel Todd Dalton for reviewing this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaughn M. Walton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Walton, V.M., Daane, K.M., Addison, P. (2012). Biological Control of Arthropods and Its Application in Vineyards. In: Bostanian, N., Vincent, C., Isaacs, R. (eds) Arthropod Management in Vineyards:. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4032-7_5

Download citation

Publish with us

Policies and ethics