Skip to main content

Principle of Terahertz Radiation Using Electron Beams

  • Chapter
  • First Online:
Book cover Convergence of Terahertz Sciences in Biomedical Systems

Abstract

This part introduces high power THz coherent radiation sources that take advantage of free electron beams. Following a description of characteristics on vacuum electron devices (VEDs), fundamental radiation principle of beam-wave interaction is explained with specifying their types and applications. Conventional high power microwave VEDs such as klystrons, TWTs, gyrotrons, and FELs are described in their technical perspectives with brief overview of device characteristics. Addressing technical challenges on up-conversion-to-THz of conventional approach, this part explores the state-of-the-art micro-VEDs considered for modern THz applications such as communication, imaging, sensing, spectroscopy, and so on, which are combined with modern microfabrication technologies. Novel MEMS techniques to microminiaturize RF components such as electron gun and RF interaction circuits are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smye, S.W., Chamber, J.M., Fitzgerald, A.J., Berry, E.: The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 46, R101–R112 (2001)

    Article  ADS  Google Scholar 

  2. Xu, J., Zhang, H., Yuan, T., Xu, X., Zhang, X.-C., Reightler, R., Madaras, E.: T-rays identify defects in insulating materials. In: CLEO, CMB 2, 2004

    Google Scholar 

  3. Hermann, M., Tani, M., Sakai, K., Fukasawa, R.: Terahertz imaging of silicon wafers. J. Appl. Phys. 91, 1247 (2002)

    Article  ADS  Google Scholar 

  4. Kiwa, T., Tonouchi, M., Yamshita, M., Kawase, K.: Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Opt. Lett. 28, 2058–2063 (2003)

    Article  ADS  Google Scholar 

  5. Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Exp. 11, 2549–2554 (2003)

    Article  ADS  Google Scholar 

  6. Seibert, K., Loffler, T., Quast, H., Thomson, M., Bauer, T., Leonhardt, R., Czasch, S., Roskos, H.G.: All-optoelectronic continuous wave THz imaging for biomedical applications. Phys. Med. Biol. 47, 3743 (2002)

    Article  Google Scholar 

  7. Zhao, G., Mars, M., Wenckebach, T., Planken, P.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. 19, 1476 (2002)

    Article  ADS  Google Scholar 

  8. Descour, M.R., et al.: Toward the development of miniaturized imaging systems for detection of pre-cancer. IEEE J. Quant. Electron. 38, 122 (2002)

    Article  ADS  Google Scholar 

  9. Arnone, D.D., Ciesla, C.M., Corchia, A., Egusa, S., Pepper, M., Chamberlain, J.M., Bezant, C., Linfield, E.H., Clothier, R., Khammo, N.: Applications of terahertz (THz) technology to medical imaging terahertz spectroscopy and applications. In: SPIE, vol. 3828, p. 209. Munich, Germany (1999)

    Google Scholar 

  10. Brucherseifer, M., Nagel, M., Haring Bolivar, P., Kurz, H., Bossenhoff, A., Büttner, B.: Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77, 4049 (2000)

    Article  ADS  Google Scholar 

  11. Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Opt. Lett. 20, 1716 (1995)

    Article  ADS  Google Scholar 

  12. Ferguson, B., Wang, S., Gray, D., Abbott, D., Zhang, X.-C.: Terahertz imaging of biological tissue using a chirped probe pulse. In: Proceedings of SPIE: Electronics and Structures for MEMS II, vol. 4591, pp. 172–184. Adelaide, Australia (2001)

    Google Scholar 

  13. Han, P.Y., Cho, G.C., Zhang, X.-C.: Time domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242 (2000)

    Article  ADS  Google Scholar 

  14. www.chemprocess.chalmers.se/dokument/pdf05/vinnoval//pdf

  15. Löffler, T., Kreß, M., Thomson, M., Hahn, T., Hasegawa, N., Roskos, H.G.: Comparative performance of terahertz emitters in amplifier-laser-based systems. Semicond. Sci. Technol. 20, S134 (2005)

    Article  Google Scholar 

  16. Cook, D.J., Hochastrasser, R.M.: In: Ultrafast Phenomena XII. Springer Series of Chemical Physics, vol. 66, p. 197 (2000)

    Google Scholar 

  17. Phillips, T.G., Keene, J.: Submillimeter astronomy. Proc. IEEE 80, 1662–1678 (1992)

    Article  ADS  Google Scholar 

  18. Elisawitz, D. et al.: Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE, vol. 4013. Munich, Germany (2000)

    Google Scholar 

  19. Melnick, G., et al.: The submillimeter wave astronomy satellite: science objectives and instrument description. Astrophys. J. Lett. 539(pt. 2), L77 (2000)

    Article  ADS  Google Scholar 

  20. Herbst, E., Ann, E.: Rev. Phys. Chem. 46, R27 (1995)

    Article  ADS  Google Scholar 

  21. Waters, J.W.: Submillimeter wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere. Proc. IEEE 80, 1679–1701 (1992)

    Article  Google Scholar 

  22. Feruson, B.: Horizons and Hurdles, Internal Report. Physics Department, Resselaer Polytechnic Institute (2001)

    Google Scholar 

  23. Han, P.Y., Zhang, X.-C.: Coherent, broadband mid-Infrared terahertz beam sensors. Appl. Phys. Lett. 73, 3049 (1998)

    Article  ADS  Google Scholar 

  24. Leitenstofer, A., Hunsche, S., Shah, J., Nuss, M.C., Knox, W.H.: Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett. 74, 1516 (1999)

    Article  ADS  Google Scholar 

  25. Nahata, A., Yardley, J.T., Heinz, T.: Free space electro-optic detection of continuous-wave terahertz radiation. Appl. Phys. Lett. 75, 2524 (1999)

    Article  ADS  Google Scholar 

  26. Auston, D.H., Smith, P.R.: Generation and detection of millimeter waves by picosecond photoconductivity. Appl. Phys. Lett. 43, 631–633 (1983)

    Article  ADS  Google Scholar 

  27. Zhang, X.-C., Jin, Y., Hewitt, T.D., Kingsley, L.E., Weiner, M.: THz radiation by carrier transport of optical rectification ultrafast electron. Optoelectron 14, 99 (1993)

    Google Scholar 

  28. Fattinger, C., Grischkowsky, D.: Appl. Phys. Lett. 54, 490 (1989)

    Article  ADS  Google Scholar 

  29. Faist, J., et al.: Quantum cascade laser. Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  30. Vurgaftman, I., Meyer, J.R.: Optically pumped type-II interband terahertz lasers. Appl. Phys. Lett. 75, 879 (1999)

    Article  ADS  Google Scholar 

  31. Mueller, E.R.: Terahertz radiation: applications and sources. The Industrial Physicist, AIP (Aug/Sep), 27–29 (2003)

    Google Scholar 

  32. Eisele, H.: Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100–300 GHz frequency range and above. IEEE Trans. Microw. Theory Tech. 48, 626 (2000)

    Article  ADS  Google Scholar 

  33. Maiwald, F., et al.: Terahertz frequency multiplier chains based on planar Schottky diodes. Proc. SPIE Soc. Opt. Eng. 4855, 447 (2003)

    Article  ADS  Google Scholar 

  34. Landau, L.D., Lifshitz, E.M.: Landau and Lifshitz course of theoretical physics. In: Electrodynamics of Continuous Media, vol. 8, 2nd edn. Pargamon, New York, ch. XIV

    Google Scholar 

  35. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    Google Scholar 

  36. Hirshfield, J.L., Wachtell, J.M.: Electron cyclotron maser. Phys. Rev. Lett. 12, 533 (1964)

    Article  ADS  Google Scholar 

  37. Bajaj, V.S., et al.: Dynamic nuclear polarization at 9 Tesla using a novel 250 GHz gyrotron microwave source. J. Magn. Reson. 160, 85 (2003)

    Article  ADS  Google Scholar 

  38. Neil, G.R., Merminga, L.: Technical approaches for high-average-power free-electron lasers. Rev. Modern Phys. 74, 685 (2002)

    Article  ADS  Google Scholar 

  39. O’shea, P.G., Freud, H.P.: Free-electron lasers: status and applications. Science 292, 1853 (2001)

    Article  ADS  Google Scholar 

  40. Jeong, Y.U., et al.: First lasing of the KAERI compact far-infrared free-electron laser driven by a magnetron-based microtron. Nucl. Inst. Meth. A 475, 4750 (2001)

    Article  Google Scholar 

  41. Goebel, P.M., Liou, R.R., Menninger, W.L., Zhai, X., Adler, E.A.: Development of linear traveling wave tubes for telecommunications. IEEE Trans. Electron Dev. 48, 7481 (2001a)

    Google Scholar 

  42. Dibb, D.R., Le Borgue, R.H.: 45 GHz TWT—recent advances. In: International Vacuum Electronics Conference, Montery, CA (2000)

    Google Scholar 

  43. Symons, R.S., Arfin, B., Boesenberg, R.E., Ferguson, P.E., Kirshner, M., Vaughn, J.R.M.: An experimental clustered cavity klystron. In: International Electron Devices Meeting Digest, p. 153. Washington DC (1987)

    Google Scholar 

  44. Gelvich, E.A., Borisov, L.M., Zhary, Y.V., Zakudayev, A.D., Pobedonostev, A.S., Poognin, V.I.: The new generation of high power multi-beam klystrons. IEEE Trans. Microw. Theory Tech. 41, 15 (1993)

    Article  ADS  Google Scholar 

  45. Goebel, D.M., Liou, R.R., Menninger, W.L., Zhai, X., Adler, E.A.: Development of linear traveling wave tubes for telecommunications applications. IEEE Trans. Electron Dev. 48, 74 (2001b)

    Article  ADS  Google Scholar 

  46. Granastein, V.L., Parker, R.K., Armstrong, C.M.: Vacuum electronics at the dawn of the twenty-first century. Proc. IEEE 87, 702–716 (1999)

    Article  Google Scholar 

  47. Abrams, R.H., Levush, B., Mondelli, A.A., Parker, R.K.: Vacuum electronics at the dawn of the twenty-first century. Proc. IEEE 87, 702–716 (1999)

    Article  Google Scholar 

  48. Calame, J.P., Abe, D.K.: Applications of advanced materials technologies to vacuum electronics. Proc. IEEE 87, 840–864 (1999)

    Article  Google Scholar 

  49. Gitinz J.F.: Power Traveling Wave Tubes. Elsevier, New York (1965)

    Google Scholar 

  50. PopSci’s Best of What’s New 2007. http://www.popsci.com/popsci/flat/bown/2007/green/item_67.html. Retrieved 28 Feb 2010

  51. US Patent 7629497—Microwave-based recovery of hydrocarbons and fossil fuels Issued 8 Dec 2009

    Google Scholar 

  52. 1997 Industrial Assessment of the Microwave Power Tube Industry—US Department of Defense

    Google Scholar 

  53. Beryllium oxide properties. http://en.wikipedia.org/wiki/Beryllium_oxide

  54. Duke university free-electron laser laboratory. http://www.fel.duke.edu/

  55. Duarte, F.J. (ed.): Tunable Lasers Handbook. Academic, New York (1995) Chapter 9

    Google Scholar 

  56. SLAC National Accelerator Laboratory. http://home.slac.stanford.edu/pressreleases/2009/20090421.htm

  57. Nusinovich, G.S., Cooke, S.J., Botton, M., Levush, B.: Wave coupling in sheet- and multiple-beam traveling-wave tubes. Phys. Plasmas 16, 063102 (2009)

    Article  ADS  Google Scholar 

  58. Ives, R.L.: Microfabrication of high-frequency vacuum electron devices. IEEE Trans. Plasma Sci. 32, 1277 (2004)

    Article  ADS  Google Scholar 

  59. Zhang, H., Wang, J., Tong, C., Li, X., Wang, G.: Numerical studies of powerful terahertz pulse generation from a super-radiant surface wave oscillator. Phys. Plasmas 16(12), 123104 (2009)

    Article  ADS  Google Scholar 

  60. Ives, R.L., Kory, C., Read, M., Neilson, J., Caplan, M., Chubun, N., Schwartzkopf, S., Witherspoon, R.: Development of backward-wave oscillators for terahertz applications. In: Terahertz for Military Applications. Orlando, FL (2003)

    Google Scholar 

  61. Chen, L., Guo, H., Chen, H.-Y., Chu, K.-R.: IEEE Trans. Plasma Sci. 28(3), 626 (2000)

    Google Scholar 

  62. Naumenko, V.D., Schumann, K., Variv, D.M.: Miniature 1 kW, 95 GHz magnetrons. Elec. Lett. 35(22), 1960 (1999)

    Google Scholar 

  63. Hargreaves, T.A., Scheitrum, G.P., Bemis, T., Higgins, L.: IEDM 93, 349 (1993)

    Google Scholar 

  64. O’Shea, P.G., Freund, H.P.: Science 292(8), 1853 (2001)

    Article  ADS  Google Scholar 

  65. Ehrfeld, W., Schmidt, A.: J. Vac. Sci. Tech. B 16(6), 3526 (1998)

    Article  Google Scholar 

  66. Ruhmann, R., Pfeiffer, K., Falenski, M., Reuther, F., Engelke, R., Grutzner, G.: SU-8 - a high performance material for MEMS applications. Polym. MEMS 45 (2002)

    Google Scholar 

  67. Johnson, D.W., Jeffries, A., Minsek, D.W., Hurditch, R.J.: Improving the process capability of SU-8, part II. J. Photopolym. Sci. Tech. 14(5), 689 (2001)

    Article  Google Scholar 

  68. O’Brien, G.J., Monk, D.J., Najafi, K.: Device and process technologies for MEMS and microelectronics II. In: Chiao, J.-C. (ed.) Proc. SPIE, 315, vol. 4592 (2001)

    Google Scholar 

  69. Bhardwaj, J., Ashraf, J., MacQuarrie, A.: In: Symposium on Microstructures and Microfabricated Systems, Electrochemical Society (1997)

    Google Scholar 

  70. Liu K.X., Chiang C.-J., Heritage J.P.: Photoresponse of gated p-silicon field emitter array and correlation with theoretical models. J. Appl. Phys. 99, 034502 (2006)

    Article  ADS  Google Scholar 

  71. Technical data sheet (Ver 4.1) at the Kayaku-Microchem Web site (http://www.kayakumicrochem.jp)

  72. Digital Technology Laboratory. 3805 Faraday Ave., Davis, CA, 95618. (530) 746-7400. http://www.dtlab.com

  73. Shin, Y.-M., Barnett, L.R., Gamzina, D., Luhmann, N.C. Jr, Field M., Borwick, R.: Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching. Appl. Phys. Lett. 95, 181505 (2009)

    Google Scholar 

  74. Carlsten, B.E., Russell, S.J., Earley, L.M., Krawczyk, F.L., Potter, J.M., Ferguson, P., Humphries, S.: Technology development for a mmwave sheet-beam TWT. IEEE Trans. Plasma Sci. 33(1), 85–93 (2005)

    Article  ADS  Google Scholar 

  75. Srivastava V.: THz vacuum microelectronic devices. In: International Symposium on Vacuum Science and Technology (IVS2007)

    Google Scholar 

  76. Kory, C.L., Ives, L., Read, M., Phillips, P.: Novel TWT interaction circuits for high frequency applications. In: Proceedings of the IEEE International Vacuum Electronics Conference, pp. 51–52 (2004)

    Google Scholar 

  77. Arora, R.K., Bhat, B., Aditya, S.: Guided waves on a flattened sheath-helix. IEEE Trans. Microwave Theory Tech. MTT-25 71–72 (1977)

    Google Scholar 

  78. Fu, C.F., Wei, Y.Y., Wang, W.X., Gong, Y.B.: Dispersion characteristics of a rectangular helix slow-wave structure. IEEE Trans. Electron Devices 55(12) (2008)

    Google Scholar 

  79. Yoon, J.-B., Han, C.-H., Yoon, E., Kim, C.-K.: Monolithic fabrication of electroplated solenoid inductors using three-dimensional photolithography of a thick photoresist. Jpn. J. Appl. Phys., pt. 1, 37(12B) 7081–7085 (1998)

    Google Scholar 

  80. Yoon, J.-B., Kim, B.–I., Choi, Y.-S., Yoon, E.: 3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology. IEEE Trans. Microwave Theory Tech. 51(1), 279–288 (2003)

    Google Scholar 

  81. Kim, Y-J., Allen, M.G.: Surface micromachined solenoid inductors for high frequency applications. IEEE Trans. Comp. Packag. Manufact. Technol. 21(1) 26–33 (1998)

    Google Scholar 

  82. Mann, C.M.: Fabrication technologies for terahertz waveguide. In: Proceedings of 6th International Conference Terahertz Electronics 46–49 (1998)

    Google Scholar 

  83. Moon, S.W., Mann, C.M., Maddison, B.J., Turcu, I.C.E., Allot, R., Huq, S.E., Lisi, N.: Terahertz waveguide components fabricated using 3D X-ray microfabrication technique. Electron. Lett. 32, 1794–1795 (1996)

    Google Scholar 

  84. Collins, C.E., Miles, R.E., Pllard, R.D., Steenson, D.P., Digby, J.W., Parkhurst, G.M., Chamberain, J.M., Cronin, N.J., Davies, S.R., Bowen, J.W.: Technique for micro-machining millimeter-wave rectangular waveguide. Electron. Lett. 34, 996–997 (1998)

    Google Scholar 

  85. Collins, C.E., Miles, R.E., Digby, J.W., Parkhurst, G.M., Pollard, R.D., Chamberlain, J.M., Steenson, D.P., Cronin, N.J., Davies, S.R., Bowen, J.W.: A new micro-machined millimeter-wave and terahertz snaptogether rectangular waveguide technology. IEEE Microwave Guided Wave Lett. 9, 63–65 (1999)

    Article  Google Scholar 

  86. Song, J.J., Bajikar, S., Kang, Y.W., Kustom, R.L., Mancini, D.C., Nassiri, A., Lai, B., Feinerman, A.D., White, V.: LIGA fabrication of mm-wave accelerating cavity structures at the Advanced Photon Source (APS). In: Proceedings of Particle Accelerator Conference. pp. 461–463. (1997)

    Google Scholar 

  87. Dohler G., Gagne, D., Gallagher, D., Moats, R.: Serpentine waveguide TWT,” in Proceedings of technical digest international electron devices meeting. pp. 485–488 (1987)

    Google Scholar 

  88. Choi, J.J., Armstrong, C.M., Calise, F., Ganguly, A.K., Kyser, R.H., Park, G.S., Parker, R.K., Wood, F.: Experimental observation of coherent millimeterwave radiation in a folded waveguide employed with a gyrating electron beam. Phys. Rev. Lett. 76, 4273–4276 (1996)

    Article  ADS  Google Scholar 

  89. Reynaerts, D.: A versatile technology for silicon by electro-discharge machining. Int. J. Jpn. Soc. Precision Eng. 33(2), 114–128 (1999)

    Google Scholar 

  90. Madou, M.: Fundamentals of microfabrication. CRC, Boca Raton (1997)

    Google Scholar 

  91. Masuzawa, T.: Wire electro-discharge grinding for micro-machining. Ann. CIRP (International Institute for Production Engineering Research) 34, 431–434 (1985)

    Google Scholar 

  92. Shin, Y.-M., Barnett, L.R.: Intense Wideband Terahertz Amplification Using Phase-Shifted Periodic Electron-Plasmon Coupling. Appl. Phys. Lett. 92, 091501 (2008)

    Article  ADS  Google Scholar 

  93. Shin, Y.-M., Barnett, L.R., Luhmann Jr, N.C.: Strongly confined plasmonic wave propagation through an ultra-wideband staggered double grating waveguide. Appl. Phys. Lett. 93, 221504 (2008)

    Article  ADS  Google Scholar 

  94. Shin, Y-M., Barnett, L.R., Luhmann, N.C. Jr.: Phase-shifted traveling wave tube circuit for ultra- wideband high power submillimeter wave generation. IEEE Trans. Elec. Dev. 56, 706 (2009)

    Article  ADS  Google Scholar 

  95. Booske, J.H., McVey, B.D., Antonsen Jr, T.M.: Stability and confinement of nonrelativistic sheet electron beams with periodic cusped magnetic focusing. J. Appl. Phys. 73(9), 4140–4155 (1993)

    Article  ADS  Google Scholar 

  96. Carlsten, B.E., Earley, L.M., Krawczyk, F.L., Russell, S.J., Potter, J.M., Ferguson, P., Humphries, S., Jr.: Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing. Phys. Rev. ST—Accel. Beams 8 (6) 062001-1–062001-14 (2005)

    Google Scholar 

  97. Carlsten, B.E.: Modal analysis and gain calculations for a sheet electron beam in a ridged waveguide slow-wave structure. Phys. Plasmas 9(12), 5088–5096 (2002)

    Article  ADS  Google Scholar 

  98. Carlsten, B.E., Russell, S.J., Earley, L.M., Haynes, W.B., Krawczyk, F., Smirnova, E., Wang, Z.-F., Potter, J.M., Ferguson, P., Humphries, S.: MM-wave source development at Los Alamos. In: Proceedings of 7th Workshop High Energy Density High Power RF, AIP Conference, vol. 807, pp. 326–334 (2006)

    Google Scholar 

  99. Nguyen, K.T., Wright, E.L., Pershing, D.E., Levush, B.: Design of a G-band sheet-beam extended-interaction klystron. In: Proceedings of IEEE International Vacuum Electronics Conference, pp. 298–299 (2009)

    Google Scholar 

  100. Larsen, P.B., Abe, D.K., Cooke, S.J., Levush, B., Pchelnikov, Y.N.: Experimental characterization of a ka band sheet-beam coupled-cavity slow-wave structure. In: Proceedings of IEEE International Vacuum Electronics Conference, pp. 224–225 (2009)

    Google Scholar 

  101. Shin, Y.-M., Barnett, L.R., Luhmann Jr, N.C.: Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeterwave generation. IEEE Trans. Electron Device 56(5), 706–712 (2009)

    Article  ADS  Google Scholar 

  102. Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A., Park, G.S.: Superradiant terahertz Smith–Purcell radiation from surface Plasmon excited by counterstreaming electron beams. Appl. Phys. Lett. 90(3), pp. 031502-1–031502-3 (2007)

    Google Scholar 

  103. Scheitrum, G., Caryotakis, G., Jensen, A., Burke, A., Haase, A., Jongewaard, E., Neubauer, M., Steele, B.: Fabrication and testing of a W-band sheet beam klystron. In: Proceedings of IEEE IVEC, 15–17 May 2007, pp. 1–2

    Google Scholar 

  104. Burke, A., Besong, V., Granlund, K., Jensen, A., Jongewaard, E., Phillips, R., Rauenbuehler, K., Scheitrum, G., Steele, R.: W-band sheet beam klystron PCM focusing design. In: Proceedings of IEEE International Vacuum Electron Conference, IEEE International Vacuum Electron Sources, 2006, pp. 485–486

    Google Scholar 

  105. Scheitrum, G., Caryotakis, G., Burke, A., Jensen, A., Jongewaard, E., Neubauer, M., Phillips, R., Steele, R.: W-band sheet beam klystron research at SLAC. In: Proceedings of International Vacuum Electron Conference, IEEE International Vacuum Electron Sources, pp. 481–482 (2006)

    Google Scholar 

  106. Scheitrum, G.: Design and construction of a W-band sheet beam klystron. In: Proceedings of 7th Workshop High Energy Density High Power RF, Kalamata, Greece, pp. 120–125 (2005)

    Google Scholar 

  107. Scheitrum, G., Caryotakis, G., Burke, A., Jensen, A., Jongewaard, E., Krasnykh, A., Neubauer, M., Phillips, R., Rauenbuehler, K.: W-band sheet beam klystron design. In: Proceedings of International Conference Infrared Millimeter Waves, 12th International Conference Terahertz Electronics, September 27–October 1, 2004, pp. 525–526

    Google Scholar 

  108. Urata, J., Goldstein, M., Kimmitt, M.F., Naumov, A., Platt, C., Walsh, J.E.: Superradiant Smith-Purcell emission. Phys. Rev. Lett. 80, 516 (1998)

    Article  ADS  Google Scholar 

  109. Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  110. Becerra, L.R., Gerfen, G.J., Temkin, R.J., Singel, D.J., Griffin, R.G.: Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys. Rev. Lett. 71(21) 3561–3564 (1993)

    Google Scholar 

  111. Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., Sirigiri, J.R., Woskov, P.P., Mak-Jurkauskas, M.L., Herzfeld, J., Temkin, R.J., Griffin, R.G.: 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J. Magn. Reson 189(2), 251–279 (2007)

    Article  ADS  Google Scholar 

  112. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Kreischer, K.E., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., Temkin, R.J.: Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator. IEEE Trans. Electron Devices 52(5), 798–807 (2005)

    Article  ADS  Google Scholar 

  113. Hornstein, M.K., Bajaj, V.S., Grifiin, R.G., Temkin, R.J.: Continuous-wave operation of a 460 GHz second harmonic gyrotron oscillator. IEEE Trans. Plasma Sci. 34(3), 524–533 (2006)

    Article  ADS  Google Scholar 

  114. Idehara, T., Kosuga, K., Agusu, L., Ikeda, R., Ogawa, I., Saito, T., Matsuki, Y., Ueda, K., Fujiwara, T.: Continuously frequency tunable high power sub-THz radiation source – Gyrotron FU CW VI 600 MHz DNP-NMR spectroscopy. J. Infrared Milli. Terahz Waves (2010). doi:10.1007/s10762-010-9643-y

    Google Scholar 

  115. Idehara, T., Kosuga, K., Agusu, L., Ogawa, I., Takahashi, H., Smith, M.E., Dupree, R.: Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR spectroscopy. J. Infrared Milli. Terahz Waves (2010). doi:10.1007/s10762-010-9637-9

    Google Scholar 

  116. Granatstein, V.L., Nusinovich, G.S.: Detecting excess ionizing radiation by electromanetic breakdown in air. J. Appl. Phys. 108, 063304 (2010)

    Article  ADS  Google Scholar 

  117. Glyavin, M.Y., Luchinin, A.G., Golubiatnikov, G.Y.: Generation of 1.5 kW, 1 THz Coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100, 015101 (2008)

    Article  ADS  Google Scholar 

  118. Nader, E., Ziolkowski, R.W.: Metamaterials: physics and engineering explorations. IEEE Press, Wiley (2006)

    Google Scholar 

  119. Zouhdi, S., Sihvola, A., Vinogradov, A.P.: Metamaterials and plasmonics: fundamentals, modelling, applications. Springer, New York (2008–2012)

    Google Scholar 

  120. Smith D.R.: What are electromagnetic metamaterials? Novel electromagnetic materials (2006-06-10)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Min Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shin, YM., Choi, EM., Park, GS. (2012). Principle of Terahertz Radiation Using Electron Beams. In: Park, GS., et al. Convergence of Terahertz Sciences in Biomedical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3965-9_1

Download citation

Publish with us

Policies and ethics