Skip to main content

Dietary Tannins on Microbial Ecology of the Gastrointestinal Tract in Ruminants

  • Chapter
  • First Online:
Dietary Phytochemicals and Microbes

Abstract

This review discusses the effects of tannins on nitrogen metabolism in the rumen and intestine, microbial populations (bacteria, protozoa, fungi and archaea), metabolism of tannins, microbial tolerance mechanisms to tannins, inhibition of methanogenesis, ruminal biohydrogenation processes and performance of animals. The discrepancies in responses of tannins among different studies are attributed to the different chemical structures (degree of polymerization, procyanidins to propdelphinidins, stereochemistry and C–C bonding), different concentrations of tannins, and type of diets. An establishment of structure-activity relationship would be required to explain differences among studies and obtain consistent beneficial tannin effects. This paper reviews progress with plant tannins occurring in both temperate and tropical forages for fulfilling the objective of mode of action of tannins, rumen microbial activity and rumen metabolisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts RJ, Barry TN, McNabb WC (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric Ecosyst Environ 75:1–12

    CAS  Google Scholar 

  • Al-Dobaib SN (2009) Effect of different levels of quebracho tannin on nitrogen utilization and growth performance of Najdi sheep fed alfalfa (Medicago sativa) hay as a sole diet. Anim Sci J 80:532–541

    PubMed  CAS  Google Scholar 

  • Animut G, Goetsch AL, Puchala R, Patra AK, Sahlu T, Varel VH, Wells J (2008a) Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim Feed Sci Technol 144:212–227

    CAS  Google Scholar 

  • Animut G, Goetsch AL, Puchala R, Patra AK, Sahlu T, Varel VH, Wells J (2008b) Methane emission by goats consuming different sources of condensed tannins. Anim Feed Sci Technol 144:228–241

    CAS  Google Scholar 

  • Apostolidis E, Kwon YI, Shinde R, Ghaedian R, Shetty K (2011) Inhibition of Helicobacter pylori by fermented milk and soymilk using select lactic acid bacteria and link to enrichment of lactic acid and phenolic content. Food Biotechnol 25:58–76

    CAS  Google Scholar 

  • Bae HD, McAllister TA, Yanke LJ, Cheng KJ, Muir AD (1993) Effect of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 59:2132–2138

    PubMed  CAS  Google Scholar 

  • Barry TN, McNabb WC (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr 81:263–272

    PubMed  CAS  Google Scholar 

  • Bauman DE, Baumgard LH, Cori BA, Griinari JM (1999) Biosynthesis of conjugated linoleic acid in ruminants. In: Proceedings of the American Society of Animal Science. Available at http://jas.fass.org/cgi/reprint/77/E-Suppl/1-ae.pdf. Accessed 4 Nov 2009

  • Benchaar C, McAllister TA, Chouinard PY (2008) Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J Dairy Sci 91:4765–4777

    PubMed  CAS  Google Scholar 

  • Berard NC, Holley RA, McAllister TA, Ominski KH, Wittenberg KM, Bouchard KS, Bouchard JJ, Krause DO (2009) Potential to reduce Escherichia coli shedding in cattle feces by using sainfoin (Onobrychis viciifolia) forage, tested in vitro and in vivo. Appl Environ Microbiol 75:1074–1079

    PubMed  CAS  Google Scholar 

  • Bhat TK, Makkar HPS, Singh B (1996) Isolation of a tannin-protein complex-degrading fungus from faeces of hill cattle. J Appl Microbiol 22:257–258

    CAS  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins – a current perspective. Biodegradation 9:343–357

    PubMed  CAS  Google Scholar 

  • Bhatta R, Krishnamoorthy U, Mohammed F (2001) Effect of tamarind (Tamarindus indica) seed husk tannins on in vitro rumen fermentation. Anim Feed Sci Technol 90:143–152

    Google Scholar 

  • Brooker JD, O’Donovan LA, Skene I, Clarke K, Blackall L, Muslera P (1994) Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18:313–318

    CAS  Google Scholar 

  • Butler LG, Rogler JC (1992) Biochemical mechanisms of the anti-nutritional effects of tannin. In: Ho CT, Lee CY, Huang MT (eds) Phenolic compounds in food and their effects on health 1: analysis, occurrence and chemistry. American Chemical Society, Washington, DC

    Google Scholar 

  • Cerda B, Llorach R, Ceron JJ, Espin JC, Tomas-Barberan FA (2003) Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur J Nutr 42:18–28

    PubMed  CAS  Google Scholar 

  • Chiquette J, Costerton JW, Cheng KJ, Milligan LP (1988) Effect of tannins on the digestibility of two isosynthetic strains of Birdsfoot trefoil (Lotus corniculatus L.) using in vitro and in sacco techniques. Can J Anim Sci 68:751–754

    Google Scholar 

  • Chiquette J, Cheng KJ, Rode LM, Milligan LP (1989) Effect of tannin content in two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus) on feed digestibility and rumen fluid composition in sheep. Can J Anim Sci 69:1031–1039

    Google Scholar 

  • Chung K-T, Lu Z, Chou MW (1998) Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol 36:1053–1060

    PubMed  CAS  Google Scholar 

  • Deprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, Scalbert A (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130:2733–2738

    PubMed  CAS  Google Scholar 

  • Deprez S, Mila I, Huneau JF, Tome D, Scalbert A (2001) Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal 3:957–967

    PubMed  CAS  Google Scholar 

  • Durmic Z, McSweeney CS, Kemp GW, Hutton PG, Wallace RJ, Vercoe PE (2008) Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim Feed Sci Technol 145:271–284

    CAS  Google Scholar 

  • Ferreira D, Brandt EV, Coetzee J, Malan E (1999) Condensed tannins. Prog Chem Org Nat Prod 77:22–59

    Google Scholar 

  • Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RR (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–162

    PubMed  CAS  Google Scholar 

  • Foo LY, Newman R, Waghorn GC, Mcnab WC, Ulyatt MJ (1996) Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–624

    CAS  Google Scholar 

  • Foo LY, Lu Y, Mcnabb WC, Waghorn GC, Ulyatt MJ (1997) The proanthocyanidins of Lotus pedunculatus. Phytochemistry 45:1689–1696

    CAS  Google Scholar 

  • Frutos P, Hervas G, Giraldez FJ, Mantecon AR (2004) Review. Tannins and ruminant nutrition. Span J Agric Res 2:191–202

    Google Scholar 

  • Goel G, Puniya AK, Singh K (2005) Tannic acid resistance in ruminal streptococcal isolates. J Basic Microbiol 45:243–245

    PubMed  CAS  Google Scholar 

  • Goel G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K (2011) Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int Biodeterior Biodegrad 65:1061–1065

    CAS  Google Scholar 

  • Gonthier MP, Donovan JL, Texier O, Felgines C, Remesy C, Scalbert A (2003) Metabolism of dietary procyanidins in rats. Free Radic Biol Med 35:837–844

    PubMed  CAS  Google Scholar 

  • Hagerman AE, Butler LG (1989) Choosing appropriate methods and standards for assaying tannins. J Chem Ecol 11:1535–1544

    Google Scholar 

  • Hara H, Orita N, Hatano S, Ichikawa H, Hara Y, Matsumoto N, Kimura Y, Terada A, Mitsuoka T (1995) Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. J Vet Med Sci 57:45–49

    PubMed  CAS  Google Scholar 

  • Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Haslam E (1989) Plant polyphenols. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Heins Y, Tagari H, Volcani R (1964) Effect of water extracts of carob pods, tannic acid, and their derivatives on the morphology and growth of micro-organisms. Appl Microbiol 12:204–209

    Google Scholar 

  • Hemingway RW (1989) Reactions at the interflavonoid bond of proanthocyanidins. In: Hemingway RW, Karchesy JJ (eds) Chemistry and significance of condensed tannins. Plenum Press, New York

    Google Scholar 

  • Hess HD, Kreuzer M, Diaz TE, Lascano CE, Carulla JE, Solvia CR (2003) Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated fluid. Anim Feed Sci Technol 109:79–94

    CAS  Google Scholar 

  • Hollman PCH (2001) Evidence for health benefits of plant phenols: local or systemic effects? J Sci Food Agric 81:842–852

    CAS  Google Scholar 

  • Horigome T, Kumar R, Okamoto K (1988) Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymes in vitro and in the intestine of rats. Br J Nutr 60:275–285

    PubMed  CAS  Google Scholar 

  • Huang XD, Liang JB, Tan HY, Yahya R, Ho YW (2011) Effects of Leucaena condensed tannins of differing molecular weights on in vitro CH4 production. Anim Feed Sci Technol 166–167:373–376

    Google Scholar 

  • Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta 1147:132–136

    PubMed  CAS  Google Scholar 

  • Jimenez-Ramsey L, Rogler JC, Housley TL, Butler LG, Elkin RG (1994) Absorption and distribution of 14C-labeled condensed tannins and related Sorghum phenolics in chickens. J Agric Food Chem 42:963–967

    CAS  Google Scholar 

  • Jones WT, Mangan JL (1977) Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction 1 leaf protein and with submaxillary mucoprotein and their reversal by polyethelene glycol and pH. J Sci Food Agric 28:126–136

    CAS  Google Scholar 

  • Jones GA, Mcallister TA, Muir AD, Cheng KJ (1994) Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacterium. Appl Environ Microbiol 60:1374–1378

    PubMed  CAS  Google Scholar 

  • Krause DO, Smith WJM, Brooker JD, McSweeney CS (2005) Tolerance mechanisms of streptococci to hydrolysable and condensed tannins. Anim Feed Sci Technol 121:59–75

    CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144:8–14

    CAS  Google Scholar 

  • Kumar R, Vaithiyanathan S (1990) Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim Feed Sci Technol 30:21–38

    CAS  Google Scholar 

  • Lee JH, Vanguru M, Kannan G, Moore DA, Terrill TH, Kouakou B (2009) Influence of dietary condensed tannins from Sericea lespedeza on bacterial loads in gastrointestinal tracts of meat goats. Livest Sci 126:314–317

    Google Scholar 

  • Lowry JB, Kennedy PM (1996) Fermentation of flavonols by rumen organisms. Proc Aust Soc Anim Prod 21:366

    Google Scholar 

  • Maia MR, Chaudhary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Anton van Leeuwen 91:303–314

    CAS  Google Scholar 

  • Makkar HPS, Blummel M, Becker K (1995a) In vitro effects and interaction between tannins and saponins and fate of tannins in the rumen. J Sci Food Agric 69:481–493

    CAS  Google Scholar 

  • Makkar HPS, Becker K, Abel H, Szegletti C (1995b) Degradation of condensed tannins by rumen microbes exposed to Querbracho tannin (QT) in rumen simulation technique (RUSITEC) and effects of QT on fermentative processes in the RUSITEC. J Sci Food Agric 69:495–500

    CAS  Google Scholar 

  • Mangan JL (1988) Nutritional effects of tannins in animal feeds. Nutr Res Rev 1:209–231

    PubMed  CAS  Google Scholar 

  • Marouchoc SR (1979) Classical phenol derivatives and their uses. Dev Ind Microbiol 20:15–24

    Google Scholar 

  • Mcallister TA, Bae HD, Jones GA, Cheng KJ (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72:3004–3018

    PubMed  CAS  Google Scholar 

  • Mcmanus JP, Davis KG, Lilley TH, Haslam E (1981) The association of protein with polyphenols. J Chem Soc Chem Commun 7:309–311

    Google Scholar 

  • McNeill DM, Komolong M, Gobius N, Barber D (2000) Influence of dietary condensed tannin on microbial crude protein supply in sheep. In: Brooker JD (ed) Tannins in livestock and human nutrition, ACIAR Proceedings number 92. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • McSweeney CS, Palmer B, Kennedy PM, Krause DO (1998) Effect of calliandra tannins on rumen microbial function. Proc Aust Soc Anim Prod 22:289

    Google Scholar 

  • McSweeney CS, Palmer B, Bunch R, Krause DO (1999) Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl Environ Microbiol 65:3075–3083

    PubMed  CAS  Google Scholar 

  • McSweeney CS, Palmer B, McNeill DM, Krause DO (2001a) Microbial interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91:83–93

    CAS  Google Scholar 

  • McSweeney CS, Palmer B, Bunch R, Krause DO (2001b) Effect of tropical forage calliandra on microbial protein synthesis and ecology in the rumen. J Appl Microbiol 90:78–88

    PubMed  CAS  Google Scholar 

  • Mehansho H, Hagerman AE, Clements S, Butler LG, Rogler J, Carlson DM (1983) Modulation of proline-rich protein biosynthesis in rat parotid-glands by sorghums with high tannin levels. Proc Natl Acad Sci USA 80:3948–3952

    PubMed  CAS  Google Scholar 

  • Miller SM, Brooker JD, Blackall LL (1995) A feral goat rumen fluid inoculum improves nitrogen retention in sheep consuming a mulga (Acacia aneura) diet. Aust J Agric Res 46:1545–1553

    CAS  Google Scholar 

  • Miller SM, Brooker JD, Philips A, Blackall LL (1996) Streptococcus caprinus is ineffective as a rumen inoculum to improve digestion of mulga (Acacia aneura) by sheep. Aust J Agric Res 47:1323–1331

    Google Scholar 

  • Miller SM, Klieve AV, Plumb JJ, Blackall LL (1997) An in vitro cultured rumen inoculum improves nitrogen digestion in mulga-fed sheep. Aust J Agric Res 48:403–409

    Google Scholar 

  • Min BR, McNabb WC, Barry TN, Peters JS (2000) Solubilization and degradation of ribulose-1,5-bis-phosphate carboxylase/oxygenase (EC 4.1.1.39; rubisco) protein from white clover (Trifolium repens) and Lotus corniculatus by rumen microorganisms and the effect of condensed tannins on these processes. J Agric Sci Camb 134:305–317

    CAS  Google Scholar 

  • Min BR, Attwood GT, Reilly K, Sun W, Peters JS, Barry TN, Mcnabb WC (2002) Lotus corniculus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Anim Sci 48:911–921

    CAS  Google Scholar 

  • Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19

    CAS  Google Scholar 

  • Min BR, Attwood GT, Mcnabb WC, Molan AL, Barry TN (2005) The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim Feed Sci Technol 121:45–58

    CAS  Google Scholar 

  • Min BR, Pinchak WE, Anderson RC, Callaway TR (2007) Effect of tannins on the in vitro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers. J Food Prot 70:543–550

    PubMed  CAS  Google Scholar 

  • Mingshu L, Kai Y, Qiang H, Dongying J (2006) Biodegradation of gallotannins and ellagitannins. J Basic Microbiol 46:68–84

    Google Scholar 

  • Molina DO, Pell AN, Hogue DE (1999) Effects of ruminal inoculations with tannin-tolerant bacteria on fibre and nitrogen digestibility of lambs fed a high condensed tannin diet. Anim Feed Sci Technol 81:669–680

    Google Scholar 

  • Monforte-Briceno GE, Sandoval-Castro CA, Ramirez-Aviles L, Capetillo-Leal CM (2005) Defaunating capacity of tropical fodder trees: effects of polyethylene glycol and its relationship to in vitro gas production. Anim Feed Sci Technol 123–124:313–327

    Google Scholar 

  • Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037

    CAS  Google Scholar 

  • Muhammed S, Acamovic CS, Stewart T (1995) Effects of tannic acid, ellagic acid, gallic acid and catechin on cellulose degradation by the rumen fungus Neocallimastix frontalis strain RE1. J Anim Sci 60:550A

    Google Scholar 

  • Murdiati TB, McSweeney CS, Lowry JB (1992) Metabolism in sheep of gallic acid, tannic acid and hydrolysable tannin from Terminalia oblongata. Aust J Agric Res 43:1307–1319

    CAS  Google Scholar 

  • Nelson KA, Schofield P, Zinder S (1995) Isolation and characterization of an anaerobic bacterium capable of degrading hydrolysable tannins. Appl Environ Microbiol 61:3293–3298

    PubMed  CAS  Google Scholar 

  • Nelson KE, Thonney ML, Woolston TK, Zinder SH, Pell AN (1998) Phenotypic and phylogenic characterization of ruminal tannin-tolerant bacteria. Appl Environ Microbiol 64:3824–3830

    PubMed  CAS  Google Scholar 

  • Newbold CJ, Hassan SME, Wang J, Ortega ME, Wallace RJ (1997) Influence of foilage from African multipurpose tree on activity of rumen protozoa and bacteria. Br J Nutr 78:237–249

    PubMed  CAS  Google Scholar 

  • O’Donovan L, Brooker JD (2001) Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147:1025–1033

    PubMed  Google Scholar 

  • Odenyo AA, Osuji PO (1998) Tannin tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44:905–909

    PubMed  CAS  Google Scholar 

  • Odenyo AA, Bishop R, Asefa G, Jamnadass R, Odongo D, Osuji P (2001) Characterization of tannin-tolerant bacterial isolates from East African ruminants. Anaerobe 7:5–15

    CAS  Google Scholar 

  • Oh HK, Hoff JE (1986) Effects of condensed tannins grape tannins on the in vitro activity of digestive proteases and activation of their zymogens. J Food Sci 51:577–580

    CAS  Google Scholar 

  • Okuda T, Mori K, Hatano T (1985) Relationship of the structures of tannins to the binding activities with hemoglobin and methylene blue. Chem Pharm Bull 33:1424–1433

    PubMed  CAS  Google Scholar 

  • Osawa R (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl Environ Microbiol 56:829–831

    PubMed  CAS  Google Scholar 

  • Osawa R (1992) Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration. Appl Environ Microbiol 58:1754–1759

    PubMed  CAS  Google Scholar 

  • Osawa R, Sly LI (1991) Phenotypic characterization of CO2-requiring strains of Streptococcus bovis from koalas. Appl Environ Microbiol 57:3037–3039

    PubMed  CAS  Google Scholar 

  • Osawa R, Walsh TP (1993) A visual reading method for detection of bacterial tannase. Appl Environ Microbiol 59:1251–1252

    PubMed  CAS  Google Scholar 

  • Osawa R, Fujisawa T, Sly LI (1995a) Streptococcus gallolyticus sp. nov., gallate degrading organisms formerly assigned to Streptococcus bovis. Syst Appl Microbiol 18:74–78

    Google Scholar 

  • Osawa R, Rainey F, Fujisawa T, Lang E, Busse HJ, Walsh TP, Stackebrandt E (1995b) Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. Syst Appl Microbiol 18:368–373

    CAS  Google Scholar 

  • Osawa R, Kuroiso K, Goto S, Shimizu A (2000) Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl Environ Microbiol 66:3093–3097

    PubMed  CAS  Google Scholar 

  • Paillard D, Mckain N, Chaudhary LC, Walker ND, Pizette F, Koppova I, Mcewan NR, Kopecny J, Vercoe PE, Louis P, Wallace RJ (2007) Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Anton van Leeuwen 91:417–422

    CAS  Google Scholar 

  • Patra AK, Saxena J (2009) Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Anton van Leeuwen 96:363–375

    CAS  Google Scholar 

  • Patra AK, Saxena J (2010) A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198–1222

    PubMed  CAS  Google Scholar 

  • Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37

    PubMed  CAS  Google Scholar 

  • Patra AK, Kamra DN, Agarwal N (2006) Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim Feed Sci Technol 128:276–291

    CAS  Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB, Sahu NP, Kumar A (2003) Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nilgai (Baselophus tragocamelus). Lett Appl Microbiol 36:377–381

    PubMed  CAS  Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB, Sahu NP (2006) Effect of adding an anaerobic fungal culture isolated from a wild blue bull (Boselophus tragocamelus) to rumen fluid from buffaloes on in vitro fibrolytic enzyme activity, fermentation and degradation of tannins and tannin-containing kachnar tree (Bauhinia variegata) leaves and wheat straw. J Sci Food Agric 86:258–270

    CAS  Google Scholar 

  • Payne K, Rico-Munoz E, Davidson PM (1989) The antimicrobial activity of phenolic compounds against Listeria monocytogenes and their effectiveness in a model milk system. J Food Prot 52:151–153

    CAS  Google Scholar 

  • Perez-Maldonado RA, Norton BW (1996) Digestion of 14C-labelled condensed tannins from Desmodium intortum in sheep and goats. Br J Nutr 76:501–513

    PubMed  CAS  Google Scholar 

  • Plumb JJ, Blackall LL, Klieve AV (2000) Rumen bacterial diversity with and without mulga (Acacia anuera) tannins. In: Brooker JD (ed) Tannins in livestock and human nutrition: proceedings of an international workshop, Adelaide, Australia. ACIAR proceedings no. 92. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delhpinidin. Phytochemistry 25:223–230

    CAS  Google Scholar 

  • Rosenthal I, Rosen B, Bernstein S (1997) Phenols in milk. Evaluation of ferulic acid and other phenols as antifungal agents. Milchwissenschaft 52:134–137

    CAS  Google Scholar 

  • Rosenthal I, Bernstein S, Nakimbugwe DW (1999) Effect of tea solids on milk. Milchwissenschaft 54:149–152

    CAS  Google Scholar 

  • Sakanaka S, Skim M, Taniguchi M, Yamamoto T (1989) Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric Biol Chem 53:2307–2311

    CAS  Google Scholar 

  • Salawu MB, Acamovic T, Stewart CS, Hovell FD, De B (1999) Effects of feeding quebracho tannin diets, with or without a dietary modifier, on rumen function in sheep. J Anim Sci 69:265–274

    CAS  Google Scholar 

  • Salem HB, Nefzaoui A, Salem LB, Tisserand JL, Ben-Salem H, Ben-Salem L (1997) Effect of Acacia cyanophylla Lindl. foliage supply on intake and digestion by sheep fed lucern hay-based diets. Anim Feed Sci Technol 68:101–113

    Google Scholar 

  • Salem AZM, Robinson PH, López S, Gohar YM, Rojo R, Tinoco JL (2010) Sensitivity of sheep intestinal lactic acid bacteria to secondary compounds extracted from Acacia saligna leaves. Anim Feed Sci Technol 161:85–93

    CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    CAS  Google Scholar 

  • Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M (2003) Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol 69:5849–5854

    PubMed  CAS  Google Scholar 

  • Seigler DS (1998) Plant secondary metabolism. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Serrano J, Puupponen-Pimia R, Dauer A, Aura A-M, Saura-Calixto F (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:S310–S329

    PubMed  Google Scholar 

  • Simpson FJ, Jones GA, Wolin EA (1969) Anaerobic degradation of some bioflavonoids by microflora of the rumen. Can J Microbiol 15:972–974

    PubMed  CAS  Google Scholar 

  • Singh B, Chaudhary LC, Agarwal N, Kamra DN (2011) Effect of feeding Ficus infectoria leaves on rumen microbial profile and nutrient utilization in goats. Asian-Aust J Anim Sci 24:810–817

    CAS  Google Scholar 

  • Sivakumaran S, Molan AL, Meagher LP, Kolb B, Foo LY, Lane GA, Attwood GA, Fraser K, Tavendale M (2004) Variation in antimicrobial action of proanthocyanidins from Dorycnium rectum against rumen bacteria. Phytochemistry 65:2485–2497

    PubMed  CAS  Google Scholar 

  • Skene IK, Brooker JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1:321–327

    PubMed  CAS  Google Scholar 

  • Sly LI, Cahill MM, Osawa R, Fujisawa T (1997) The tannindegrading species Streptococcus gallolyticus and Streptococcus caprinus are subjective synonyms. Int J Syst Bacteriol 47:893–894

    PubMed  CAS  Google Scholar 

  • Smith AH, Zoetendal EG, Mackie RI (2005) Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50:197–205

    PubMed  CAS  Google Scholar 

  • Tagari H, Heins Y, Tamir M, Volcani R (1965) Effect of carob pod extract on cellulolysis, proteolysis, deamination, and protein biosynthesis in an artificial rumen. Appl Microbiol 13:437–442

    PubMed  CAS  Google Scholar 

  • Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW (2011a) Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol. doi:10.1016/j.anifeedsci.2011.07.004

  • Tan HY, Sieo CC, Lee CM, Abdullah N, Liang JB, Ho YW (2011b) Diversity of bovine rumen methanogens in vitro in the presence of condensed tannins, as determined by sequence analysis of 16S rRNA gene library. J Microbiol 49:492–498

    PubMed  CAS  Google Scholar 

  • Tanner GJ, Moore AE, Larkin PJ (1994) Proanthocyanidins inhibit hydrolysis of leaf proteins by rumen microflora in vitro. Br J Nutr 71:947–958

    PubMed  CAS  Google Scholar 

  • Tassou CC, Nychas GJE (1994) Inhibition of Staphylococcus aureus by olive phenolics in broth and in a food model system. J Food Prot 57:120–124

    CAS  Google Scholar 

  • Tassou CC, Nychas GJ (1995) Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system. Lett Appl Microbiol 20:120–124

    CAS  Google Scholar 

  • Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 123–124:403–419

    Google Scholar 

  • Terrill TH, Douglas GB, Foote AG, Purchas RW, Wilson GF, Barry TN (1992) Effect of condensed tannins upon body growth and rumen metabolism in sheep grazing sulla (Hedysarum coronarium) and perennial pasture. J Agric Sci Camb 119:265–273

    CAS  Google Scholar 

  • Terrill TH, Waghorn GC, Woolley DJ, Mcnabb WC, Barry TN (1994) Assay and digestion of 14C-labelled condensed tannins in the gastrointestinal tract of sheep. Br J Nutr 72:467–477

    PubMed  CAS  Google Scholar 

  • Tsai C-G, Jones GA (1975) Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can J Microbiol 21:794–801

    PubMed  CAS  Google Scholar 

  • Ulyatt MJ, Mcrae JC, Clarke TJ, Pearce PD (1975) Quantitative digestion of fresh forages by sheep. 4. Protein synthesis in the stomach. J Agric Sci Camb 84:453–458

    Google Scholar 

  • Waghorn GC (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-progress and challenges. Anim Feed Sci Technol 147:116–139

    CAS  Google Scholar 

  • Waghorn GC, Shelton ID, Mcnabb WC (1994a) Effects of condensed tannins in Lotus pedunculatus on its nutritive value for sheep. 1. Non-nitrogenous aspects. J Agric Sci Camb 123:99–107

    CAS  Google Scholar 

  • Waghorn GC, Shelton ID, Mcnabb WC (1994b) The effect of condensed tannin in Lotus pedunculatus on nutritive value for sheep. 2. Nitrogenous aspects. J Agric Sci Camb 123:109–119

    CAS  Google Scholar 

  • Wallace RJ, Mcpherson CA (1987) Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br J Nutr 58:313–323

    PubMed  CAS  Google Scholar 

  • Wang Y, Alexander TW, Amcallister TA (2009) In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J Sci Food Agric. doi:10.1002/jsfa.3717

  • Williams AG, Coleman GS (1997) The rumen protozoa. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Blackie Academic Professional, London

    Google Scholar 

  • Winter J, Moore LH, Dowell VR Jr, Bokkenheuser VD (1989) C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol 55:1203–1208

    PubMed  CAS  Google Scholar 

  • Wiryawan KG, Tangendjaja B, Suryahadi I (2000) Tannin degrading bacteria from Indonesian ruminants. In: Brooker JD (ed) Tannins in animal and human nutrition, proceedings of an international workshop, Adelaide, Australia, May 31 to June 2, 1999. Australian Centre for International Agricultural Research (ACIAR), Canberra

    Google Scholar 

  • Zelter SZ, Leory F, Issier JP (1970) Protection of protein in the feed against bacterial deamination in the rumen. I. Studies in vitro: behaviour in the rumen of some protein tanned with tannins from chestnut wood of certain aldehydes (formaldehyde, glutaraldehyde, glyoxal). Ann Biol Anim Biochim Biophys 10:111–122

    CAS  Google Scholar 

  • Zoetendal EG, Smith AH, Sundset MA, Mackie RI (2008) The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl Environ Microbiol 74:535–539

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Kumar Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Patra, A.K., Min, BR., Saxena, J. (2012). Dietary Tannins on Microbial Ecology of the Gastrointestinal Tract in Ruminants. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_8

Download citation

Publish with us

Policies and ethics