Skip to main content

Use of Ion Exchange Resins in Continuous Chromatography for Sugar Processing

  • Chapter
  • First Online:
Ion Exchange Technology II

Abstract

In this chapter, the use of ion exchange resins in continuous sugar process industry is reviewed. A particular focus is given to chromatographic methods and, in particular, to continuous annular chromatography and simulated moving-bed (SMB) apparatus. The use of ion exchange resins for the separation of a fructose and glucose mixture (by means of an SMB unit) and the separation into pure components of a ternary mixture of sugars (by means of a Pseudo-SMB technique) is detailed. The use of ion exchange resins in integrated reactors (separation in situ with reaction) is also addressed in this chapter, presenting several advantages of these promising intensified processes for the sugar industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke MA (1993) Sugars and nonsugars in sugarcane. In: Chen JCP, Chou C-C (eds) Sugar cane handbook. Wiley, New York, pp 21–39

    Google Scholar 

  2. Vaňková K, Onderková Z, Antošová M, Polakovič M (2008) Design and economics of industrial production of fructooligosaccharides. Chem Pap 62(4):375–381

    Article  Google Scholar 

  3. Robyt JF (1998) Essentials of carbohydrate chemistry, Springer advanced texts in chemistry. Springer, New York

    Book  Google Scholar 

  4. Mitsuiki S, Utsunomiya H, Nakama Y, Sakai M, Mukae K, Moriyama Y, Goto M, Furukawa K (2005) Purification and characterization of maltotriose-producing amylases from an alkaliphilic nocardiopsis sp. Toa-1. J Appl Glycosci 52(2):95–99

    Article  CAS  Google Scholar 

  5. Clarke MA (2000) Sugar, cane sugar. Kirk-othmer encyclopedia of chemical technology. John Wiley & Sons, Inc

    Google Scholar 

  6. Coca M, Mato S, González-Benito G, Ángel Urueña M, García-Cubero MT (2010) Use of weak cation exchange resin lewatit s 8528 as alternative to strong ion exchange resins for calcium salt removal. J Food Eng 97(4):569–573

    Article  CAS  Google Scholar 

  7. Gryllus V (1967) Verfahren zur regenerierung des ionenaustauschers und zur verringerung des alkali-ionengehaltes von zuckerfabriksabläufen bei der enthärtung von dünnsaft mittels ionenaustausches. AT Patent 258230

    Google Scholar 

  8. Rousseau G (1999) Method of regenerating ion exchange resins in the process of decalcification of sugar factory juices. US Patent 5958142

    Google Scholar 

  9. Mindler AB (1948) Demineralization of sugar cane juice. Ind Eng Chem 40(7):1211–1215. 10.1021/ie50463a010

    Article  CAS  Google Scholar 

  10. Massay R (1850) Improvements in defecating sugar. US Patent 7342

    Google Scholar 

  11. Urban K (1925) Improvements in the purification of sugar solutions. GB Patent 240253

    Google Scholar 

  12. Elbogen S (1925) Procédé de purification des solutions sucrées au moyen de silicates ou autres produits artificiels, qui possèdent la propriété d’échanger les alcalino-terreux contre des alcalins des solutions sucrées. FR Patent 584967

    Google Scholar 

  13. Quentin G (1961) Verfahren zur erhoehung der kristallisationsfaehigkeit des zuckers in loesungen der zuckerfabrikation. DE Patent 974408

    Google Scholar 

  14. LaBrie RL, Bharwada UJ (1992) Process for demineralizing a sugar-containing solution. US Patent 5094694

    Google Scholar 

  15. Bakker A, Schepers GJJM, Koerts K (1989) Method for demineralizing beet sugar thin juice. US Patent 4799965

    Google Scholar 

  16. Kouji T, Fumihiko M, Kikuzo K, Makoto T, Takayuki M (2001) Process for demineralizing a sugar solution. US Patent 6224683

    Google Scholar 

  17. Colonna WJ, Samaraweera U, Clarke MA, Cleary M, Godshall MA, White JS (2000) Sugar. Kirk-othmer encyclopedia of chemical technology. John Wiley & Sons, Inc

    Google Scholar 

  18. Broughton DB (1983) Sucrose extraction from aqueous solutions featuring simulated moving bed. US Patent 4404037

    Google Scholar 

  19. Broughton DB (1984) Extraction of sucrose. EP Patent 0103406

    Google Scholar 

  20. Bento LSM (1998) Ion exchange resins for decolorization. Int Sugar J 100(1191):111–117

    CAS  Google Scholar 

  21. De Lataillade J, Rousset F (2002) Ion-exchange decolorization: a flexible way to modernization and capacity extension. Int Sugar J 104(1237):5–9

    Google Scholar 

  22. Kunin R (1972) Ion exchange resins. Robert E. Krieger, New York

    Google Scholar 

  23. Coca M, García MT, Mato S, Cartón A, González G (2008) Evolution of colorants in sugarbeet juices during decolorization using styrenic resins. J Food Eng 89(4):429–434

    Article  CAS  Google Scholar 

  24. L’Hermine GJA, Lundquist EG (1999) Decolorization of sugar syrups using functionalized adsorbents. US Patent 5972121

    Google Scholar 

  25. Soest H-K, Klipper DR, Schnegg DU, Gladysch M (2005) Sugar juice colour removal using monodispersed anion exchangers. EP Patent 1205560

    Google Scholar 

  26. Bento LR (1991) Processing for regenerating sugar decolorizing ion exchange resins, with regenerant recovery. US Patent 5019542

    Google Scholar 

  27. Bento LR (1998) Process for regeneration of ion-exchange resins used for sugar decolorization, using chloride salts in a sucrose solution alkalinized with calcium hydroxide. US Patent 5932106

    Google Scholar 

  28. Ihm S-K, Oh I-H (1984) Correlation of a two-phase model for macroreticular resin catalyst in sucrose inversion. J Chem Eng Jpn 17(1):58–64

    Article  CAS  Google Scholar 

  29. Dooley KM, Gates BC (1984) Superacid polymers from sulfonated poly(styrene-divinylbenzene): preparation and characterization. J Polymer Sci Polymer Chem Ed 22(11):2859–2870

    Article  CAS  Google Scholar 

  30. Martin AJP (1949) Summarizing paper. Discuss Faraday Soc 7:332–336

    Article  Google Scholar 

  31. Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent 2985589

    Google Scholar 

  32. Uretschläger A, Jungbauer A (2002) Preparative continuous annular chromatography (p-cac), a review. Bioprocess Biosystems Eng 25(2):129–140

    Article  Google Scholar 

  33. Byers CH, Sisson WG, Decarli JP, Carta G (1989) Pilot-scale studies of sugar separations by continuous chromatography. Appl Biochem Biotechnol 20–21(1):635–654

    Article  Google Scholar 

  34. Wolfgang J, Prior A (2002) Continuous annular chromatography. In: Freitag R (ed) Modern advances in chromatography, vol 76, Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg, pp 233–255 10.1007/3-540-45345-8_7

    Chapter  Google Scholar 

  35. Howard AJ, Carta G, Byers CH (1988) Separation of sugars by continuous annular chromatography. Ind Eng Chem Res 27(10):1873–1882

    Article  CAS  Google Scholar 

  36. Byers CH, Sisson WG, DeCarli JP, Carta G (1990) Sugar separations on a pilot scale by continuous annular chromatography. Biotechnol Prog 6(1):13–20 10.1021/bp00001a003

    Article  CAS  Google Scholar 

  37. Bart HJ, Messenböck RC, Byers CH, Prior A, Wolfgang J (1996) Continuous chromatographic separation of fructose, mannitol and sorbitol. Chem Eng Process: Process Intensificat 35(6):459–471

    Article  CAS  Google Scholar 

  38. Wolfgang J, Prior A, Bart HJ, Messenböck RC, Byers CH (1997) Continuous separation of carbohydrates by ion-exchange chromatography. Sep Sci Technol 32(1–4):71–82

    Article  CAS  Google Scholar 

  39. Barker PE, Bridges S (1991) Continuous annular chromatography for the separation of beet molasses. J Chem Technol Biotechnol 51(3):347–359

    Article  CAS  Google Scholar 

  40. Takahashi Y, Goto S (1994) Continuous separation of fructooligosaccharides using an annular chromatograph. Sep Sci Technol 29(10):1311–1318

    Article  CAS  Google Scholar 

  41. Adam P, Nicoud RM, Bailly M, Ludemann-Hombourger O (2004) Process and device for separation with variable-length chromatographic zones. US Patent 6712973

    Google Scholar 

  42. Zang Y, Wankat PC (2002) Smb operation strategy – partial feed. Ind Eng Chem Res 41(10):2504–2511

    Article  CAS  Google Scholar 

  43. Lutin F, Bailly M, Bar D (2002) Process improvements with innovative technologies in the starch and sugar industries. Desalination 148(1–3):121–124

    Article  CAS  Google Scholar 

  44. Rajendran A, Paredes G, Mazzotti M (2009) Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A 1216(4):709–738

    Article  CAS  Google Scholar 

  45. Sá Gomes P, Rodrigues AE (2007) Outlet streams swing (oss) and multifeed operation of simulated moving beds. Sep Sci Technol 42(2):223–252

    Article  Google Scholar 

  46. Zhang Z, Mazzotti M, Morbidelli M (2003) Powerfeed operation of simulated moving bed units: changing flow-rates during the switching interval. J Chromatogr A 1006(1–2):87–99

    CAS  Google Scholar 

  47. Schramm H, Kaspereit M, Kienle A, Seidel-Morgenstern A (2002) Improving simulated moving bed processes by cyclic modulation of the feed concentration. Chem Eng Technol 25(12):1151–1155

    Article  CAS  Google Scholar 

  48. Kim JK, Abunasser N, Wankat PC (2005) Use of two feeds in simulated moving beds for binary. Korean J Chem Eng 22(4):619–627

    Article  CAS  Google Scholar 

  49. Mun S (2006) Enhanced separation performance of the simulated moving bed process with two raffinate and two extract products. J Chem Eng Jpn 39(10):1054–1056

    Article  CAS  Google Scholar 

  50. Beste YA, Arlt W (2002) Side-stream simulated moving-bed chromatography for multicomponent separation. Chem Eng Technol 25(10):956–962

    Article  CAS  Google Scholar 

  51. Mata VG, Rodrigues AE (2001) Separation of ternary mixtures by pseudo-simulated moving bed chromatography. J Chromatogr A 939(1–2):23–40

    CAS  Google Scholar 

  52. Borges da Silva EA, Rodrigues AE (2006) Design of chromatographic multicomponent separation by a pseudo-simulated moving bed. AICHE J 52(11):3794–3812

    Article  CAS  Google Scholar 

  53. Bieser HJ, deRosset AJ (1977) Continuous counter-current separation of saccharides with inorganic adsorptions. In: Paper presented at the 28th starch convention, Detmold, 27–29 Apr 1977

    Google Scholar 

  54. Giacobello S, Storti G, Tola G (2000) Design of a simulated moving bed unit for sucrose-betaine separations. J Chromatogr A 872(1–2):23–35

    CAS  Google Scholar 

  55. Zhang Z, Wang J, Feng Q (2004) Process for separating mannitose and glucose by analog moving bed. CN Patent 1528769

    Google Scholar 

  56. Zhang Z, Wang J, Liu J (2004) High-yield manna sugar preparation process. CN Patent 1528728

    Google Scholar 

  57. Neuzil RW, Priegnitz JW (1980) Process for separating a ketose from an aldose by selective adsorption. US Patent 4226977

    Google Scholar 

  58. Landis AM, Broughton DB, Fickel RG (1981) Simulated countercurrent sorption process employing ion exchange resins with backflushing. US Patent 4293346

    Google Scholar 

  59. Fickel RG (1982) Simulated countercurrent sorption process employing ion exchange resins with periodic backflushing. US Patent 4319929

    Google Scholar 

  60. Landis AM, Broughton DB, Fickel RG (1983) Simulated countercurrent sorption process employing ion exchange resins with backflushing. EP Patent 0075611

    Google Scholar 

  61. Rearick DE, Kearney M, Costesso DD (1997) Simulated moving-bed technology in the sweetener industry. ChemTech 27(9):36–40

    CAS  Google Scholar 

  62. Saari P, Häkkä K, Jumppanen J, Heikkilä H, Hurme M (2010) Study on industrial scale chromatographic separation methods of galactose from biomass hydrolysates. Chem Eng Technol 33(1):137–144

    Article  CAS  Google Scholar 

  63. Kearney MM, Mumm MW (1991) Chromatographic separator sorbent bed preparation. US Patent 4990259

    Google Scholar 

  64. Kearney MM, Hieb KL (1992) Time variable simulated moving bed process. US Patent 5102553

    Google Scholar 

  65. Kearney MM, Kochergin V, Peterson KR, Velasquez L (1995) Sugar beet juice purification process. US Patent 5466294

    Google Scholar 

  66. Ando M, Hirota T, Shioda K (1980) Adsorption separation method and apparatus therefore. EP Patent 10769

    Google Scholar 

  67. Masuda T, Kawano K, Miyawaki I (1995) Process for production of starch sugars. US Patent 5391299

    Google Scholar 

  68. Tanimura M, Tamura M (1996) Method of separation into three components using a simulated moving bed. US Patent 5556546

    Google Scholar 

  69. Hyöky G, Paananen H, Cotillon M, Cornelius G (1999) Presentation of the fast separation technology. In: Paper presented at the 30th general meeting ASSBT-American Society of Sugar Beet Technologysts, Orlando, 13 Feb 1999

    Google Scholar 

  70. Heikkila H, Hyoky G, Kuisma J (2000) Method for the fractionation of molasses. US Patent 6093326

    Google Scholar 

  71. Hyoky G, Paananen H, Monten K-E, Heikkila H, Kuisma J (1998) Fractionation method of sucrose-containing solutions. US Patent 5795398

    Google Scholar 

  72. Ahlgren BK, Snyder CB, Fawaz I (2004) Fluid-directing multiport rotary valve. US Patent 6719001

    Google Scholar 

  73. Wijnberg BP (2005) Device for carrying out a chemical or physical treatment. WO Patent 2005025738

    Google Scholar 

  74. Evers JA (2006) Rotary distributor valve for chemical/physical treatment of a fluid. WO Patent 2006036062

    Google Scholar 

  75. Theoleyre M-A, Konetzke GDrnDC, Schmidt KDrnDC, Weidemann RDI (2002) Method of preparation of sorbitols from standard-glucose. EP Patent 1176131

    Google Scholar 

  76. Chang C-H (1989) Process for separating psicose from another ketose. EP Patent 0302970

    Google Scholar 

  77. An SC, Jee HS, Doh MH (1998) Process for obtaining, by separation, highly pure water-soluble polydextrose. US Patent 5831082

    Google Scholar 

  78. Antila J, Ravanko V, Walliander P (1998) Method of preparing l-arabinose from sugar beet pulp. WO Patent 1999/010542

    Google Scholar 

  79. Heikkila H, Hyoky G, Kuisma J (1989) Method for the recovery of betaine from molasses. EP Patent 345511

    Google Scholar 

  80. Kikuzo K, Takayuki M, Kohei S, Kouji T, Fumihiko M (2000) Process for recovering betaine. US Patent 6099654

    Google Scholar 

  81. Leão CP, Rodrigues AE (2004) Transient and steady-state models for simulated moving bed processes: numerical solutions. Comput Chem Eng 28(9):1725–1741

    Article  Google Scholar 

  82. Azevedo DCS (2001) Separation/reaction in simulated moving bed. Ph.D. Thesis, University of Porto, Porto

    Google Scholar 

  83. Azevedo DCS, Rodrigues AE (2001) Design methodology and operation of a simulated moving bed reactor for the inversion of sucrose and glucose-fructose separation. Chem Eng J 82(1–3):95–107

    Article  CAS  Google Scholar 

  84. Cen P, Tsao GT (1993) Recent advances in the simultaneous bioreaction and product separation processes. Sep Technol 3(2):58–75

    Article  CAS  Google Scholar 

  85. Sarmidi MR, Barker PE (1993) Simultaneous biochemical reaction and separation in a rotating annular chromatograph. Chem Eng Sci 48(14):2615–2623

    Article  CAS  Google Scholar 

  86. Sarmidi MR, Barker PE (1993) Saccharification of modified starch to maltose in a continuous rotating annular chromatograph (crac). J Chem Technol Biotechnol 57(3):229–235

    Article  CAS  Google Scholar 

  87. Meurer M, Altenhöner U, Strube J, Untiedt A, Schmidt-Traub H (1996) Dynamic simulation of a simulated-moving-bed chromatographic reactor for the inversion of sucrose. Starch-Starke 48(11–12):452–457 10.1002/star.19960481113

    CAS  Google Scholar 

  88. Minceva M, Rodrigues AE (2005) Simulated moving-bed reactor: reactive-separation regions. AICHE J 51(10):2737–2751

    Article  CAS  Google Scholar 

  89. Minceva M, Silva VMT, Rodrigues AE (2005) Analytical solution for reactive simulated moving bed in the presence of mass transfer resistance. Ind Eng Chem Res 44(14):5246–5255

    Article  CAS  Google Scholar 

  90. Sá Gomes P, Leão CP, Rodrigues AE (2007) Simulation of true moving bed adsorptive reactor: detailed particle model and linear driving force approximations. Chem Eng Sci 62(4):1026–1041

    Article  Google Scholar 

  91. Hashimoto K, Adachi S, Noujima H, Ueda Y (1983) A new process combining adsorption and enzyme reaction for producing higher-fructose syrup. Biotechnol Bioeng 25(10):2371–2393 10.1002/bit.260251008

    Article  CAS  Google Scholar 

  92. Borges da Silva EA, Ulson de Souza AA, de Souza SGU, Rodrigues AE (2006) Analysis of the high-fructose syrup production using reactive smb technology. Chem Eng J 118(3):167–181

    Article  CAS  Google Scholar 

  93. Barker PE, Ganetsos G, Ajongwen J, Akintoye A (1992) Bioreaction-separation on continuous chromatographic systems. Chem Eng J 50(2):B23–B28

    Article  CAS  Google Scholar 

  94. Bubnik Z, Pour V, Gruberova A, Starhova H, Hinkova A, Kadlec P (2004) Application of continuous chromatographic separation in sugar processing. J Food Eng 61(4):509–513

    Article  Google Scholar 

  95. Glueckauf E (1955) Theory of chromatography. Part 10. Formulae for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. Sá Gomes gratefully acknowledges the support from Fundação para a Ciência e Tecnologia, Ministry of Science, Technology and Higher Education of Portugal (postdoc grant ref.: SFRH/BPD/63764/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana M. T. M. Silva .

Editor information

Editors and Affiliations

Annexes

Annexes

5.1.1 Annex (1)

The mathematical model approach, hereby used to simulate an SMB unit, represents it as a sequence of columns described by the usual system equations for an adsorptive fixed bed (each column \( k\)). All these columns are then linked by the so-called node equations, stated to each section \( j\), making use of the equivalence between the interstitial velocity in the TMB and SMB, and thus one has for

$$ \begin{array}{l}\rm{Eluent (E) node}:{u}_{I}^{*}={u}_{IV}^{*}+{u}_{E}\\ \rm{Extract }(\rm{X})\rm{ node}:{u}_{II}^{*}={u}_{I}^{*}-{u}_{X}\\ \rm{Feed }(\rm{F})\rm{ node}:{u}_{III}^{*}={u}_{II}^{*}+{u}_{F}\\ \rm{Raffinate }(\rm{R})\rm{ node}:{u}_{IV}^{*}={u}_{III}^{*}-{u}_{R}\end{array}$$

Due to the switch of the inlet and outlet lines, the boundary conditions to a certain column are not constant during a whole cycle, but change after a period equal to the switching time. Since the model equations are set to each column \( k\), the concentration of \( i\) species at the beginning of each column \( k\), \( {C}_{{b}_{i,k}}^{0}\), must be recalculated for each switching time period following the next node mass balances:

\( t=0\) to \( {t}_{s}\):

$$ \begin{array}{llllll}{c}k=1:{{C}_{{b}_{i,{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}}}|}_{z=L}{}_{{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}}=\frac{{u}_{I}^{*}}{{u}_{IV}^{*}}{C}_{{b}_{i,1}}^{0}-\frac{{u}_{E}}{{u}_{IV}^{*}}{C}_{i}^{E}\\ k=2\\\rm{to}\\({n}_{I}+{n}_{II}):{{C}_{{b}_{i,\left(k-1\right)}}|}_{z={L}_{\left(k-1\right)}}={C}_{{b}_{i,k}}^{0}\\ k=({n}_{I}+{n}_{II}+1):{{C}_{{b}_{i,\left({n}_{I}+{n}_{II}\right)}}|}_{z={L}_{\left({n}_{I}+{n}_{II}\right)}}=\frac{{u}_{III}^{*}}{{u}_{II}^{*}}{C}_{{b}_{i,\left({n}_{I}+{n}_{II}+1\right)}}^{0}-\frac{{u}_{F}}{{u}_{II}^{*}}{C}_{i}^{F}\\ \rm{ }k=({n}_{I}+{n}_{II}+2)\\\rm{to}\\{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}:{{C}_{{b}_{i,\left(k-1\right)}}|}_{z={L}_{\left(k-1\right)}}={C}_{{b}_{i,k}}^{0}\rm{ }\end{array} $$

\( t={t}_{s}\) to \( 2{t}_{s}\):

$$ \begin{array}{c}k=1: \\{ {C}_{{b}_{i,{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}}}|}_{z=L}{}_{{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}}={C}_{{b}_{i,1}}^{0}\\ k=2:\\{{C}_{{b}_{i,1}}|}_{z=L}{}_{1}=\frac{{u}_{I}^{*}}{{u}_{IV}^{*}}{C}_{{b}_{i,2}}^{0}-\frac{{u}_{E}}{{u}_{IV}^{*}}{C}_{i}^{E}\\ k=3\\\rm{to}\\({n}_{I}+{n}_{II}+1):\\\\{{C}_{{b}_{i,\left(k-1\right)}}|}_{z={L}_{\left(k-1\right)}}={C}_{{b}_{i,k}}^{0}\\ k=({n}_{I}+{n}_{II}+2):\\{{C}_{{b}_{i,\left({n}_{I}+{n}_{II}+1\right)}}|}_{z={L}_{\left({n}_{I}+{n}_{II}+1\right)}}=\frac{{u}_{III}^{*}}{{u}_{II}^{*}}{C}_{{b}_{i,\left({n}_{I}+{n}_{II}+2\right)}}^{0}-\frac{{u}_{F}}{{u}_{II}^{*}}{C}_{i}^{F}\\ k=({n}_{I}+{n}_{II}+3)\\\rm{to}\\{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}:\\{{C}_{{b}_{i,\left(k-1\right)}}|}_{z={L}_{\left(k-1\right)}}={C}_{{b}_{i,k}}^{0}\end{array} $$

This set of equations continues to progress in a similar way (shifting one column per \( {t}_{s}\)), until \( {\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}{t}_{s}\), repeating then from the first switch.

Considering the dimensionless variables \( x=\frac{z}{{L}_{c}}\) and \( \theta =\frac{t}{{t}_{s}}\), and a linear driving force (LDF) approximation [95] to the mass transfer (set in terms of the adsorbed phase in equilibrium with the bulk concentration and the average adsorbed phase concentration: \( {a}_{i,k}\left({q}_{i,k}^{eq}-\langle {q}_{i,k}\rangle \right)\), where \( {a}_{k}={k}_{LDF}{t}_{k}\)), one can establish a set of mass balances equations for each species \( i\) in each column \( k\), in each section \( j\), as follows for the bulk fluid phase:

$$ \frac{\partial {C}_{{b}_{i,k}}}{\partial q}={g}_{j}^{*}\left\{\frac{1}{P{e}_{j}^{*}}\frac{{\partial }^{2}{C}_{{b}_{i,k}}}{\partial {x}^{2}}-\frac{\partial {C}_{{b}_{i,k}}}{\partial x}-\frac{(1-{e}_{b})}{{e}_{b}}{a}_{i,k}\left({q}_{i,k}^{eq}-\langle {q}_{i,k}\rangle \right)\right\}$$

and for the mass balance in the particle,

$$ \frac{\partial \langle {q}_{i,k}\rangle }{\partial q}={g}_{j}^{*}{a}_{i,k}\left({q}_{i,k}^{eq}-\langle {q}_{i,k}\rangle \right) $$

with the respective initial:

$$ q=0:{C}_{{b}_{i,k}}(x,0)=\langle {q}_{i,k}(x,0)\rangle =0$$

and boundary conditions:

$$ \begin{array}{l}x=0:{C}_{b}{i,k}_{}={{C}_{{b}_{i,k}}|}_{x=0}-\frac{1}{P{e}_{j}^{*}}{\frac{\partial {C}_{{b}_{i,k}}}{\partial x}|}_{x=0}\\ \rm{}x=1:{\frac{\partial {C}_{{b}_{i,k}}}{\partial x}|}_{x=1}=0\end{array}$$

where \( {g}_{j}^{*}=\frac{{u}_{j}^{*}}{{u}_{s}}\) is the ratio between SMB fluid and the solid interstitial velocities and \( P{e}_{j}^{*}=\frac{{u}_{j}^{*}{L}_{c}}{{D}_{b}}\) the column Peclet number. As consequence, one obtains discontinuous solutions, reaching not a continuous steady state (SS) but a cyclic steady state (CSS).

5.1.1.1 Performance Parameters

The definitions of purity and recovery of these performance parameters, for the case of a binary mixture, are given below:

Purity (%) of the more retained (A) species in extract and the less retained one (B) in the raffinate streams, over a complete cycle (from \( q\) to \( q+{\displaystyle {\sum }_{j=I}^{IV}{n}_{j}}\)):

$$ P{U}_{X}=\frac{{{\int }_{\theta}^{\theta+{ \sum _{j=I}^{IV}{n}_{j}}}{C}_{A}^{X}dq}}{{ {\int }_{\theta}^{\theta+{ \sum _{j=I}^{IV}{n}_{j}}}{C}_{A}^{X}d\theta}+{ {\int }_{\theta}^{\theta+{\displaystyle \sum _{j=I}^{IV}{n}_{j}}}{C}_{B}^{X}d\theta}}\rm{ } $$
$$ P{U}_{R}=\frac{{ {\int }_{\theta}^{\theta +{ \sum _{j=I}^{IV}{n}_{j}}}{C}_{B}^{R}d\theta}}{{ {\int }_{\theta}^{\theta +{ \sum _{j=I}^{IV}{n}_{j}}}{C}_{A}^{R}d\theta}+{ {\int }_{\theta}^{\theta+{\sum _{j=I}^{IV}{n}_{j}}}{C}_{B}^{R}d\theta}}$$

Recovery (%) of more retained (A) species in extract and the less retained one (B) in raffinate streams, again over a complete cycle:

$$ R{E}_{X}=\frac{{\displaystyle {\int }_{q}^{q+{\displaystyle \sum _{j=I}^{IV}{n}_{j}}}{C}_{A}^{X}dq·{Q}_{X}}}{{\displaystyle \sum _{j=I}^{IV}{n}_{j}{Q}_{F}{C}_{A}^{F}}}\rm{ }$$
$$ R{E}_{R}=\frac{{\displaystyle {\int }_{q}^{q+{\displaystyle \sum _{j=I}^{IV}{n}_{j}}}{C}_{B}^{R}dq·{Q}_{R}}}{{\displaystyle \sum _{j=I}^{IV}{n}_{j}{Q}_{F}{C}_{B}^{F}}}$$

5.1.2 Annex (2)

As mentioned before, the JO process (or Pseudo-SMB) is characterized by a discontinuous operating mode, mainly divided into two major steps. The mathematical model to simulate such process also replicates such discontinuity.

Step 1 (from 0 to \( {t}_{Step1}\))

During step 1, the feeding is performed and the intermediary product is purged, as mentioned, before leading to the node balances:

$$ \begin{array}{l}\rm{Eluent (E) node}:{u}_{I}^{1*}={u}_{IV}^{1*}+{u}_{{E}_{1}}\\ \rm{Extract }(\rm{X})\rm{ node}:{u}_{II}^{1*}={u}_{I}^{1*}\\ \rm{Intermediary }(\rm{It}):{u}_{It}={u}_{II}^{1*}\\ \rm{Feed }(\rm{F})\rm{ node}:{u}_{III}^{1*}={u}_{F}\\ \rm{Raffinate }(\rm{R})\rm{ node}:{u}_{IV}^{1*}={u}_{III}^{1*}\end{array} $$

and for each species \( i\):

$$ \begin{array}{l}j=I:{{C}_{{b}_{i},IV}|}_{x=1}=\frac{{u}_{I}^{1*}}{{u}_{IV}^{1*}}{C}_{{b}_{i,I}}^{0}-\frac{{u}_{E1}}{{u}_{IV}^{1*}}{C}_{i}^{E}\\ j=III:{C}_{{b}_{i,III}}^{0}={C}_{i}^{F}\\ j=II,IV:{{C}_{{b}_{i,(j-1)}}|}_{x=1}={C}_{i,j}^{0}\rm{ }\end{array} $$

with \( {u}_{j}^{1*}\) representing interstitial velocity in section \( j\)during step 1.

Within each column, the concentration profiles are simulated by means of the well-known fixed-bed equations, initial and boundary conditions, similar to those expressed for the LDF approach for each column in the SMB modeling strategy (see Annex 1).

Step 2 (from \( {t}_{Step1}\) to \( {t}_{Step2}\))

In the second operation stage (step 2), one has the following nodes balances:

$$ \begin{array}{l}\rm{Eluent (E) node}:{u}_{I}^{2*}={u}_{IV}^{2*}+{u}_{{E}_{2}}\\ \rm{Extract (X) node}:{u}_{II}^{2*}={u}_{I}^{2*}-{u}_{X}\\ \rm{Feed}/\rm{Intermediary }(\rm{F}/\rm{It})\rm{ node}:{u}_{III}^{2*}={u}_{II}^{2*}\\ \rm{Raffinate }(\rm{R})\rm{ node}:{u}_{IV}^{2*}={u}_{III}^{2*}-{u}_{R}\end{array} $$

and for each species \( i\):

$$ \begin{array}{l}j=I:{{C}_{{b}_{i},IV}|}_{x=1}=\frac{{u}_{I}^{2*}}{{u}_{IV}^{2*}}{C}_{{b}_{i,I}}^{0}-\frac{{u}_{E2}}{{u}_{IV}^{2*}}{C}_{i}^{E}\\ j=II,III,IV:{{C}_{{b}_{i,(j-1)}}|}_{x=1}={C}_{i,j}^{0}\rm{ }\end{array}$$

During step 2, similar mass balances and boundary conditions stated for the classical SMB unit (Annex 1) are used to simulate the operation of the Pseudo-SMB unit.

5.1.2.1 Performance Parameters (Pseudo-SMB)

The definitions of extract, intermediary, and raffinate purities (\( P{U}_{X},P{U}_{It},P{U}_{R}\), %) and recovery at the extract, intermediary, and raffinate ports (\( R{E}_{X},R{E}_{It},R{E}_{R}\), %) of the more intermediary and less retained components, respectively, are stated as follows:

Component A (during step 2):

$$ P{U}_{X}=\frac{{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{A}}^{X}d\theta}}{{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{A}}^{X}d\theta}+{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{B}}^{X}d\theta}+{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{C}}^{X}d\theta}}\rm{ }$$
$$ R{E}_{X}=\frac{{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{A}}^{X}d \theta \cdot{u}_{X}}}{{ {\int }_{\theta}^{\theta+{t}_{Step1}}{C}_{A}^{F}d \theta \cdot{u}_{F}}}$$

, during Step 2

Component B (during step 1):

$$ P{U}_{It}=\frac{{ {\int }_{\theta}^{\theta+{t}_{Step1}}{C}_{{b}_{A}}^{It}d\theta}}{{{\int }_{\theta}^{\theta+{t}_{Step1}}{C}_{{b}_{A}}^{It}d\theta}+{{\int }_{\theta}^{\theta+{t}_{Step1}}{C}_{{b}_{B}}^{It}d\theta}+{{\int }_{\theta}^{\theta+{t}_{Step1}}{C}_{{b}_{C}}^{It}d\theta}}\rm{}$$
$$ R{E}_{IT}=\frac{{{\int }_{\theta }^{\theta +{t}_{Step1}}{C}_{{b}_{B}}^{It}d\theta \cdot{u}_{It}}}{{ {\int }_{\theta }^{\theta +{t}_{Step1}}{C}_{B}^{F}d\theta \cdot{u}_{F}}} $$

Component C (during step 2):

$$ P{U}_{R}=\frac{{\displaystyle {\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{C}}^{R}d \theta}}{{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{A}}^{R}d \theta}+{ {\int}_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{B}}^{R}d \theta}+{{\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{C}}^{R}d \theta}}\rm{ }$$
$$ R{E}_{R}=\frac{{ {\int }_{{t}_{Step1}}^{{t}_{Step2}}{C}_{{b}_{C}}^{R}d\theta \cdot{u}_{R}}}{{ {\int }_{\theta }^{\theta +{t}_{Step1}}{C}_{C}^{F}d\theta \cdot {u}_{F}}}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Silva, V.M.T.M., Gomes, P.S., Rodrigues, A.E. (2012). Use of Ion Exchange Resins in Continuous Chromatography for Sugar Processing. In: Inamuddin, D., Luqman, M. (eds) Ion Exchange Technology II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4026-6_5

Download citation

Publish with us

Policies and ethics