Skip to main content

Genome-Wide Analysis of THz-Bio Interaction

  • Chapter
  • First Online:
Convergence of Terahertz Sciences in Biomedical Systems
  • 1809 Accesses

Abstract

We now can predict the biological effects of electromagnetic field (EMF) exposure owing to advances in genomic technologies. Keeping pace with the development of available radiation sources, studies on biological interactions with specific frequency region has been required to precede the fundamental understanding and evaluation of bio-safety. Experimentally verified molecular mechanisms of biological systems with EMF exposure can provide powerful evidence to detect significant microscopic changes in living organism. Accumulated research results ultimately can be contributed to guide and regulate the safe application of EMF sources in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Blair, A. Dowel, G. Godly: Environmental Aspects of High Voltage Substations. CIGRE 1(23.05), 1–6 (1972)

    Google Scholar 

  2. IARC: IARC classifies radiofrequenccy electromagnetic fields as possibly carcinogenic to humans. www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf (2011)

  3. Ahlbom, A., et al.: Possible effects of electromagnetic fields (EMF) on human health–opinion of the scientific committee on emerging and newly identified health risks (SCENIHR). Toxicology 246(2–3), 248–250 (2008)

    Google Scholar 

  4. Alfano, R.R., Shumyatsky, P.: Terahertz sources. J. Biomed. Opt. 16(3), 033001 (2011)

    Google Scholar 

  5. Zhang, X.C., Dawes, D., Chen, Y.Q.: THz wave sensing and imaging. Abstr. pap. Am. Chem. Soc. 230, U346–U346 (2005)

    Google Scholar 

  6. Shen, Y.C.: Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417(1–2), 48–60 (2011)

    Article  Google Scholar 

  7. Tewari, P., et al.: Terahertz imaging of biological tissues. Stud. Health. Technol. Inform. 163, 653–657 (2011)

    Google Scholar 

  8. Grossman, E., et al.: Passive terahertz camera for standoff security screening. Appl. Opt. 49(19), E106–E120 (2010)

    Article  ADS  Google Scholar 

  9. Moller, L., et al.: Data encoding on terahertz signals for communication and sensing. Opt. Lett. 33(4), 393–395 (2008)

    Article  ADS  Google Scholar 

  10. Avery, O.T., Macleod, C.M., McCarty, M.: Studies on the chemical nature of the substance inducing transformation of pneumococcal types : induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79(2), 137–158 (1944)

    Article  Google Scholar 

  11. Watson, J.D., Crick, F.H.: Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)

    Article  ADS  Google Scholar 

  12. Chargaff, E.: Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6(6), 201–209 (1950)

    Article  Google Scholar 

  13. Baltimore, D.: RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226(5252), 1209–1211 (1970)

    Article  ADS  Google Scholar 

  14. Temin, H.M., Mizutani, S.: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226(5252), 1211–1213 (1970)

    Article  ADS  Google Scholar 

  15. Thrane, L., Jacobsen, R.H., Jepsen, P.U., Keiding, S.R.: THz reflection spectroscopy of liquid water. Chem. Phys. Lett. 240(4), 330–333 (1995)

    Google Scholar 

  16. Vaughan, T.E., Weaver, J.C.: Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields. Bioelectromagnetics 26(4), 305–322 (2005)

    Article  Google Scholar 

  17. Fröhlich, H.: Long range coherence and action of enzymes. Nature. 228(5276), 1093 (1970)

    Google Scholar 

  18. Reimers, J.R., et al.: Weak, strong, and coherent regimes of Frohlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. USA 106(11), 4219–4224 (2009)

    Article  ADS  Google Scholar 

  19. Alexandrov, B.S., et al.: DNA breathing dynamics in the presence of a terahertz field. Phys. Lett. A 374(10), 1214 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Bock, J., et al.: Mammalian stem cells reprogramming in response to terahertz radiation. PLoS One 5(12), e15806 (2010)

    Article  Google Scholar 

  21. Wilmink, G.J., et al.: In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Lasers Surg. Med. 43(2), 152–163 (2011)

    Article  Google Scholar 

  22. Huang, T.Q., et al.: Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation. Int. J. Radiat. Biol. 84(9), 734–741 (2008)

    Article  Google Scholar 

  23. Miyakoshi, J., et al.: Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26(4), 251–257 (2005)

    Article  Google Scholar 

  24. Czyz, J., et al.: High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 25(4), 296–307 (2004)

    Article  Google Scholar 

  25. Tian, F., et al.: Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5 W/kg in human glioma MO54 cells. Int. J. Radiat. Biol. 78(5), 433–440 (2002)

    Article  Google Scholar 

  26. Fritze, K., et al.: Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81(3), 627–639 (1997)

    Article  Google Scholar 

  27. Hess, P.: Calcium channels in vertebrate cells. Annu. Rev. Neurosci. 13, 337–356 (1990)

    Article  Google Scholar 

  28. Linz, K.W., et al.: Membrane potential and currents of isolated heart muscle cells exposed to pulsed radio frequency fields. Bioelectromagnetics 20(8), 497–511 (1999)

    Article  Google Scholar 

  29. Takahashi, K., et al.: Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia 42(2), 185–186 (1986)

    Article  Google Scholar 

  30. Zrimec, A., Jerman, I., Lahajnar, G.: Alternating electric fields stimulate ATP synthesis in Escherichia coli. Cell. Mol. Biol. Lett. 7(1), 172–174 (2002)

    Google Scholar 

  31. Foletti, A., et al.: Cellular ELF signals as a possible tool in informative medicine. Electromagn. Biol. Med. 28(1), 71–79 (2009)

    Article  Google Scholar 

  32. Jandova, A., et al.: Effects of sinusoidal magnetic field on adherence inhibition of leucocytes: preliminary results. Bioelectrochem. Bioenerg. 48(2), 317–319 (1999)

    Article  Google Scholar 

  33. Grafstrom, G., et al.: Histopathological examinations of rat brains after long-term exposure to GSM-900 mobile phone radiation. Brain Res. Bull. 77(5), 257–263 (2008)

    Article  Google Scholar 

  34. Mailankot, M., et al.: Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo) 64(6), 561–565 (2009)

    Google Scholar 

  35. Laman, N., et al.: High-resolution waveguide THz spectroscopy of biological molecules. Biophys. J. 94(3), 1010–1020 (2008)

    Article  ADS  Google Scholar 

  36. Hadjiloucas, S., Chahal, M.S., Bowen, J.W.: Preliminary results on the non-thermal effects of 200–350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies. Phys. Med. Biol. 47(21), 3831–3839 (2002)

    Article  Google Scholar 

  37. Ol’shevskaia Iu, S.: Influence of terahertz (submillimeter) laser radiation on neurons in vitro. Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova 59(3), 353–359 (2009)

    Google Scholar 

  38. Ramundo-Orlando, A., et al.: Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase. Bioelectromagnetics 28(8), 587–598 (2007)

    Article  Google Scholar 

  39. Kirichuk, V.F., et al.: Use of terahertz electromagnetic radiation for correction of blood rheology parameters in patients with unstable angina under conditions of treatment with isoket, an NO donor. Bull. Exp. Biol. Med. 146(3), 293–296 (2008)

    Article  Google Scholar 

  40. Kirichuck, V.F., et al.: Sex-specific differences in changes of disturbed functional activity of platelets in albino rats under the effect of terahertz electromagnetic radiation at nitric oxide frequencies. Bull. Exp. Biol. Med. 145(1), 75–77 (2008)

    Article  Google Scholar 

  41. Kirichuk, V.F., Efimova, N.V., Andronov, E.V.: Effect of high power terahertz irradiation on platelet aggregation and behavioral reactions of albino rats. Bull. Exp. Biol. Med. 148(5), 746–749 (2009)

    Article  Google Scholar 

  42. Ostrovskiy, N.V., Nikituk, C.M., Kirichuk, V.F., Krenitskiy, A.P., Majborodin, A.V., Tupikin V.D., Shub, G.M.: Application of the terahertz waves in therapy of burn wounds. Infrared and millimeter waves and 13th international conference on terahertz electronics, IRMMW-THz (2005)

    Google Scholar 

  43. U.S. Food and Drug Administration: Good Laboratory Practice for Nonclinical Laboratory Studies. Code of Federal Regulations, FDA. Title 21, Part 58 (1993)

    Google Scholar 

  44. Valberg, P.A.: Designing EMF experiments: what is required to characterize “exposure”? Bioelectromagnetics 16(6), 396–401 (1995), discussion 402–406

    Google Scholar 

  45. Salford, L.G., et al.: Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111(7), 881–883 (2003), discussion A408

    Google Scholar 

  46. Nittby, H., et al.: Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16(2–3), 103–112 (2009)

    Article  Google Scholar 

  47. Nittby, H., et al.: Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29(3), 219–232 (2008)

    Article  Google Scholar 

  48. INTERPHONE Study Group: Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int. J. Epidemiol. 39(3), 675–694 (2010)

    Google Scholar 

  49. Buttiglione, M., et al.: Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. J. Cell. Physiol. 213(3), 759–767 (2007)

    Article  Google Scholar 

  50. Bondar, N.P., et al.: Behavioral effect of terahertz waves in male mice. Bull. Exp. Biol. Med. 145(4), 401–405 (2008)

    Article  Google Scholar 

  51. Kirichuk, V.F., Tsymbal, A.A.: Use of terahertz electromagnetic waves for correcting the hemostasis functions. Med. Tekh. 1, 12–16 (2010)

    Google Scholar 

  52. Kirichuk, V.F., Tsymbal, A.A.: Effects of terahertz irradiation at nitric oxide frequencies on intensity of lipoperoxidation and antioxidant properties of the blood under stress conditions. Bull. Exp. Biol. Med. 148(2), 200–203 (2009)

    Article  Google Scholar 

  53. Lee, J.S., et al.: Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation. Int. J. Radiat. Biol. 81(10), 781–792 (2005)

    Article  Google Scholar 

  54. Im, C.N., Kim, E.H., Park, A.K., Park, W.Y.: Classification of biological effect of 1,763 MHz radiofrequency radiation based on gene expression profiles. Genomics Informat 8(1), 34–40 (2010)

    Google Scholar 

  55. Zeng, Q.L., et al.: Effects of GSM 1800 MHz radiofrequency electromagnetic fields on protein expression profile of human breast cancer cell MCF-7. Zhonghua Yu Fang Yi Xue Za Zhi 40(3), 153–158 (2006)

    Google Scholar 

  56. Sinclair, J., et al.: Proteomic response of Schizosaccharomyces pombe to static and oscillating extremely low-frequency electromagnetic fields. Proteomics 6(17), 4755–4764 (2006)

    Article  Google Scholar 

  57. Breslauer, K.J., et al.: Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83(11), 3746–3750 (1986)

    Article  ADS  Google Scholar 

  58. Englander, E.W., Howard, B.H.: Nucleosome positioning by human Alu elements in chromatin. J. Biol. Chem. 270(17), 10091–10096 (1995)

    Article  Google Scholar 

  59. Knoepfler, P.S., et al.: A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1. Nucleic Acids Res. 27(18), 3752–3761 (1999)

    Article  Google Scholar 

  60. Takahashi, S., et al.: Lack of mutation induction with exposure to 1.5 GHz electromagnetic near fields used for cellular phones in brains of Big Blue mice. Cancer Res. 62(7), 1956–1960 (2002)

    Google Scholar 

  61. Burrill-Report, T.: Life sciences: a 20/20 vision to 2020. www.burrillandco.com/content/BT08_execSum.pdf (2008)

  62. Frazer, K.A., et al.: A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164), 851–861 (2007)

    Article  ADS  Google Scholar 

  63. Perry, G.H., et al.: Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39(10), 1256–1260 (2007)

    Article  Google Scholar 

  64. Shlien, A., Malkin, D.: Copy number variations and cancer. Genome Med. 1(6), 62 (2009)

    Article  Google Scholar 

  65. Wheeler, D.A., et al.: The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189), 872–876 (2008)

    Article  ADS  Google Scholar 

  66. Coombs, A.: The sequencing shakeup. Nat. Biotechnol. 26(10), 1109–1112 (2008)

    Article  Google Scholar 

  67. Gallerano, G.P.: THz-BRIDGE: tera-hertz radiation in biological research, investigations on diagnostics and study on potential genotoxic effects. http://www.frascati.enea.it/thz-bridge/reports/THz-BRIDGE%20Final%20Report.pdf (2004)

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2011-0001291) and the R&D program supervised by the KCA (Korea Communications Agency) (KCA-2011- 11911-01108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woong-Yang Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, KT., Park, WY. (2012). Genome-Wide Analysis of THz-Bio Interaction. In: Park, GS., et al. Convergence of Terahertz Sciences in Biomedical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3965-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-3965-9_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-3964-2

  • Online ISBN: 978-94-007-3965-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics