Skip to main content

Phytochemicals as Anti-microbial Food Preservatives

  • Chapter
  • First Online:

Abstract

Phytochemicals containing essential oils (EOs) in the range of 0.05–0.1% have demonstrated inhibitory activity against pathogens, such as Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus, in food systems. Three major limitations for the broad application of phytochemicals in food are: limited data about their effects in food, strong odor, and high cost. New techniques and synergistic effect of compounds have been successfully applied in several food and in-vitro experiments. Several in-food and in-vitro applications of essential oils, phenolic and other components are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abalaka ME, Daniyan SY, Mann A (2010) Evaluation of the antimicrobial activities of two Ziziphus species (Ziziphus mauritiana L. and Ziziphus spinachristi L.) on some microbial pathogens. Afr J Pharm Pharmacol 4(4):135–139

    Google Scholar 

  • Adegoke GO, Odesola BA (1996) Storage of maize and cowpea and inhibition of microbial agents of biodeterioration using the powder and essential oil of lemon grass (Cymbopogon citratus). Int Biodeter Biodegr 37(1–2):81–84

    Google Scholar 

  • Adiguzel A, Ozer H, Kilic H, Cetin B (2007) Screening of antimicrobial activity of essential oil and methanol extract of Satureja hortensis on foodborne bacteria and fungi. Czech J Food Sci 25(2):81–89

    CAS  Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. Lwt-Food Sci Technol 43(6):837–842. doi:10.1016/j.lwt.2010.01.021

    CAS  Google Scholar 

  • Allahghadri T, Rasooli I, Owlia P, Nadooshan MJ, Ghazanfari T, Taghizadeh M, Astaneh SDA (2010) Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J Food Sci 75(2):H54–H61. doi:10.1111/j.1750-3841.2009.01467.x

    PubMed  CAS  Google Scholar 

  • Al-Reza SM, Rahman A, Lee J, Kang SC (2010) Potential roles of essential oil and organic extracts of Zizyphus jujuba in inhibiting food-borne pathogens. Food Chem 119(3):981–986. doi:10.1016/j.foodchem.2009.07.059

    CAS  Google Scholar 

  • Al-Zoreky NS (2009) Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol 134(3):244–248. doi:S0168-1605(09)00331-6 [pii] 10.1016/j.ijfoodmicro.2009.07.002

    PubMed  CAS  Google Scholar 

  • Apostolidis E, Kwon YI, Shetty K (2008) Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. Int J Food Microbiol 128(2):317–324. doi:S0168-1605(08)00494-7 [pii] 10.1016/j.ijfoodmicro.2008.09.012

    PubMed  CAS  Google Scholar 

  • Avila-Sosa R, Hernandez-Zamoran E, Lopez-Mendoza I, Palou E, Munguia MTJ, Nevarez-Moorillon GV, Lopez-Malo A (2010) Fungal inactivation by Mexican oregano (Listeria monocytogenes) essential oil added to amaranth, chitosan, or starch edible films. J Food Sci 75(3):M127–M133. doi:10.1111/j.1750-3841.2010.01524.x

    PubMed  CAS  Google Scholar 

  • Bassole IHN, Lamien-Meda A, Bayala B, Tirogo S, Franz C, Novak J, Nebie RC, Dicko MH (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke. Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15(11):7825–7839. doi:10.3390/molecules15117825

    PubMed  CAS  Google Scholar 

  • Bayoub K, Baibai T, Mountassif D, Retmane A, Soukri A (2010) Antibacterial activities of the crude ethanol extracts of medicinal plants against Listeria monocytogenes and some other pathogenic strains. Afr J Biotechnol 9(27):4251–4258

    Google Scholar 

  • Belguith H, Kthiri F, Chati A, Abu Sofah A, Ben Hamida J, Ladoulsi A (2010) Inhibitory effect of aqueous garlic extract (Allium sativum) on some isolated Salmonella serovars. Afr J Microbiol Res 4(5):328–338

    Google Scholar 

  • Bisha B, Weinsetel N, Brehm-Stecher BF, Mendonca A (2010) Antilisterial effects of gravinol-s grape seed extract at low levels in aqueous media and its potential application as a produce wash. J Food Prot 73(2):266–273

    PubMed  Google Scholar 

  • Bluma RV, Etcheverry MG (2008) Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Food Microbiol 25(2):324–334. doi:10.1016/J.Fm.2007.10.004

    PubMed  CAS  Google Scholar 

  • Botsoglou E, Govaris A, Christaki E, Botsoglou N (2010) Effect of dietary olive leaves and/or alpha-tocopheryl acetate supplementation on microbial growth and lipid oxidation of turkey breast fillets during refrigerated storage. Food Chem 121(1):17–22. doi:10.1016/j.foodchem.2009.11.083

    CAS  Google Scholar 

  • Castano HI, Ciro G, Zapata JE, Jimenez SL (2010) Bactericidal activity of ethanolic leaf extract and leaf essential oil of Rosmarinus officinalis L. on some foodborne bacteria. Vitae-Columbia 17(2):149–154

    Google Scholar 

  • Chana-Thaworn J, Chanthachum S, Wittaya T (2011) Properties and antimicrobial activity of edible films incorporated with kiam wood (Cotyleobium lanceotatum) extract. Lwt-Food Sci Technol 44(1):284–292. doi:10.1016/j.lwt.2010.06.020

    CAS  Google Scholar 

  • Chen IN, Chang CC, Ng CC, Wang CY, Shyu YT, Chang TL (2008) Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr 63(1):15–20. doi:10.1007/s11130-007-0063-7

    PubMed  CAS  Google Scholar 

  • Chiu PE, Lai LS (2010) Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. Int J Food Microbiol 139(1–2):23–30. doi:10.1016/j.ijfoodmicro.2010.01.010

    PubMed  CAS  Google Scholar 

  • Corrales M, Fernandez A, Pinto MGV, Butz P, Franz CMAP, Schuele E, Tauscher B (2010) Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars. Food Chem Toxicol 48(12):3471–3476. doi:10.1016/j.fct.2010.09.025

    PubMed  CAS  Google Scholar 

  • Cui HY, Gabriel AA, Nakano H (2010) Antimicrobial efficacies of plant extracts and sodium nitrite against Clostridium botulinum. Food Control 21(7):1030–1036. doi:10.1016/j.foodcont.2009.12.023

    CAS  Google Scholar 

  • Diaz-Visurraga J, Garcia A, Cardenas G (2010) Lethal effect of chitosan-Ag (I) films on Staphylococcus aureus as evaluated by electron microscopy. J Appl Microbiol 108(2):633–646. doi:10.1111/j.1365-2672.2009.04447.x

    PubMed  CAS  Google Scholar 

  • Dikbas N, Bagci E, Kotan R, Cakmakci R, Ozer H, Mete E, Erdogan G (2010) Comparative antibacterial activities and chemical composition of some plants’ oils against Salmonella enteritidis. Res Crop 11(1):118–124

    Google Scholar 

  • Erbay Z, Icier F (2010) The importance and potential uses of olive leaves. Food Rev Int 26(4):319–334. doi:10.1080/87559129.2010.496021 Pii 925178733

    CAS  Google Scholar 

  • Evrendilek GA, Balasubramaniam VM (2011) Inactivation of Listeria monocytogenes and Listeria innocua in yogurt drink applying combination of high pressure processing and mint essential oils. Food Control 22(8):1435–1441. doi:10.1016/j.foodcont.2011.03.005

    CAS  Google Scholar 

  • Fattouch S, Sadok S, Raboudi-Fattouch F, Ben Slama M (2008) Damage inhibition during refrigerated storage of mackerel (Scomber scombrus) fillets by a presoaking in quince (Cydonia oblonga) polyphenolic extract. Int J Food Sci Technol 43(11):2056–2064. doi:10.1111/j.1365-2621.2008.01823.x

    CAS  Google Scholar 

  • Fernandez-Saiz P, Ocio MJ, Lagaron JM (2010a) Antibacterial chitosan-based blends with ethylene-vinyl alcohol copolymer. Carbohyd Polym 80(3):874–884. doi:10.1016/j.carbpol.2009.12.046

    CAS  Google Scholar 

  • Fernandez-Saiz P, Soler C, Lagaron JM, Ocio MJ (2010b) Effects of chitosan films on the growth of Listeria monocytogenes. Staphylococcus aureus and Salmonella spp. in laboratory media and in fish soup. Int J Food Microbiol 137(2–3):287–294. doi:10.1016/j.ijfoodmicro.2009.11.016

    PubMed  CAS  Google Scholar 

  • Franz C, Baser KHC, Windisch W (2010) Essential oils and aromatic plants in animal feeding – a European perspective. A review. Flavour Fragr J 25(5):327–340. doi:10.1002/Ffj.1967

    CAS  Google Scholar 

  • Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73(9):1737–1761

    PubMed  CAS  Google Scholar 

  • Gao YM, Tao NG, Liu YJ, Ge F, Feng B (2010) Antimicrobial activity of the essential oil from the peel of Ponkan (Citrus reticulata Blanco). J Essent Oil Bear Pl 13(2):230–236

    CAS  Google Scholar 

  • Gomez-Estaca J, de Lacey AL, Lopez-Caballero ME, Gomez-Guillen MC, Montero P (2010) Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27(7):889–896. doi:10.1016/J.Fm.2010.05.012

    PubMed  CAS  Google Scholar 

  • Gunduz GT, Gonul SA, Karapinar M (2010) Efficacy of sumac and oregano in the inactivation of Salmonella Typhimurium on tomatoes. Int J Food Microbiol 141(1–2):39–44. doi:10.1016/j.ijfoodmicro.2010.04.021

    PubMed  CAS  Google Scholar 

  • Gupta S, Rajauria G, Abu-Ghannam N (2010) Study of the microbial diversity and antimicrobial properties of Irish edible brown seaweeds. Int J Food Sci Technol 45(3):482–489. doi:10.1111/j.1365-2621.2009.02149.x

    CAS  Google Scholar 

  • Gutierrez J, Barry-Ryan C, Bourke P (2008a) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124(1):91–97. doi:S0168-1605(08)00117-7[pii] 10.1016/j.ijfoodmicro.2008.02.028

    PubMed  CAS  Google Scholar 

  • Gutierrez RMP, Mitchell S, Solis RV (2008b) Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117(1):1–27. doi:10.1016/j.jep. 2008.01.025

    PubMed  CAS  Google Scholar 

  • Hajlaoui H, Mighri H, Noumi E, Snoussi M, Trabelsi N, Ksouri R, Bakhrouf A (2010) Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: a high effectiveness against Vibrio spp. strains. Food Chem Toxicol 48(8–9):2186–2192. doi:10.1016/j.fct.2010.05.044

    PubMed  CAS  Google Scholar 

  • Henn JD, Bertol TM, de Moura NF, Coldebella A, de Brum PAR, Casagrande M (2010) Oregano essential oil as food additive for piglets: antimicrobial and antioxidant potential. Rev Bras Zootecn 39(8):1761–1767

    Google Scholar 

  • Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22(4):273–292 doi:10.1016/J.Fm.2004.08.006

    Google Scholar 

  • Hossain MA, Kabir MJ, Salehuddin SM, Rahman SMM, Das AK, Singha SK, Alam MK, Rahman A (2010) Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh. Pharm Biol 48(5):504–511. doi:10.3109/13880200903190977

    PubMed  CAS  Google Scholar 

  • Hsu WY, Simonne A, Weissman A, Kim JM (2010) Antimicrobial activity of greater galangal [Alpinia galanga (Linn.) Swartz.] flowers. Food Sci Biotechnol 19(4):873–880. doi:10.1007/s10068-010-0124-9

    Google Scholar 

  • Joung H, Kwon DY, Choi JG, Shin DY, Chun SS, Yu YB, Shin DW (2010) Antibacterial and synergistic effects of Smallanthus sonchifolius leaf extracts against methicillin-resistant Staphylococcus aureus under light intensity. J Nat Med-Tokyo 64(2):212–215. doi:10.1007/s11418-010-0388-7

    Google Scholar 

  • Khanzadi S, Gharibzadeh S, Raoufy MR, Razavilar V, Khaksar R, Radmehr B (2010) Application of artificial neural networks to predict Clostridium botulinum growth as a function of Zataria multiflora essential oil, pH, NaCl and temperature. J Food Safety 30(2):490–505. doi:10.1111/j.1745-4565.2010.00222.x

    CAS  Google Scholar 

  • Khattak KF, Simpson TJ (2010) Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root. Radiat Phys Chem 79(4):507–512. doi:10.1016/j.radphyschem.2009.10.005

    Google Scholar 

  • Khoobchandani M, Ojeswi BK, Ganesh N, Srivastava MM, Gabbanini S, Matera R, Iori R, Valgimigli L (2010) Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: comparison with various aerial and root plant extracts. Food Chem 120(1):217–224. doi:10.1016/j.foodchem.2009.10.011

    CAS  Google Scholar 

  • Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci F 9(1):82–91. doi:10.1111/j.1541-4337.2009.00095.x

    CAS  Google Scholar 

  • Kumar A, Shukla R, Singh P, Dubey NK (2010) Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L essential oil and its safety assessment as plant based antimicrobial. Food Chem Toxicol 48(2):539–543. doi:S0278-6915(09)00544-4 [pii] 10.1016/j.fct.2009.11.028

    PubMed  CAS  Google Scholar 

  • Kurade NP, Jaitak V, Kaul VK, Sharma OP (2010) Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm Biol 48(5):539–544. doi:10.3109/13880200903193336

    PubMed  CAS  Google Scholar 

  • Lee OH, Lee BY (2010) Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour Technol. doi:S0960-8524(09)01717-9 [pii] 10.1016/j.biortech.2009.12.052

  • Li JE, Nie SP, Qiu ZH, Che MJ, Li C, Xie MY (2010) Antimicrobial and antioxidant activities of the essential oil from Herba Moslae. J Sci Food Agric 90(8):1347–1352. doi:10.1002/Jsfa.3941

    PubMed  CAS  Google Scholar 

  • Lim GO, Hong YH, Song KB (2010a) Application of Gelidium corneum edible films containing carvacrol for Ham packages. J Food Sci 75(1):C90–C93. doi:10.1111/j.1750-3841.2009.01431.x

    PubMed  CAS  Google Scholar 

  • Lim GO, Jang SA, Bin Song K (2010b) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J Food Eng 98(4):415–420. doi:10.1016/j.jfoodeng.2010.01.021

    CAS  Google Scholar 

  • Luther M, Parry J, Moore J, Meng JH, Zhang YF, Cheng ZH, Yu LL (2007) Inhibitory effect of chardonnay and black raspberry seed extracts on lipid oxidation in fish oil and their radical scavenging and antimicrobial properties. Food Chem 104(3):1065–1073

    CAS  Google Scholar 

  • McCue P, Lin YT, Labbe RG, Shetty K (2005) Characterization of the effect of sprouting or solid-state bioprocessing by dietary fungus on the antibacterial activity of soybean extracts against Listeria monocytogenes. Food Biotechnol 19(2):121–136. doi:10.1081/Fbt-200063456

    Google Scholar 

  • Mehr HM, Hosseini Z, Khodaparast MHH, Edalatian MR (2010) Study on the antimicrobial effect of Salvia leriifolia (Nowroozak) leaf extract powder on the growth of Staphylococcus aureus in hamburger. J Food Safety 30(4):941–953. doi:10.1111/j.1745-4565.2010.00253.x

    Google Scholar 

  • MendozaYepes MJ, SanchezHidalgo LE, Maertens G, MarinIniesta F (1997) Inhibition of Listeria monocytogenes and other bacteria by a plant essential oil (DMC) in Spanish soft cheese. J Food Safety 17(1):47–55

    CAS  Google Scholar 

  • Mihajilov-Krstev T, Radnovic D, Kitic D, Stojanovic-Radic Z, Zlatkovic B (2009) Antimicrobial activity of Satureja hortensis L. essential oil against pathogenic microbial strains. Biotechnol Biotec Eq 23(4):1492–1496. doi:10.2478/V10133-009-0018-2

    CAS  Google Scholar 

  • Mihajilov-Krstev T, Radnovic D, Kitic D, Stojanovic-Radic Z, Zlatkovic B (2010) Antimicrobial activity of Satureja hortensis L. essential oil against pathogenic microbial strains. Arch Biol Sci 62(1):159–166. doi:10.2298/Abs1001159m

    Google Scholar 

  • Miladi H, Chaieb K, Ammar E, Bakhrouf A (2010) Inhibitory effect of clove oil (Syzium aromaticum) against Listeria monocytogenes cells incubated in fresh-cut salmon. J Food Safety 30(2):432–442. doi:10.1111/j.1745-4565.2010.00217.x

    Google Scholar 

  • Niedziela JC, MacRae M, Ogden ID, Nesvadba P (1998) Control of Listeria monocytogenes in salmon; antimicrobial effect of salting, smoking and specific smoke compounds. Food Sci Technol-Leb 31(2):155–161

    CAS  Google Scholar 

  • Nissen L, Zatta A, Stefanini I, Grandi S, Sgorbati B, Biavati B, Monti A (2010) Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 81(5):413–419. doi:10.1016/j.fitote.2009.11.010

    PubMed  CAS  Google Scholar 

  • Nogueira JHC, Goncalez E, Galleti SR, Facanali R, Marques MOM, Felicio JD (2010) Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus. I J Food Microbiol 137(1):55–60. doi:10.1016/j.ijfoodmicro.2009.10.017

    CAS  Google Scholar 

  • Nori MP, Favaro-Trindade CS, de Alencar SM, Thomazini M, Balieiro JCD, Castillo CJC (2011) Microencapsulation of propolis extract by complex coacervation. Lwt-Food Sci Technol 44(2):429–435. doi:10.1016/j.lwt.2010.09.010

    CAS  Google Scholar 

  • Ntzimani AG, Giatrakou VI, Savvaidis IN (2010) Combined natural antimicrobial treatments (EDTA, lysozyme, rosemary and oregano oil) on semi cooked coated chicken meat stored in vacuum packages at 4 degrees C: microbiological and sensory evaluation. Innov Food Sci Emerg 11(1):187–196. doi:10.1016/j.ifset.2009.09.004

    CAS  Google Scholar 

  • Oh J, Hwang IH, Kim DC, Kang SC, Jang TS, Lee SH, Na M (2010) Anti-listerial compounds from Asari Radix. Arch Pharmacol Res 33(9):1339–1345. doi:10.1007/s12272-010-0907-9

    CAS  Google Scholar 

  • Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 122(1):161–166. doi:10.1016/j.foodchem.2010.02.033

    CAS  Google Scholar 

  • Okoh OO, Sadimenko AP, Afolayan AJ (2010) Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem 120(1):308–312. doi:10.1016/j.foodchem.2009.09.084

    CAS  Google Scholar 

  • Oroojalian F, Kasra-Kermanshahi R, Azizi M, Bassami MR (2010) Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem 120(3):765–770. doi:10.1016/j.foodchem.2009.11.008

    CAS  Google Scholar 

  • Ozcakmak S, Dervisoglu M, Pembeci-Kodolbas C, Sagdic O (2010) Effects of thyme and rosemary essential oils on the growth of two aflatoxigenic Aspergillus flavus strains. J Appl Bot Food Qual 83(2):170–174

    CAS  Google Scholar 

  • Ozkan G, Sagdic O, Gokturk RS, Unal O, Albayrak S (2010) Study on chemical composition and biological activities of essential oil and extract from Salvia pisidica. Lwt-Food Sci Technol 43(1):186–190

    CAS  Google Scholar 

  • Ozturk I, Ekici L, Yetim H, Sagdic O (2010) Antioxidative, antiradical, and antimicrobial activities of extracts from Antep Pistachio hulls. J Verbrauch Lebensm 5(2):163–167. doi:10.1007/s00003-009-0529-7

    Google Scholar 

  • Padovan L, Scocchi M, Tossi A (2010) Structural aspects of plant antimicrobial peptides. Curr Protein Pept Sc 11(3):210–219

    CAS  Google Scholar 

  • Park EJ, Jhon DY (2010) The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. Lwt-Food Sci Technol 43(4):655–659. doi:10.1016/j.lwt.2009.11.005

    CAS  Google Scholar 

  • Park MJ, Choi WS, Kang HY, Gwak KS, Lee GS, Jeung EB, Choi IG (2010) Inhibitory effect of the essential oil from Chamaecyparis obtusa on the growth of food-borne pathogens. J Microbiol 48(4):496–501. doi:10.1007/s12275-010-9327-2

    PubMed  CAS  Google Scholar 

  • Patil RP, Nimbalkar MS, Jadhav UU, Dawkar VV, Govindwar SP (2010) Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L. J Sci Food Agric 90(4):608–614. doi:10.1002/Jsfa.3857

    PubMed  CAS  Google Scholar 

  • Pirbalouti AG, Jahanbazi P, Enteshari S, Malekpoor F, Hamedi B (2010) Antimicrobial activity of some Iranian medicinal plants. Arch Biol Sci 62(3):633–641. doi:10.2298/Abs1003633g

    Google Scholar 

  • Pires ACD, Soares NDF, de Andrade NJ, da Silva LHM, Camilloto GP, Bernardes PC (2009) Increased preservation of sliced mozzarella cheese by antimicrobial sachet incorporated with allyl isothiocyanate. Braz J Microbiol 40(4):1002–1008

    CAS  Google Scholar 

  • Qiu JZ, Feng HH, Lu J, Xiang H, Wang DC, Dong J, Wang JF, Wang XL, Liu JX, Deng XM (2010) Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl Environ Microb 76(17):5846–5851. doi:10.1128/Aem.00704-10

    CAS  Google Scholar 

  • Randhir R, Lin YT, Shetty K (2004) Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr 13(3):295–307

    PubMed  CAS  Google Scholar 

  • Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohyd Polym 82(4):1243–1247. doi:10.1016/j.carbpol.2010.06.058

    CAS  Google Scholar 

  • Rattanachaikunsopon P, Phumkhachorn P (2010a) Antimicrobial activity of basil (Ocimum basilicum) oil against salmonella Enteritidis in vitro and in food. Biosci Biotechnol Biochem 74(6):1200–1204. doi:10.1271/Bbb.90939

    PubMed  CAS  Google Scholar 

  • Rattanachaikunsopon P, Phumkhachorn P (2010b) Synergistic antimicrobial effect of nisin and rho-cymene on Salmonella enterica serovar Typhi in vitro and on ready-to-eat food. Biosci Biotechnol Biochem 74(3):520–524. doi:10.1271/Bbb.90708

    PubMed  CAS  Google Scholar 

  • Ravishankar S, Zhu L, Reyna-Granados J, Law B, Joens L, Friedman M (2010) Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters. J Food Prot 73(2):234–240

    PubMed  CAS  Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Yoshinari T, Rezaee MB, Jaimand K, Nagasawa H, Sakuda S (2008) Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int J Food Microbiol 123(3):228–233. doi:S0168-1605(08)00062-7 [pii] 10.1016/j.ijfoodmicro.2008.02.003

    PubMed  CAS  Google Scholar 

  • Riadh H, Imen F, Abdelmajid Z, Sinda F (2011) Detection and extraction of anti-listerial compounds from Calligonum comosum, a medicinal plant from arid regions of Tunisia. Afr J Tradit Complem 8(3):322–327

    CAS  Google Scholar 

  • Romeo FV, De Luca S, Piscopo A, De Salvo E, Poiana M (2010) Effect of some essential oils as natural food preservatives on commercial grated carrots. J Essent Oil Res 22(3):283–287

    CAS  Google Scholar 

  • Rua J, Fernandez-Alvarez L, Gutierrez-Larrainzar M, del Valle P, de Arriaga D, Garcia-Armesto MR (2010) Screening of phenolic antioxidants for their inhibitory activity against foodborne Staphylococcus aureus strains. Foodborne Pathogens Disease 7(6):695–705. doi:10.1089/fpd.2009.0440

    CAS  Google Scholar 

  • Ruiz A, Williams SK, Djeri N, Hinton A, Rodrick GE (2009) Nisin, rosemary, and ethylenediaminetetraacetic acid affect the growth of Listeria monocytogenes on ready-to-eat turkey ham stored at four degrees Celsius for sixty-three days. Poultry Sci 88(8):1765–1772. doi:10.3382/ps.2008-00521

    CAS  Google Scholar 

  • Salas MP, Celiz G, Geronazzo H, Daz M, Resnik SL (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem 124(4):1411–1415. doi:10.1016/j.foodchem.2010.07.100

    CAS  Google Scholar 

  • Santas J, Almajano MP, Carbo R (2010) Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. Int J Food Sci Technol 45(2):403–409. doi:10.1111/j.1365-2621. 2009.02169.x

    CAS  Google Scholar 

  • Schirmer BC, Langsrud S (2010) Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat. J Food Sci 75(2):M98–M102. doi:10.1111/j.1750-3841.2009.01485.x

    PubMed  CAS  Google Scholar 

  • Serrano C, Matos O, Teixeira B, Ramos C, Neng N, Nogueira J, Nunes ML, Marques A (2011) Antioxidant and antimicrobial activity of Satureja montana L. extracts. J Sci Food Agric 91(9):1554–1560. doi:10.1002/Jsfa.4347

    PubMed  CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9(2):303–314. doi:10.1007/s11101-010-9189-6

    CAS  Google Scholar 

  • Simsek B, Sagdic O, Ozcelik S (2007) Survival of Escherichia coli O157: H7 during the storage of Ayran produced with different spices. J Food Eng 78(2):676–680. doi:10.1016/j.jfoodeng.2005.11.005

    Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L (2001) The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol 18(4):463–470

    CAS  Google Scholar 

  • Sotelo I, Casas N, Camelo G (2010) Borojo (Borojoa patinoi): source of polyphenols with antimicrobial activity. Vitae-Columbia 17(3):329–336

    Google Scholar 

  • Szabo MR, Radu D, Gavrilas S, Chambre D, Iditoiu C (2010) Antioxidant and antimicrobial properties of selected spice extracts. Int J Food Prop 13(3):535–545. doi:10.1080/10942910802713149

    Google Scholar 

  • Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21(9):1199–1218. doi:10.1016/j.foodcont.2010.02.003

    CAS  Google Scholar 

  • Teng Y, Yang Q, Yu ZY, Zhou GP, Sun Q, Jin H, Hou TP (2010) In vitro antimicrobial activity of the leaf essential oil of Spiraea alpina Pall. World J Microbiol Biotechnol 26(1):9–14. doi:10.1007/s11274-009-0134-z

    CAS  Google Scholar 

  • Thembo KM, Vismer HF, Nyazema NZ, Gelderblom WCA, Katerere DR (2010) Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. J Appl Microbiol 109(4):1479–1486. doi:10.1111/j.1365-2672.2010.04776.x

    PubMed  CAS  Google Scholar 

  • Trajano VN, Lima ED, Travassos AE, de Souza EL (2010) Inhibitory effect of the essential oil from Cinnamomum zeylanicum Blume leaves on some food-related bacteria. Ciencia Technol Alime 30(3):771–775

    Google Scholar 

  • Tserennadmid R, Tako M, Galgoczy L, Papp T, Vagvolgyi C, Gero L, Krisch J (2010) Antibacterial effect of essential oils and interaction with food components. Cent Eur J Biol 5(5):641–648. doi:10.2478/s11535-010-0058-5

    CAS  Google Scholar 

  • Tyagi AK, Malik A (2010) Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens. Int J Food Microbiol 143(3):205–210. doi:10.1016/j.ijfoodmicro.2010.08.023

    PubMed  CAS  Google Scholar 

  • Vaquero MJR, Serravalle LRT, de Nadra MCM, de Saad AMS (2010) Antioxidant capacity and antibacterial activity of phenolic compounds from argentinean herbs infusions. Food Control 21(5):779–785. doi:10.1016/j.foodcont.2009.10.017

    Google Scholar 

  • Velluti A, Sanchis V, Ramos AJ, Egido J, Marin S (2003) Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B-1 production by Fusarium proliferatum in maize grain. Int J Food Microbiol 89(2–3):145–154. doi:10.1016/S0168-1605(03)00116-8

    PubMed  CAS  Google Scholar 

  • von Staszewski M, Pilosof AMR, Jagus RJ (2011) Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chem 125(1):186–192. doi:10.1016/j.foodchem.2010.08.059

    Google Scholar 

  • Wanner J, Schmidt E, Bail S, Jirovetz L, Buchbauer G, Gochev V, Girova T, Atanasova T, Stoyanova A (2010a) Chemical composition and antibacterial activity of selected essential oils and some of their main compounds. Nat Prod Commun 5(9):1359–1364

    PubMed  CAS  Google Scholar 

  • Wanner J, Schmidt E, Bail S, Jirovetz L, Buchbauer G, Gochev V, Girova T, Atanasova T, Stoyanova A (2010b) Chemical composition, olfactory evaluation and antimicrobial activity of selected essential oils and absolutes from Morocco. Nat Prod Commun 5(9):1349–1354

    PubMed  CAS  Google Scholar 

  • Weerakkody NS, Caffin N, Turner MS, Dykes GA (2010) In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21(10):1408–1414. doi:10.1016/j.foodcont.2010.04.014

    CAS  Google Scholar 

  • Xia DZ, Wu XQ, Shi JY, Yang Q, Zhang Y (2011) Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb. et Zucc) and their antimicrobial activity. Lwt-Food Sci Technol 44(1):347–349. doi:10.1016/j.lwt.2010.05.017

    CAS  Google Scholar 

  • Xing YG, Li XH, Xu QL, Yun JA, Lu YQ (2010) Antifungal activities of cinnamon oil against Rhizopus nigricans, Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. Int J Food Sci Technol 45(9):1837–1842. doi:10.1111/j.1365-2621.2010.02342.x

    CAS  Google Scholar 

  • Zerbo A, Koudou J, Ouedraogo N, Ouedraogo R, Guissou IP (2010) Antioxidant and antibacterial activities of Piliostigma reticulatum (DC.) Hochst extracts. Afr J Biotechnol 9(33):5407–5411

    Google Scholar 

  • Zhang H, Cui YA, Zhu SM, Feng FQ, Zheng XD (2010a) Characterization and antimicrobial activity of a pharmaceutical microemulsion. Int J Pharmaceut 395(1–2):154–160. doi:10.1016/j.ijpharm.2010.05.022

    CAS  Google Scholar 

  • Zhang JY, Gong JY, Ding YT, Lu BY, Wu XQ, Zhang Y (2010b) Antibacterial activity of water-phase extracts from bamboo shavings against food spoilage microorganisms. Afr J Biotechnol 9(45):7710–7717

    Google Scholar 

  • Zouari S, Zouari N, Fakhfakh N, Bougatef A, Ayadi MA, Neffati M (2010) Chemical composition and biological activities of a new essential oil chemotype of Tunisian Artemisia herba alba Asso. J Med Plants Res 4(10):871–880

    CAS  Google Scholar 

Download references

Acknowledgements

Sangeetha Viswanathan is acknowledged for her editing efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Tajkarimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tajkarimi, M., Ibrahim, S.A. (2012). Phytochemicals as Anti-microbial Food Preservatives. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_7

Download citation

Publish with us

Policies and ethics