Skip to main content

Manipulating Ruminal Biohydrogenation by the Use of Plants Bioactive Compounds

  • Chapter
  • First Online:
Dietary Phytochemicals and Microbes

Abstract

Ruminal microbial community is responsible for the biohydrogenation (BH) of the dietary unsaturated fatty acids ingested by ruminants. This process results in the production of saturated fatty acids (SFA) at the expenses of the unsaturated fatty acids (UFA). Animal scientists are attempting different possible strategies to manipulate ruminal BH process, in order to obtain meats and milk with a lower SFA content, which would be of great value for consumers’ health. To avoid the use of synthetic molecules, such as some drugs or additives in livestock farming, animal scientists are focusing on the use of plant bioactive compounds (PBC) as modulators of ruminal BH. This manipulation is performed through a direct action of PBC on the bacterial and protozoa community involved in the BH process directly or indirectly. In this chapter, we report the effects of tannins, saponins and essential oils on ruminal BH with emphasis to their effects on the microbial ecosystem. A brief description of the impact of PBC on meat and milk fatty acid profile is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Soqeer AA (2008) Nutritive value assessment of Acacia species using their chemical analyses and in vitro gas production technique. Res J Agric Biol Sci 4:688–694

    CAS  Google Scholar 

  • Aurousseau B, Bauchart D, Calicho E, Micol D, Priolo A (2004) Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipids and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci 66:531–541

    PubMed  CAS  Google Scholar 

  • Banks A, Hilditch TP (1931) The glyceride structure of beef tallows. Biochem J 25:1168–1182

    PubMed  CAS  Google Scholar 

  • Ben Salem H, Vasta V, Abidi S, Makkar HPS, Molina-Alcaide E, Priolo A Incorporation of small amounts of fenugreek (Trigonella foenum-graecum L.) seeds in concentrate on digestion, growth and meat quality of lambs receiving oaten hay. Anim Feed Sci Technol (submitted)

    Google Scholar 

  • Benchaar C, Chouinard PY (2009) Assessment of the potential of cinnamaldehyde, condensed tannins and saponins to modify milk fatty acid composition of dairy cows. J Dairy Sci 92:3392–3396

    PubMed  CAS  Google Scholar 

  • Benchaar C, Petit HV, Berthiaume R, Ouellet DR, Chiquette J, Chouinard PY (2007) Effects of essential oils on digestion, ruminal fermentation, rumenmicrobial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J Dairy Sci 90:886–897

    PubMed  CAS  Google Scholar 

  • Benchaar C, McAllister TA, Chouinard PY (2008) Digestion, ruminal fermentation, ciliate protozoa populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schigadera saponin extracts. J Dairy Sci 91:4765–4777

    PubMed  CAS  Google Scholar 

  • Bessa RJB, Santos-Silva J, Ribeiro JMR, Portugal AV (2000) Reticulo-rumen biohydrogenation and the enrichment of ruminants products with linoleic acid conjugated isomers. Livest Prod Sci 63:201–211

    Google Scholar 

  • Bessa RJB, Aves SP, Jerònimo E, Alzaia CM, Prates JAM, Santos-Silva J (2007) Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lamb. Eur J Lipid Sci Technol 109:868–883

    CAS  Google Scholar 

  • Boeckaert C, Morgavi DP, Jouany J-P, Maignien L, Boon N, Fievez V (2009) Role of the protozoan Isotricha prostoma, liquid-, and solid-associated bacteria in rumen biohydrogenation of linoleic acid. Animal 3:961–971

    CAS  Google Scholar 

  • Brogna D, Nasri S, Ben Salem H, Mele M, Serra A, Bella M, Priolo A, Makkar HPS, Vasta V (2011) Effect of dietary saponins from Quillaja saponaria L. on fatty acid composition and cholesterol content in muscle longissimus dorsi of lambs. Animal 5:1124–1130

    CAS  Google Scholar 

  • Broudiscou L-P, Cornu A, Rouzeau A (2007) In vitro degradation of 10 mono- and sesquiterpenes of plant origin by caprine rumen micro-organisms. J Sci Food Agric 87:1653–1658

    CAS  Google Scholar 

  • Buccioni A, Antongiovanni M, Petacchi F, Mele M, Serra A, Secchiari P, Benvenuti D (2006) Effect of dietary fat quality on C18:1 fatty acids and conjugated linoleic acid production: an in vitro rumen fermentation study. Anim Feed Sci Technol 127:268–282

    CAS  Google Scholar 

  • Burlingame B, Nishida C, Uauy R, Weisell R (1999) Fats and fatty acids in human nutrition – joint FAO/WHO expert consultation. Ann Nutr Metab 55:1–308

    Google Scholar 

  • Busquet M, Calsamiglia S, Ferret A, Kamel C (2005) Screening for effect of plant extracts and active compounds of plants in dairy cattle rumen microbial fermentation in a continuous culture system. Anim Feed Sci Technol 123–124:597–613

    Google Scholar 

  • Cabiddu A, Molle G, Decandia M, Spada S, Fiori M, Piredda G, Addis M (2009) Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: effects on milk fatty acid profile. Livest Sci 123:230–240

    Google Scholar 

  • Cabiddu A, Salis L, Tweed JKS, Molle G, Decadia M, Lee MRF (2010) The influence of plant polyphenols in lipolysis and biohydrogenation in dried forages at different phonological stages: in vitro study. J Sci Food Agric 90:829–835

    PubMed  CAS  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595

    PubMed  CAS  Google Scholar 

  • Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855

    CAS  Google Scholar 

  • Corl BA, Baugmard L-H, Dwyer DA, Griinari JM, Phillips BS, Baumann DE (2003) The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J Nutr Biochem 12:622–630

    Google Scholar 

  • Cox SD, Mann CM, Markam JL (2001) Interaction between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 91:492–497

    PubMed  CAS  Google Scholar 

  • Czerkawski JW (1972) Fate of metabolic hydrogen in the rumen. Proc Nutr Soc 31:141–146

    PubMed  CAS  Google Scholar 

  • Dawson MC, Hemington N (1974) Digestion of grass lipids and pigments in sheep rumen. Br J Nutr 32:327–340

    PubMed  CAS  Google Scholar 

  • Dawson RMC, Hemington N, Hazelwood GD (1977) On the role of higher plant and microbial lipases in the ruminal hydrolysis of grass lipids. Br J Nutr 38:225–232

    PubMed  CAS  Google Scholar 

  • Devillard E, McIntosh FM, Newbold JC, Wallace RJ (2006) Rumen ciliate protozoa contain high concentrations of conjugated linoleic acid and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br J Nutr 96:697–704

    PubMed  CAS  Google Scholar 

  • Durmic Z, McSweeny CS, Kemp GW, Hutton PP, Wallace RJ, Vercoe PE (2008) Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim Feed Sci Technol 145:271–284

    CAS  Google Scholar 

  • Duval SM, McEwan NR, Graham RC, Wallace RJ, Newbold CJ (2007) Effect of blend of essential oil compounds in the colonization of starch-rich substrates by bacteria in the rumen. J Appl Microbiol 103:2132–2141

    PubMed  CAS  Google Scholar 

  • Eryavuz A, Dehority BA (2004) Effect of Yucca schidigera extract on the concentration of rumen microorganisms in sheep. Anim Feed Sci Technol 117:215–222

    Google Scholar 

  • Fay JP, Jakober KD, Cheng K-J, Costerton JW (1990) Esterase activity of pure cultures of rumen bacteria as expressed by the hydrolysis of p-nitrophenylpalmitate. Can J Microbiol 36:585–589

    PubMed  CAS  Google Scholar 

  • French P, Stanton C, Lawless F, O’Riodan EG, Monahan FJ, Caffrey PJ, Moloney AP (2000) Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grass, grass silage, or concentrate-based diets. J Anim Sci 78:2849–2855

    PubMed  CAS  Google Scholar 

  • Fukuda S, Suzuki Y, Murai M, Asanuma N, Hino T (2006) Isolation of a novel strain of Butyrivibrio fibrisolvens that isomerizes linoleic acid to conjugated linoleic acid without hydrogenation, and its utilization as a probiotic for animals. J Appl Microbiol 100:787–794

    PubMed  CAS  Google Scholar 

  • Garton GA, Hobson PN, Lough AK (1958) Lipolysis in the rumen. Nature 182:1511–1512

    PubMed  CAS  Google Scholar 

  • Goel G, Makkar HPS, Becker K (2008) Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J Appl Microbiol 105:770–777

    PubMed  CAS  Google Scholar 

  • Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332

    CAS  Google Scholar 

  • Gutierrez J, Davis RE, Lindahl IL (1959) Characteristics of saponin-utilizing bacteria from the rumen of cattle. Appl Environ Microbiol 7:304–308

    CAS  Google Scholar 

  • Ha YL, Grimm NK, Pariza MW (1987) Anticarcenogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8:1881–1887

    PubMed  CAS  Google Scholar 

  • Harfoot CG (1978) Lipid metabolism in the rumen. Prog Lipid Res 17:21

    PubMed  CAS  Google Scholar 

  • Harfoot CG, Hazelwood GP (1988) Lipid metabolism in the rumen. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Applied Science Publishers, London

    Google Scholar 

  • Harfoot GC, Hazlewood GP (1997) Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Blackie Academic and Professional, London

    Google Scholar 

  • Henderson C (1971) A study of the lipase of Anaerovibrio lipolytica: a rumen bacterium. J Gen Microbiol 65:81–89

    PubMed  CAS  Google Scholar 

  • Hespell RB, O’Bryan-Shah PJ (1988) Esterase activities in Butyrivibrio fibrisolvens. Appl Environ Microbiol 54:1917–1922

    PubMed  CAS  Google Scholar 

  • Huges PE, Tove SB (1982) Biohydrogenation of unsaturated fatty acids. Purification and properties of cis-9, trans-11-octadecanoate reductase. J Biol Chem 257:3643–3649

    Google Scholar 

  • Hunter WJ, Baker FC, Rosenfeld IS, Keyser JB, Tove SB (1976) Biohydrogenation of unsaturated fatty acids. Hydrogenation by cell-free preparations of Butyrivibrio fibrisolvens. J Biol Chem 251:2241–2247

    PubMed  CAS  Google Scholar 

  • Huws SA, Kim EJ, Lee MRF, Scott MB, Tweed KJS, Pinloche E, Wallace RJ, Scollan ND (2011) As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteriodales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ Microbiol 13:1500–1512

    PubMed  CAS  Google Scholar 

  • Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86:397–412

    PubMed  CAS  Google Scholar 

  • Jeronimo E, Alves AP, Dentinho MTP, Martins SV, Prates JAM, Vasta V, Santos-Silva J, Bessa RJB (2010) The effect of grape seed extract, Cistus ladanifer L. and vegetable oil supplementation on fatty acid composition of abomasal digesta and intramuscular fat of lambs. J Agric Food Chem 58:10710–10721

    PubMed  CAS  Google Scholar 

  • Jiang J, Bjoerk L, Fondén R, Emanuelson M (1996) Occurrence of conjugated cis-9, trans-11 octadecenoic acid in bovine milk: effects of feed and dietary regimen. J Dairy Sci 79:438–445

    PubMed  CAS  Google Scholar 

  • Jones GA, McAllister TA, Muir AD, Cheng K-J (1994) Effects of sainfoin (Onobrichis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl Environ Microbiol 60:1374–1378

    PubMed  CAS  Google Scholar 

  • Keeney M (1970) Lipid metabolism in the rumen. In: Phillipson AT (ed) Physiology of digestion and metabolism in the ruminant. Oriel Press, Newcastle, pp 489–503

    Google Scholar 

  • Kemp P, Lander DJ (1984) Hydrogenation in vitro of α-linolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J Gen Microbiol 130:527–533

    CAS  Google Scholar 

  • Kemp P, White RW, Lander DJ (1975) The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J Gen Microbiol 90:100–114

    PubMed  CAS  Google Scholar 

  • Kepler CR, Tove SB (1967) Biohydrogenation of unsaturated fatty acids III. Purification and properties of a linoleate 12-cis, 11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 242:5686–5692

    PubMed  CAS  Google Scholar 

  • Kepler CR, Tove SB (1969) Linoleate Δ12-cis, Δ11-trans-isomerase. In: Lowenstein JM (ed) Methods in enzymology. Academic, New York, pp 105–109

    Google Scholar 

  • Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J Biol Chem 241:350–354

    Google Scholar 

  • Keweloh JK, Heipieper HJ (1996) Trans unsaturated fatty acids in bacteria. Lipids 31:129–137

    PubMed  CAS  Google Scholar 

  • Khiaosa-Ard R, Bryner SF, Scheeder MRL, Wettstein H-R, Kreuzer M, Soliva CR (2009) Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J Dairy Sci 92:177–188

    PubMed  CAS  Google Scholar 

  • Kramer JK, Parodi PW, Jensen RG, Mossoba MM, Yurawecz MP, Adolf RO (1998) Rumenic acid: a proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids 33:835

    PubMed  CAS  Google Scholar 

  • Latham MJ, Storry JE, Sharpe ME (1972) Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl Environ Microbiol 24:871–877

    CAS  Google Scholar 

  • Lee MRF, Winters AL, Scollan ND, Dewhurst RJ, Theodorou MK, Minchin FR (2004) Plant mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. J Sci Food Agric 84:1639–1645

    CAS  Google Scholar 

  • Lee MRF, Parfitt LJ, Scollan ND, Minchin FR (2007) Lipolysis in red clover with different polyphenol oxidase activities in the presence and absence of rumen fluid. J Sci Food Agric 87:1208–1314

    Google Scholar 

  • Lee RF, Tweed JKS, Cookson A, Sullivan ML (2010) Immunogold labelling to localize polyphenol oxidase (PPO) and the effect of removing cellular matrices on PPO protection of glycerol-based lipid in the rumen. J Sci Food Agric 90:503–510

    PubMed  CAS  Google Scholar 

  • Lennarz WJ (1966) Lipid metabolism in the bacteria. Adv Lipid Res 4:175–225

    PubMed  CAS  Google Scholar 

  • Lin TY (2006) Conjugated linoleic acid production by cells and enzyme extract of Lactobacillus delbrueckii ssp. bulgaricus with additions of different fatty acids. Food Chem 94:437–441

    CAS  Google Scholar 

  • Loor JJ, Hoover WH, Miller-Webster TK, Herbein JH, Polan CE (2003) Biohydrogenation of unsaturated fatty acids in continuous culture fermenters during digestion of orchardgrass or red clover with three levels of ground corn supplementation. J Anim Sci 81:611–1627

    Google Scholar 

  • Lourenço M, Cardozo PW, Calsamiglia S, Fievez V (2008a) Effects of saponins, quercitin, eugenol, and cinnamaldehyde on fatty acid biohydrogenation of forage polyunsaturated fatty acids in dual flow continuous culture fermenters. J Anim Sci 86:3045–3053

    PubMed  Google Scholar 

  • Lourenço M, Van Ranst GG, Vlaeminck G, De Smet S, Fievez V (2008b) Influence of different dietary forages on the fatty acid composition of rumen digesta as well as ruminant meat and milk. Anim Feed Sci Technol 145:418–437

    Google Scholar 

  • Lourenço M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4(7):1008–1023. doi:10.1017/S175173111000042X

    Google Scholar 

  • Maia MRG, Chaudary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antoine van Leeuwenhoek 91:303–314

    CAS  Google Scholar 

  • Maia MRG, Chaudary LC, Bestwick CS, Richardson AJ, McKain N, Larson TR, Graham IA, Wallace RJ (2010) Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol 10:52. doi:10.1186/1471-2180-10-52

    PubMed  Google Scholar 

  • Makkar HPS, Becker K (1997) Degradation of quillaja saponins by mixed culture of rumen microbes. Lett Appl Microbiol 25:243–245

    PubMed  CAS  Google Scholar 

  • Malecky M, Broudiscour LP, Schmidely P (2009) Effects of two levels of monoterpene blend in rumen fermentation, terpene and nutrient flows in the duodenum and milk production in dairy goats. Anim Feed Sci Technol 154:24–35

    CAS  Google Scholar 

  • McIntosh FM, Williams P, Losa R, Wallace RJ, Beever DA, Newbold CJ (2003) Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl Environ Microbiol 69:5011–5014

    PubMed  CAS  Google Scholar 

  • Mele M, Serra A, Conte G, Pollicardo A, Del Viva M, Secchiari P (2007) Whole extruded linseed in the diet of dairy ewes during early lactation: effect on the fatty acid composition of milk and cheese. Ital J Anim Sci 6:560–562

    Google Scholar 

  • Min BR, Attwood GT, Reilly K, Sun W, Peters JS, Barry TN, McNabb WC (2002) Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Microbiol 48:911–921

    PubMed  CAS  Google Scholar 

  • Molle G, Decandia M, Giovannetti V, Cabiddu A, Fois N, Sitzia M (2009) Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 1: effects of feeding behaviour, intake, diet digestibility and performance. Livest Sci 123:138–146

    Google Scholar 

  • Moon CD, Pacheco DM, Kelly MJ, Leahy SC, Li D, Kopečný J, Attwood G (2008) Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate producing ruminal bacterium. Int J Syst Evol Microbiol 58:2041–2045

    PubMed  CAS  Google Scholar 

  • Morand-Fehr P, Tran G (2001) La fraction lipidique des aliments et les corps gras utilisés en alimentation animale. INRA Prod Anim 14:285–302

    Google Scholar 

  • Mosley EE, Powell GL, Riley MB, Jenkins TC (2002) Microbial biohydrogenation of oleic acid to trans isomers in vitro. J Lipid Res 43:290–296

    PubMed  CAS  Google Scholar 

  • Nam IS, Garnsworthy PC (2007) Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J Appl Microbiol 103:551–556

    PubMed  CAS  Google Scholar 

  • Noci F, Monahan FJ, Scollan ND, Moloney AP (2007) The fatty acid composition of muscle and adipose tissue of steers offered unwilted or wilted grass silage supplemented with sunflower oil and fishoil. Br J Nutr 97:502–513

    PubMed  CAS  Google Scholar 

  • NRC (1996) Carcinogens and anticarcinogens in the human diet. National Academy Press, Washington, DC

    Google Scholar 

  • Or-Rashid MM, Al Zahal O, McBride BW (2008) Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Appl Microbiol Biotechnol 81:533–541

    PubMed  CAS  Google Scholar 

  • Paillard D, McKain N, Rincon MT, Shingfield KJ, Givens DI, Wallace RJ (2007) Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J Appl Microbiol 103:1251–1261

    PubMed  CAS  Google Scholar 

  • Parodi PW (1977) Conjugated octadecenoic acids of milk fat. J Dairy Sci 60:1550–1553

    CAS  Google Scholar 

  • Patra AK, Saxena J (2009) Dietary phytochemicals as rumen modifiers: a review of the effects on microbial population. Antoine van Leeuwenhoek 96:363–375

    CAS  Google Scholar 

  • Peng SS, Deng M-D, Grund AD, Rosson RA (2007) Purification and characterization of a membrane-bound linoleic acid isomerase from Clostridium sporogenes. Enzyme Microb Technol 40:831–839

    CAS  Google Scholar 

  • Piperova LS, Sampugna J, Teter BB, Kalscheur KF, Yurawecz MP, Ku Y, Morehouse KM, Erdamn RA (2002) Duodenal and milk trans octadecenoic and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. J Nutr 132:1235–1241

    PubMed  CAS  Google Scholar 

  • Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88:1056–1064

    PubMed  CAS  Google Scholar 

  • Priolo A, Waghorn GC, Lanza M, Biondi L, Pennisi P (2000) Polyethylene glycol as a means for reducing the impact of condensed tannins in carob pulp: effects on lamb growth performance and meat quality. J Anim Sci 78:810–816

    PubMed  CAS  Google Scholar 

  • Priolo A, Bella M, Lanza M, Galofaro V, Biondi L, Barbagallo D, Ben Salem H, Pennisi P (2005) Carcass and meat quality of lambs fed fresh sulla (Hedysarum coronarium L.) with or without polyethylene glycol or concentrate. Small Rumin Res 59:281–288

    Google Scholar 

  • Reiser R (1951) Hydrogenation of polyunsaturated fatty acids by the ruminant. Fed Proc 10:236

    Google Scholar 

  • Reiser R, Reddy HGR (1956) The hydrogenation of dietary unsaturated fatty acids by the ruminant. J Am Oil Chem Soc 33:155–156

    CAS  Google Scholar 

  • Riel RR (1963) Physico-chemical characteristics of Canadian milk fat. Unsaturated fatty acids. J Dairy Sci 46:102–106

    CAS  Google Scholar 

  • Santora JE, Palmquist DL, Roehrig KL (2000) Trans-vaccenic acid is desaturated to conjugated linoleic acid in mice. J Nutr 130:208–215

    PubMed  CAS  Google Scholar 

  • Santos-Silva J, Bessa RJB, Santos-Silva F (2002) Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Meat Sci 77:187–194

    Google Scholar 

  • Scollan N, Hocquette J-F, Nuernberg K, Dannemberger D, Richardson I, Moloney A (2006) Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 74:17–33

    PubMed  CAS  Google Scholar 

  • Shingfield KJ, Chilliard Y, Toivonen V, Kairenius P, Givens DI (2008) Trans fatty acids and bioactive lipids in ruminant milk. Adv Exp Med Biol 606:3–65

    PubMed  CAS  Google Scholar 

  • Shorland FB, Weenink RO, Johns AT, McDonald IRC (1957) The effect of sheep rumen contents on saturated fatty acids. Biochem J 67:328–333

    PubMed  CAS  Google Scholar 

  • Sivakumaran S, Molan AL, Meagher LP, Kolb B, Foo LY, Lane GA, Attwood GA, Fraser K, Tavendale M (2004) Variation in antimicrobial action of proanthocyanidins from Dorycnium rectum against rumen bacteria. Phytochemistry 65:2485–2497

    PubMed  CAS  Google Scholar 

  • Turner S-A, Waghorn GC, Woodward SL, Thomson NA (2005) Condensed tannins in birdsfoot trefoil (Lotus corniculatus) affect the detailed composition of milk from dairy cows. Proc NZ Soc Anim Prod 65:283–289

    Google Scholar 

  • Van Ranst G, Fievez V, Vandewalle M, De Riek J, Bockstaele V (2009) In vitro study of red clover polyphenol oxidase activity, activation, and effect on measured lipase activity and lipolysis. J Agric Food Chem 57:6611–6617

    PubMed  Google Scholar 

  • Van Ranst G, Lee MRF, Fievez V (2011) Red clover polyphenol oxidase and lipid metabolism. Animal 5:512–521

    Google Scholar 

  • Vasta V, Pennisi P, Lanza M, Barbagallo D, Bella M, Priolo A (2007) Intramuscular fatty acid composition of lambs given a tanniniferous diet with or without polyethylene glycol supplementation. Meat Sci 76:739–745

    PubMed  CAS  Google Scholar 

  • Vasta V, Nudda A, Cannas A, Lanza M, Priolo A (2008) Alternative feed resources and small ruminants meat and milk quality. A review. Anim Feed Sci Technol 147:223–246

    CAS  Google Scholar 

  • Vasta V, Makkar HPS, Mele M, Priolo A (2009a) Ruminal biohydrogenation as affected by tannins in vitro. Br J Nutr 102:82–92

    PubMed  CAS  Google Scholar 

  • Vasta V, Mele M, Serra A, Scerra M, Luciano G, Lanza M, Priolo A (2009b) Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. J Anim Sci 87:2674–2684

    PubMed  CAS  Google Scholar 

  • Vasta V, Yáñez-Ruiz DR, Mele M, Serra A, Luciano G, Lanza M, Biondi L, Priolo A (2010) Bacterial and protozoa communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl Environ Microbiol 76:2549–2555

    PubMed  CAS  Google Scholar 

  • Verhulst A, Parmentier G, Janssen G, Asselberghs S, Eyssen H (1986) Biotransformation of unsaturated long-chain fatty acids by Eubacterium lentum. Appl Environ Microbiol 51:532–538

    PubMed  CAS  Google Scholar 

  • Vlaeminck B, Fievez V, Van Laar H, Demeyer V (2004) Rumen odd and branched chain fatty acids in relation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubated substrates. J Anim Physiol Anim Nutr 88:401–411

    CAS  Google Scholar 

  • Wallace RJ, Arthaud L, Newbold CJ (2004) Influence of Yucca schidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl Environ Microbiol 60:1762–1767

    Google Scholar 

  • Wallace RJ, Cheaudhary LC, McKain N, McEwan NR, Richardson AJ, Vercoe PE, Walker ND, Paillard D (2006) Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett 265:195–201

    CAS  Google Scholar 

  • Wąsowska I, Maia MRG, Niedźwiedzka KM, Czauderna M, Ramalo Ribeiro C, Devillard E, Shingfield KJ, Wallace RJ (2006) Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br J Nutr 95:1199–1211

    PubMed  Google Scholar 

  • Wina E, Muetzel S, Hoffmann E, Makkar HOS, Becker K (2005) Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim Feed Sci Technol 121:159–174

    CAS  Google Scholar 

  • Wright DE (1961) Bloat in cattle. XX. Lipases activity of rumen microorganisms. NZ J Agric Res 4:216–223

    CAS  Google Scholar 

  • Yáñez-Ruiz DR, Scollan ND, Merry RJ, Newbold CJ (2006) Contribution of rumen protozoa to duodenal flow of nitrogen, conjugated linoleic acid and vaccenic acid in steers fed silages differing in their soluble carbohydrate content. Br J Nutr 96:861–869

    PubMed  Google Scholar 

  • Yokoama MT, Davis CL (1971) Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strain B25, a rumen spirochete. J Bacteriol 107:519–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Vasta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vasta, V., Bessa, R.J.B. (2012). Manipulating Ruminal Biohydrogenation by the Use of Plants Bioactive Compounds. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_9

Download citation

Publish with us

Policies and ethics