Skip to main content

A Holistic Approach to Future Management of Grapevine Phylloxera

  • Chapter
  • First Online:
Arthropod Management in Vineyards:

Abstract

Grapevine phylloxera, Daktulosphaira vitifoliae (Fitch), belongs to the Phylloxeridae family. Phylloxerids are a group of gall-forming sap-sucking insects including the minor pests pecan phylloxera (Phylloxera devastratrix Pergande) and pear phylloxera (Aphanostigma piri (Cholodovski)), which live on deciduous trees and perennial fruit crops (Powell 2008) and are related to the superfamily Aphidioidea. Grapevine phylloxera, the main economically important phylloxerid, is monophagous to Vitis spp. (Vitaceae) and is widely recognized as the most significant insect pest of commercial European grapevines, Vitis vinifera L. Grapevine phylloxera was first described in 1855 on native Vitis spp. (Granett et al. 2001a) but its devastating effect on V. vinifera was not recognized until the accidental introduction of this pest to Europe in the early 1860s. After the widely reported economic impact on the European wine industry (Ordish 1972) and removal of over two million ha of grapevines (Jackson 2008), it spread to South Africa, the Middle East, Asia, and Australasia later in the nineteenth century (Boehm 1996; Campbell 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Antary TM, Nazer IK, Qudeimat EA (2008) Population trends of grapevine phylloxera, Daktulosphaira (Viteus) vitifoliae Fitch. (Homoptera: Phylloxeridae) and effect of two insecticides on its different stages in Jordan. Jordan J Agric Sci 4:343–349

    Google Scholar 

  • ARD (Agriculture and Rural Development) (2007) Armenia managing food safety and agricultural health: an action plan. Agriculture and Rural Development Department and Europe and Central Asia Region/The World Bank/Zangak-97 Publishing House, Washington/Yerevan

    Google Scholar 

  • Bell C (1995) GRAPES project prepares California vineyard managers for insect infestation. Geogr Info Syst 5:44–47

    Google Scholar 

  • Benheim D, Rochfort S, Ezernieks V, Robertson E, Potter ID, Korosi GA, Powell KS (2011) Early detection of grape phylloxera (Daktulosphaira vitifoliae Fitch) infestation through identification of chemical biomarkers. Acta Hortic 904:17–24

    CAS  Google Scholar 

  • Bernard M, Horne PA, Papacek D, Jacometti MA, Wratten SJ, Evans K et al (2007) Guidelines for environmentally sustainable wine grape production in Australia: IPM adoption self-assessment guide for growers. Aust N Z Grapegrow Winemak 518:26–36

    Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Google Scholar 

  • Bishop A, Powell KS, Gibson T, Barchia IM, Wong PTW (2002) Mortality of grape phylloxera in composting organics. Aust J Grape Wine Res 8:48–55

    Google Scholar 

  • Blanchfield AL, Robinson SA, Renzullo LJ, Powell KS (2006) Phylloxera-infested grapevines have reduced chlorophyll and increased photo-protective pigment content – can leaf pigment composition aid pest detection? Funct Plant Biol 33:507–514

    CAS  Google Scholar 

  • Boehm W (1996) The phylloxera fight: protecting south Australia from the phylloxera threat. The Phylloxera and Grape Industry Board of south Australia, Adelaide

    Google Scholar 

  • Bostanian NJ, Hardman JM, Thistlewood HMA, Racette G (2010) Effects of six selected orchard insecticides on Neoseiulus fallacis (Acari: Phytoseiidae) in the laboratory. Pest Manag Sci 66:1263–1267

    PubMed  CAS  Google Scholar 

  • Botton M, Ringenberg R, Zanardi OZ (2004) Controle químico da forma galícola da filoxera Daktulosphaira vitifoliae (Fitch, 1856) (Hemiptera: Phylloxeridae) na cultura da videira. Cien Rural 34:1327–1331

    Google Scholar 

  • Bruce RJ, Lamb DW, Mackie AM, Korosi GA, Powell KS (2009) Using objective biophysical measurements as the basis of targeted surveillance for detection of grapevine phylloxera Daktulosphaira vitifoliae Fitch: preliminary findings. Acta Hortic 816:71–80

    Google Scholar 

  • Bruce RJ, Lamb DW, Hoffmann AA, Runting J, Powell KS (2011) Towards improved early detection of grapevine phylloxera (Daktulosphaira vitifoliae Fitch) using a risk-based assessment. Acta Hortic 904:123–131

    Google Scholar 

  • Buchanan GA (1990) The distribution, biology and control of grape phylloxera, Daktulosphaira vitifoliae (Fitch), in Victoria. Ph.D. dissertation, La Trobe University, Melbourne, Australia

    Google Scholar 

  • Buchanan GA, Godden GD (1989) Insecticide treatments for control of grape phylloxera (Daktulosphaira vitifolii) infesting grapevines in Victoria, Australia. Aust J Exp Agric 29:267–271

    CAS  Google Scholar 

  • Campbell C (2004) Phylloxera: how wine was saved for the world. Harper Collins, London

    Google Scholar 

  • Chitkowski RL, Fisher JR (2005) Effect of soil type on the establishment of grape phylloxera colonies in the Pacific Northwest. Am J Enol Vitic 56:207–211

    Google Scholar 

  • Corrie AM, Buchanan G, van Heeswijck R (1997) DNA typing of populations of phylloxera (Daktulosphaira vitifoliae (Fitch)) from Australian vineyards. Aust J Grape Wine Res 3:50–56

    CAS  Google Scholar 

  • Corrie AM, Kellow A, Buchanan G, van Heeswijck R (1998) Phylloxera biotypes in Australia. Aust Grapegrow Winemak 417:26–32

    Google Scholar 

  • Corrie AM, Crozier RH, van Heeswijck R, Hoffmann AA (2002) Clonal reproduction and population genetic structure of grape phylloxera, Daktulosphaira vitifoliae in Australia. Heredity 88:203–211

    PubMed  CAS  Google Scholar 

  • Corrie AM, van Heeswijck R, Hoffmann AA (2003) Evidence for host-associated clones of grape phylloxera Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae) in Australia. Bull Entomol Res 93:193–201

    PubMed  CAS  Google Scholar 

  • Dalmasso G (1956) Lutte contre le phylloxéra (à l’exclusion de l’emploi des porte-greffes résistants). Rapport général pour l’Europe. Bull de l’Off Int du Vin 29:5–30

    Google Scholar 

  • De Klerk CA (1972) Occurrence and distribution of the vine phylloxera, Phylloxera vitifolia (Fitch), in the Olifants River Irrigation Area, Northwest Cape Province. Phytophylactica 4:25–26

    Google Scholar 

  • De Klerk CA (1979a) An investigation of two morphometric methods to test for the possible occurrence of morphologically different races of Daktulosphaira vitifoliae (Fitch) in South Africa. Phytophylactica 11:51–52

    Google Scholar 

  • De Klerk CA (1979b) Chemical control of the vine phylloxera with hexaclorobutadiene. Phytophylactica 11:83–85

    Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Delmotte F, Forneck A, Powell KS, Rispe C, Tagu D (2011) Proposal to sequence the genome of the grape phylloxera (Daktulosphaira vitifoliae Fitch). http://www.aphidbase.com/var/aphidbase/storage/htmlarea/2965/file/White-Paper-Phylloxera_25may2011-1.pdf

  • Deretic J, Powell KS, Hetherington SL (2003) Assessing the risk of phylloxera transfer during post-harvest handling of wine grapes. Acta Hortic 617:61–66

    Google Scholar 

  • Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S (2005) Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. J Plant Physiol 162:529–538

    PubMed  CAS  Google Scholar 

  • DPI (Department of Primary Industries) (2010) Phylloxera management zones in Victoria. http://www.dpi.vic.gov.au/DPI/nrenfa.nsf/fid/34C3DAAA05EC6348CA2577520020304F

  • Du Y-P, Wang Z-S, Zhai H (2011) Grape root cell features related to phylloxera resistance and changes of anatomy and endogenous hormones during nodosity and tuberosity formation. Aust J Grape Wine Res 17:291–297

    CAS  Google Scholar 

  • Dunstone RJ, Corrie AM, Powell KS (2003) Effect of sodium hypochlorite on first instar ­phylloxera (Daktulosphaira vitifoliae Fitch) mortality. Aust J Grape Wine Res 9:107–109

    CAS  Google Scholar 

  • Edwards J, Powell KS, Granett JA (2006) Tritrophic interactions between grapevines, phylloxera and pathogenic fungi – establishing the root cause of grapevine decline. Aust N Z Grapegrow Winemak 513:33–37

    Google Scholar 

  • English-Loeb G, Villani M, Martinson T, Forsline A, Consolie N (1999) Use of entomophagic nematodes for control of grape phylloxera (Homoptera: Phylloxeridae): a laboratory evaluation. Biol Control 28:890–894

    Google Scholar 

  • EPPO (European Plant Protection Organisation) (1990) Data sheets on quarantine pests. Viteus vitifoliae. EPPO quarantine pest. Prepared by CABI and EPPO for the EU under Contract 90/399003

    Google Scholar 

  • Ermolaev AA (1990) Resistance of grape phylloxera on sandy soils. Agrokhimiya 2:141–142

    Google Scholar 

  • Fisher JR, Albrecht MA (2003) Constant temperature life tables of populations of grape phylloxera from Washington and Oregon. Acta Hortic 617:43–48

    Google Scholar 

  • Forneck A, Wöhrle A (2003) A synthetic diet for phylloxera (Daktulosphaira vitifoliae Fitch). Acta Hortic 617:129–134

    Google Scholar 

  • Forneck A, Huber L (2009) (A)sexual reproduction – a review of life cycles of grape phylloxera, Daktulosphaira vitifoliae. Entomol Exp Appl 131:1–10

    Google Scholar 

  • Forneck A, Walker MA, Blaich R (2001) An in vitro assessment of phylloxera (Daktulosphaira vitifoliae Fitch) (Hom., Phylloxeridae) life cycle. J Appl Entomol 125:443–447

    Google Scholar 

  • Forneck A, Kleinmann S, Blaich R, Anvari SF (2002) Histochemistry and anatomy of phylloxera (Daktulosphaira vitifoliae) nodosities on young roots of grapevine (Vitis spp). Vitis 41:93–97

    Google Scholar 

  • Franks TK, Powell KS, Choimes S, Marsh E, Iocco P, Sinclair BJ et al (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res 15:181–195

    PubMed  CAS  Google Scholar 

  • Frazier P, Whiting J, Powell KS, Lamb D (2004) Characterising the development of grape phylloxera infestation with multi-temporal near-infrared aerial photography. Aust N Z Grapegrow Winemak 485a:133–142

    Google Scholar 

  • Frolov AN, David’yan GE (2009) Pests Viteus vitifolii fitch – grape Phylloxera. Interactive agricultural ecological atlas of Russia and neighboring countries. Economic plants and their diseases, pests and weeds. http://www.agroatlas.ru/en/content/pests/Viteus_vitifolii

  • Gale G (2003) Saving the vine from Phylloxera: a never-ending battle. In: Sandler M, Pinder R (eds) Wine: a scientific exploration. Taylor & Francis, London, pp 70–91

    Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

    Google Scholar 

  • Gorenshtein RS (1983) Modelling the behaviour in soil of hexachlorobutadiene, used for phylloxera control in vineyards. Khim Sel’sk Khoz 4:55–57

    Google Scholar 

  • Gorkavenko EB (1976) Entomophages of grape phylloxera and their role in reducing of the pest population in the southern areas of Ukraine. Tr Vses Nauchno-issled Inst Zashch Rast 46:88–97

    Google Scholar 

  • Granett J, Timper P (1987) Demography of grape phylloxera Daktulosphaira vitifoliae (Homoptera: Phylloxeridae), at different temperatures. J Econ Entomol 80:327–329

    Google Scholar 

  • Granett J, Bisabri-Ershadi B, Carey J (1983) Life-tables of phylloxera on resistant and susceptible grape rootstocks. Entomol Exp Appl 34:13–19

    Google Scholar 

  • Granett J, Timper P, Lider LA (1985) Grape phylloxera (Daktulosphaira vitifoliae) (Homoptera: Phylloxeridae) biotypes in California. J Econ Entomol 78:1463–1467

    Google Scholar 

  • Granett J, Timper P, White J (1986) Grape phylloxera, Daktulosphaira vitifoIiae (Homoptera: Phylloxeridae), susceptibility to carbofuran: stage and clonal variability. J Econ Entomol 79:1096–1099

    Google Scholar 

  • Granett J, Omer AD, Pessereau P, Walker MA (1998) Fungal infections of grapevine roots phylloxera-infested vineyards. Vitis 37:39–42

    Google Scholar 

  • Granett J, Walker MA, Kocsis L, Omer AD (2001a) Biology and management of grape phylloxera. Annu Rev Entomol 46:387–412

    PubMed  CAS  Google Scholar 

  • Granett J, Omer AD, Walker MA (2001b) Seasonal capacity of attached and detached vineyard roots to support grape phylloxera (Homoptera: Phylloxeridae). J Econ Entomol 94:138–144

    PubMed  CAS  Google Scholar 

  • Herbert KS (2005) The early detection and alternative management of phylloxera in ungrafted vineyards. Ph.D. dissertation, La Trobe University, Melbourne, Australia

    Google Scholar 

  • Herbert KS, Powell KS, Hoffmann AA, Parsons Y, Ophel-Keller K, van Heeswijck R (2003) Early detection of phylloxera – present and future directions. Aust N Z Grapegrow Winemak 473a:93–96

    Google Scholar 

  • Herbert KS, Hoffmann AA, Powell KS (2006) Changes in grape phylloxera abundance in ungrafted vineyards. J Econ Entomol 99:1774–1783

    PubMed  Google Scholar 

  • Herbert KS, Powell KS, McKay A, Hartley D, Herdina H, Ophel-Keller K (2008a) Developing and testing a diagnostic probe for grape phylloxera applicable to soil samples. J Econ Entomol 101:1934–1943

    PubMed  CAS  Google Scholar 

  • Herbert KS, Hoffmann AA, Powell KS (2008b) Assaying the potential benefits of thiamethoxam and imidacloprid for phylloxera suppression and improvements to grapevine vigour. Crop Prot 27:1229–1236

    CAS  Google Scholar 

  • Herbert KS, Umina PA, Mitrovski PJ, Powell KS, Viduka K, Hoffmann AA (2010) Clone lineages of grape phylloxera differ in their performance on Vitis vinifera. Bull Entomol Res 19:1–8

    Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y et al (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    CAS  Google Scholar 

  • Holopainen JK (2002) Aphid response to elevated ozone and CO2. Entomol Exp Appl 104:137–142

    CAS  Google Scholar 

  • Huber L, Kirchmair M (2007) Evaluation of efficacy of entomopathogenic fungi against small-scale grape-damaging insects in soil – experiences with grape phylloxera. Acta Hortic 633:167–171

    Google Scholar 

  • Huber L, Eisenbeis G, Porten M, Ruhl EH (2003) The influence of organically managed vineyard soils on the phylloxera populations and the vigour of grapevines. Acta Hortic 617:55–59

    Google Scholar 

  • Jackson RS (2008) Wine science: principles and applications, 3rd edn. Academic, San Diego

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 49:463–467

    Google Scholar 

  • Johnson DTB, Lewis B, Sleezer S (2008) Chemical evaluation and timing of applications against foliar form of grape phylloxera, 2006. Arthropod Manag Test 33:C11

    CAS  Google Scholar 

  • Jones GV (2007) Climate change: observations, projections, and general implications for viticulture and wine production. In: Essick E, Griffin P, Keefer B, Miller S, Storchmann K (eds) Economics department working paper no. 7. Whitman College, Department of Geography, southern Oregon University, Ashland, OR, pp 1–14

    Google Scholar 

  • Jubb GL, Masteller EC (1977) Survey of arthropods in grape vineyards of Erie County, Pennsylvania: Neuroptera. Environ Entomol 6:419–428

    Google Scholar 

  • Kellow AV, McDonald G, Corrie AM, van Heeswijck R (2002) In vitro assessment of grapevine resistance to two populations of phylloxera from Australian vineyards. Aust J Grape Wine Res 8:109–116

    Google Scholar 

  • Kellow AV, Sedgley M, van Heeswijck R (2004) Interaction between Vitis vinifera and grape phylloxera: changes in root tissue during nodosity formation. Ann Bot 93:581–590

    PubMed  Google Scholar 

  • King PD, Rilling G (1985) Variations in the galling reaction of grapevines: evidence of phylloxera biotypes and clonal reaction to phylloxera. Vitis 24:32–42

    Google Scholar 

  • King PD, Buchanan GA (1986) The dispersal of phylloxera crawlers and spread of phylloxera infestations in New Zealand and Australian vineyards. Am J Enol Vitic 37:26–33

    Google Scholar 

  • King PD, Meekings JS, Smith SM, Lauren SM (1983) Insecticidal control of phylloxera on grapes. In: Hartley MJ (ed) Proceedings, 36th New Zealand weed and pest control conference. New Zealand Weed and Pest Control Society, Palmerston North, New Zealand, pp 140–144

    Google Scholar 

  • Kingston KB (2007) Digestive and feeding physiology of grape phylloxera (Daktulosphaira vitifoliae Fitch). Ph.D. dissertation, Australian National University, Canberra, Australia

    Google Scholar 

  • Kingston KB, Powell KS, Cooper PD (2007a) Characterising the root-feeding habits of grape phylloxera using electrical penetration graph. Acta Hortic 733:159–166

    Google Scholar 

  • Kingston KB, Powell KS, Cooper PD (2007b) Grape phylloxera: new investigations into the biology of an old grapevine pest. Aust N Z Grapegrow Winemak 521a:12–17

    Google Scholar 

  • Kirchmair M, Huber L, Rianer J, Strasser H (2004) Metarhizium anisopliae, a potential biological control agent against grape phylloxera. BioControl 49:295–303

    CAS  Google Scholar 

  • Kopf A (2000) Untersuchungen zur abundanz der reblaus (Dactylosphaera vitifolii Shimer) und zur nodositätenbildung in abhängigkeit von umweltfaktoren. Ph.D. dissertation, University of Hohenheim, Germany

    Google Scholar 

  • Korosi GA, Trethowan CJ, Powell KS (2007) Screening for rootstock resistance to grapevine phylloxera genotypes from Australian vineyards under controlled conditions. Acta Hortic 733:159–166

    Google Scholar 

  • Korosi GA, Trethowan CJ, Powell KS (2009) Reducing the risk of phylloxera transfer on viticultural waste and machinery. Acta Hortic 816:53–61

    Google Scholar 

  • Korosi GA, Powell KS, Clingeleffer PR, Smith B, Walker RR, Wood J (2011) New hybrid rootstock resistance screening for phylloxera under laboratory conditions. Acta Hortic 904:53–58

    Google Scholar 

  • Korosi GA, Mee P, Powell KS (2012) Influence of temperature and humidity on mortality of ­grapevine phylloxera Daktulosphaira vitifoliae clonal lineages: a scientific validation of a ­disinfestation procedure for viticultural machinery. Aust J Grape Wine Res 18:43–47

    Google Scholar 

  • Kostadinov A (1995) The control of grapevine leaf form phylloxera. Seskostopanska Nauka i Proizvodstvo. Agric Sci Prod 33:25–26

    Google Scholar 

  • Lawler IR, Foley WJ, Woodrow IE, Cork SJ (1997) The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68

    Google Scholar 

  • Litvinov PI (1982) Use of hexachlorobutadiene for phylloxera control in vineyards. Khim Sel’sk Khoz 1:29–31

    Google Scholar 

  • Loubser JT, van Aarde IMF, Hoppner GFJ (1992) Assessing the control potential of aldicarb against grapevine phylloxera. S Afr J Enol Vitic 13:84–86

    Google Scholar 

  • Lotter DW, Granett J, Rizzo D (1997) Soil ecology of grape Phylloxera and the potential for biological control: differences in root damage caused by grape phylloxera in organic vs. conventionally managed northern California vineyards. Organic farming research foundation project report, Santa Cruz, CA

    Google Scholar 

  • Lotter DW, Granett J, Omer AD (1999) Differences in grape phylloxera-related grapevine root damage in organically and conventionally managed vineyards in California. Hortic Sci 34:1108–1111

    Google Scholar 

  • Lovelock CE, Robinson SA (2002) Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant Cell Environ 25:1239–1250

    Google Scholar 

  • Makee H, Charbaji T, Ayyoubi Z, Idris I (2004) Evaluating resistance of some rootstocks to grape phylloxera with in vitro and excised root testing systems. In Vitro Cell Dev Biol Plant 40:225–229

    Google Scholar 

  • Manojlovic B (1989) Possibility of chemical control of gall midges Daktulosphaira vitifoliae Fitch (Homoptera: Phylloxeridae) on American grapevine. Zast Bilja 40:73–87

    CAS  Google Scholar 

  • Molnár JG, Németh CS, Májer J, Jahnke GG (2009) Assessment of phylloxera leaf galling incidence on European grapevines in Badacsony Hungary. Acta Hortic 816:97–104

    Google Scholar 

  • Nauen R, Reckmann U, Thomzik J, Thielert W (2008) Biological profile of spirotetramat (Movento®) – a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer Crop Sci J 61:245–278

    CAS  Google Scholar 

  • Nazer IK, Al-Antary TM, Abu Jbara R (2006) Chemical control of grape phylloxera Daktulosphaira (Viteus) vitifoliae Fitch. (Homoptera: Phylloxeridae) sing three chemical soil treatments. Jordan J Agric Sci 2:338–347

    Google Scholar 

  • NVHSC (National Vine Health Steering Committee) (2008) National phylloxera management protocol: definitions of phylloxera management zones. http://www.gwrdc.com.au/webdata/resources/files/DefinitionsOfZonesForProtocol.pdf

  • NVHSC (National Vine Health Steering Committee) (2009) National phylloxera management protocol. http://www.gwrdc.com.au/nvhscphylloxera.htm

  • Nougaret RL, Lapham MH (1928) A study of phylloxera infestation in California as related to types of soils. U S Dep Agric Tech Bull 20:1–39

    Google Scholar 

  • Omer AD, Granett J (2000) Relationship between grape phylloxera and fungal infections in grapevine roots. Z Pflanzenkrankh Pflanzenschutz 107:285–294

    Google Scholar 

  • Omer AD, Granett J, De Benedictus JA, Walker MA (1995) Effect of fungal root infections on the vigour of grapevines infested by root-feeding grape phylloxera in California vineyards. Vitis 34:165–170

    CAS  Google Scholar 

  • Omer AD, Granett J, Downie DA, Walker MA (1997) Population dynamics of grape phylloxera in California vineyards. Vitis 36:199–205

    Google Scholar 

  • Ordish G (1972) The great wine blight. Sidgewick & Jackson, London

    Google Scholar 

  • Porten M, Huber RL (2003) An assessment method for the quantification of Daktulosphaira vitifoliae (Fitch) (Hem., Phylloxeridae) populations in the field. J Appl Entomol 127:157–162

    Google Scholar 

  • Powell KS (2001a) Taking aim at phylloxera. VHS video, Department of Primary Industries, Rutherglen, Victoria, Australia

    Google Scholar 

  • Powell KS (2001b) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77

    CAS  Google Scholar 

  • Powell KS (2008) Grape phylloxera: an overview. In: Johnson SN, Murray PJ (eds) Root feeders: an ecosystem perspective. CAB International, Wallingford, pp 96–114

    Google Scholar 

  • Powell KS, Brown D, Dunstone R, Hetherington S, Corrie AM (2000) Population dynamics of phylloxera in Australian vineyards and implications for management. In: Powell KS, Whiting J (eds) Proceedings, international symposium on grapevine phylloxera management, Melbourne, Department of Natural Resources & Environment, Victoria, Australia, pp 7–20

    Google Scholar 

  • Powell KS, Slattery WF, Deretic J, Herbert K, Hetherington S (2003) Influence of soil type and climate on the population dynamics of grapevine phylloxera in Australia. Acta Hortic 617:33–41

    Google Scholar 

  • Powell KS, Burns A, Norng S, Granett J, McGourty G (2006) Influence of composted green waste on the population dynamics and dispersal of grapevine phylloxera Daktulosphaira vitifoliae. Agric Ecosyst Environ 119:33–38

    Google Scholar 

  • Powell KS, Trethowan CJ, Blanchfield AL, Norng S (2007) Composted winery waste and its influence on grape phylloxera in ungrafted vineyards. Acta Hortic 733:143–150

    Google Scholar 

  • Proffitt A, Bramley R, Lamb D, Winter E (2006) Precision viticulture – a new era in vineyard management and wine production. Winetitles Pty. Ltd., Ashford

    Google Scholar 

  • Rammer I (1980) Fields studies with carbofuran for the control of the root form of the grape phylloxera. J Econ Entomol 73:327–331

    CAS  Google Scholar 

  • Reisenzein H, Baumgarten A, Pfeffer M, Aust G (2007) The influence of soil properties on the development of grape phylloxera populations in Austrian viticulture. Acta Hortic 733:3–23

    Google Scholar 

  • Remund U, Buller E (1994) Die Reblaus – wieder aktuell? Schweiz Z Obst Weinbau 130:242–244

    Google Scholar 

  • Renzullo LJ, Blanchfield AL, Powell KS (2006a) A method of wavelength selection and spectral discrimination of hyperspectral reflectance spectrometry. IEEE Trans Geosci Remote Sens 44:1986–1994

    Google Scholar 

  • Renzullo LJ, Blanchfield AL, Guillermin R, Powell KS, Held AA (2006b) Comparison of prospect and HPLC estimates of leaf chlorophyll contents in a grapevine stress study. Int J Remote Sens 27:817–823

    Google Scholar 

  • Rochfort S, Ezernieks V, Trenerry C, Jones R, Imsic M, Panozzo J, Powell KS (2009) MS Metabolomics – from biomarker discovery to rapid class targeted analysis. In: Proceedings ANZSMS 22-22nd biennial mass spectrometry conference in Australia and New Zealand, Sydney, Australia, 27–30 Jan 2009, p 42

    Google Scholar 

  • Salt DT, Fenwick P, Whittaker JB (1996) Interspecific herbivore interactions in a high CO2 environment: root and shoot aphids feeding on Cardamine. Oikos 77:326–330

    Google Scholar 

  • Sleezer S, Johnson DT, Lewis B, Goggin F, Rothrock C, Savin M (2011) Foliar grape phylloxera, Daktulosphaira vitifoliae (Fitch) seasonal biology, predictive model, and management in the Ozarks region of the United States. Acta Hortic 904:151–156

    CAS  Google Scholar 

  • Song G-C, Granett J (1990) Grape phylloxera (Homoptera: Phylloxeridae) biotypes in France. J Econ Entomol 83:489–493

    Google Scholar 

  • Staley JT, Johnson SN (2008) Climate change impacts on root feeders. In: Johnson SN, Murray PJ (eds) Root feeders: an ecosystem perspective. CAB International, Wallingford, pp 192–214

    Google Scholar 

  • Stevenson AB (1964) Seasonal history of root-infesting Phylloxera vitifoliae (Fitch) (Homoptera: Phylloxeridae) in Ontario. Can Entomol 96:79–987

    Google Scholar 

  • Stevenson AB (1970a) Strains of the grape phylloxera with different effect on the foliage of certain grape cultivars. J Econ Entomol 63:135–138

    Google Scholar 

  • Stevenson AB (1970b) Endosulfan and other insecticides for control of the leaf form of the grape phylloxera in Ontario. J Econ Entomol 63:125–128

    CAS  Google Scholar 

  • TrÄ™bicki P, Harding RM, Powell KS (2009) Anti-metabolic effects of Galanthus nivalis agglutinin and wheat germ agglutinin on nymphal stages of the common brown leafhopper using a novel artificial diet system. Entomol Exp Appl 131:99–105

    Google Scholar 

  • Trethowan CJ, Powell KS (2007) Rootstock-phylloxera interactions under field conditions. Acta Hortic 733:115–122

    Google Scholar 

  • Tucker DJ, Lamb DL, Powell KS, Blanchfield AL, Brereton IM (2007) Detection of phylloxera infestation in grapevines by NMR methods. Acta Hortic 733:173–181

    CAS  Google Scholar 

  • Turley M, Granett J, Omer AD, De Benedictus JA (1996) Grape phylloxera (Homoptera: Phylloxeridae) temperature threshold for establishment of feeding sites and degree-day calculations. Environ Entomol 25:842–847

    Google Scholar 

  • Umina PA, Corrie AM, Herbert KS, White VL, Powell KS, Hoffmann AA (2007) The use of DNA markers for pest management: clonal lineages and population biology of grape phylloxera. Acta Hortic 733:183–195

    CAS  Google Scholar 

  • van Dam NM (2009) Below ground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391

    Google Scholar 

  • van Driesche RG, Bellows TS (1996) Biological control. Chapman and Hall, New York

    Google Scholar 

  • van Steenwyk RA, Varela LG, Ehlhardt M (2009) Insecticide evaluations for grape phylloxera with foliar applications of Movento. In: Abstracts 83rd orchard pest and disease management conference, Pullman, Portland, Oregon, Washington State University, WA, 14–16 Jan 2009, p 24

    Google Scholar 

  • Vega J (1956) Lutte contre le phylloxera (à l’exclusion de l’emploi des porte-greffes résistants). Rapport général pour l’Amérique latine. Bull de l’Off Int du Vin 29:31–42

    Google Scholar 

  • Vorwerk S, Forneck A (2006) Reproductive mode of grape phylloxera (Daktulosphaira vitifoliae, Homoptera: Phylloxeridae) in Europe: molecular evidence for predominantly asexual populations and a lack of gene flow between them. Genome 49:678–687

    PubMed  Google Scholar 

  • Webb L, Dunn GM, Barlow EWR (2010) Winegrapes. In: Stokes C, Howden M (eds) Adapting agriculture to climate change. CSIRO, Canberra, pp 101–118

    Google Scholar 

  • Weber E, De Benedictis J, Smith RJ, Granett J (1996) Enzone does little to improve health of phylloxera-infested vineyards. Calif Agric 50:19–23

    Google Scholar 

  • Wheeler AG, Henry TJ (1978) Ceratocapsus modestus (Hemiptera: Miridae), a predator of grape phylloxera: seasonal history and description of fifth instar. Melsheimer Entomol Ser 25:6–10

    Google Scholar 

  • Wheeler AG, Jubb GL (1979) Scymnus cervicalis Mulsant, a predator of grape phylloxera with notes on S. brullei Mulsant as a predator of woolly aphids on elm (Coleoptera: Coccinellidae). Coleopt Bull 33:199–204

    Google Scholar 

  • Whiting J (2003) Selection of grapevine rootstocks and clones for greater Victoria. Department of Primary Industries, Melbourne

    Google Scholar 

  • Williams R (1979) Foliar and subsurface insecticidal applications to control aerial form of the grape phylloxera. J Econ Entomol 79:407–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Powell, K.S. (2012). A Holistic Approach to Future Management of Grapevine Phylloxera. In: Bostanian, N., Vincent, C., Isaacs, R. (eds) Arthropod Management in Vineyards:. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4032-7_10

Download citation

Publish with us

Policies and ethics