Skip to main content

Antimicrobial Properties of Organosulfur Compounds

  • Chapter
  • First Online:
Dietary Phytochemicals and Microbes

Abstract

Organosulfur compounds are defined as organic molecules containing one or more carbon-sulfur bonds. These compounds are present particularly in Allium and Brassica vegetables and are converted to a variety of other sulfur containing compounds via hydrolysis by several herbal enzymes when the intact bulbs are damaged or cut. Sulfur containing hydrolysis products constitute very diverse chemical structures and exhibit several bioactive properties as well as antimicrobial. The antimicrobial activity of organosulfur compounds has been reported against a wide spectrum of bacteria, fungi and viruses. Despite the wide antimicrobial spectrum, their pungent flavor/odor is the most considerable factor restricting their common use in foods as antimicrobial additives. However, meat products might be considered as the most suitable food materials in this respect since Allium and Brassica vegetables especially garlic and onion have been used as flavoring and preservative agents in meat origin foods. In this chapter, the chemical diversity and in vitro and in food antimicrobial activity of the organosulfur compounds of Allium and Brassica plants are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adetumbi M, Javor GT, Lau BHS (1986) Allium sativum (garlic) inhibits lipid synthesis by Candida albicans. Antimicrob Agents Chemother 30(3):499–501

    PubMed  CAS  Google Scholar 

  • Ahmad JI (1996) Garlic – a panacea for health and good taste. Nutr Food Sci 1:32–35

    Google Scholar 

  • Aires A, Mota VR, Saavedra MJ et al (2009) The antimicrobial effects of glucosinolates and their respective hydrolysis products on bacteria isolated from human intestinal tract. J Appl Microbiol 106:2086–2095

    PubMed  CAS  Google Scholar 

  • Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 2:125–129

    Google Scholar 

  • Ankri S, Miron T, Rabinkov A et al (1997) Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob Agents Chemother 41(10):2286–2288

    PubMed  CAS  Google Scholar 

  • Aydin A, Bostan K, Erkan ME et al (2007) The antimicrobial effects of chopped garlic in ground beef and raw meatball (cig kofte). J Med Food 10(1):203–207

    PubMed  CAS  Google Scholar 

  • Bachrach G, Jamil A, Naor R et al (2011) Garlic allicin as a potential agent for controlling oral pathogens. J Med Food 14(11):1338–1343

    PubMed  CAS  Google Scholar 

  • Bakri IM, Douglas CWI (2005) Inhibitory effect of garlic extract on oral bacteria. Arch Oral Biol 50:645–651

    PubMed  CAS  Google Scholar 

  • Barone FE, Tansey MR (1977) Isolation, purification, identification, synthesis, and kinetics of activity of the anticandidal component of Allium sativum, and a hypothesis for its mode of action. Mycologia 69:793–824

    PubMed  CAS  Google Scholar 

  • Benkeblia N (2004) Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT- Food Sci Technol 37:263–268

    CAS  Google Scholar 

  • Benkeblia N, Lanzotti V (2007) Allium thiosulfinates: chemistry, biological properties and their potential utilization in food preservation. Food 1(2):193–201

    Google Scholar 

  • Bianchini F, Vainio H (2001) Allium vegetables and organosulfur compounds: do they help prevent cancer. Environ Health Perspect 109(9):893–902

    PubMed  CAS  Google Scholar 

  • Block E (1985) The chemistry of garlic and onion. Sci Am 252:114–119

    PubMed  CAS  Google Scholar 

  • Block E (1992) Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (ramsoms), leek, scallion, shallot, elephant (great-headed) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J Agric Food Chem 40:2418–2430

    CAS  Google Scholar 

  • Block E, Naganathan S, Putman D et al (1993) Organosulfur chemistry of garlic and onion: recent results. Pure Appl Chem 65(4):625–632

    CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M et al (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    PubMed  CAS  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    CAS  Google Scholar 

  • Cavallito CJ, Bailey JH (1944) Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J Am Chem Soc 66:1950–1951

    CAS  Google Scholar 

  • Chacon PA, Buffo RA, Holley RA (2006) Inhibitory effects of microencapsulated allyl isothiocyanate (AOT) against Escherichia coli O157:H7 in refrigerated, nitrogen packed, finely chopped beef. Int J Food Microbiol 107:231–237

    PubMed  CAS  Google Scholar 

  • Chehregani A, Azimishad F, Alizade HH (2007) Study on antibacterial effect of some Allium species from Hamedan-Iran. Int J Agric Biol 9(6):873–876

    Google Scholar 

  • Chen C-H, Chou T-W, Cheng L-H et al (2011) In vitro anti-adenoviral activity of five Allium plants. J Taiwan Inst Chem Eng 42:228–232

    CAS  Google Scholar 

  • Choubdar N, Li S, Holley RA (2010) Supercritical fluid chromatography of myrosinase reaction products in ground yellow mustard seed oil. J Food Sci 75(4):341–345

    Google Scholar 

  • Corzo-Martinez M, Corzo N, Villamiel M (2007) Biological properties of onions and garlic. Trends Food Sci Technol 18:609–625

    CAS  Google Scholar 

  • Cremlyn RJ (1996) An introduction to organosulfur chemistry. John Wiley & Sons, New York

    CAS  Google Scholar 

  • Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–78

    CAS  Google Scholar 

  • Delaquis PJ, Sholberg PL (1997) Antimicrobial activity of gaseous allyll isothiocyanate. J Food Prot 60(8):943–947

    CAS  Google Scholar 

  • Dini I, Tenore GC, Dini A (2008) Chemical composition, nutritional value and antioxidant properties of Allium caepa L. var. tropeana (red onion) seeds. Food Chem 107:613–621

    CAS  Google Scholar 

  • Du L, Halkier BA (1998) Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry 48(7):1145–1150

    CAS  Google Scholar 

  • Erickson JM, Feeny P (1974) Sinigrin: a chemical barrier to the black swallowtail butterfly, Papilio polixenes. Ecology 55:103–111

    CAS  Google Scholar 

  • Fahey JW, Zalemann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    PubMed  CAS  Google Scholar 

  • Fahey JW, Haristoy X, Dolan PM et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyreneinduced stomach tumors. P Natl Acad Sci USA 99:7610–7615

    CAS  Google Scholar 

  • FAO (2004) Production year book 2004. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Feldberg RS, Chang SC, Kotik AN et al (1988) In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother 32:1763–1768

    PubMed  CAS  Google Scholar 

  • Galan MV, Kishan AA, Silverman AL (2004) Oral broccoli sprouts for the treatment of Helicobacter pylori infection: a preliminary report. Dig Dis Sci 49:1088–1090

    PubMed  Google Scholar 

  • Ghannoum MA (1988) Studies on the anticandidal mode of action of Allium sativum (garlic). J Gen Microbiol 134:2917–2924

    PubMed  CAS  Google Scholar 

  • Gilbert J, Senyuva HZ (2008) Bioactive compounds in foods. Blackwell Publishing, Oxford

    Google Scholar 

  • Goncagul G, Ayaz E (2010) Antimicrobial effect of garlic (Allium sativum). Recent Pat Antiinfect Drug Discov 5:1–3

    Google Scholar 

  • Goncalves MPJC, Pires ACDS, Soares NDFF et al (2009) Use of allyl isothiocyanate sachet to preserve cottage cheese. J Foodserv 20:275–279

    Google Scholar 

  • Griffiths G, Trueman L, Crowther T et al (2002) Onions – a global benefit to health. Phytother Res 16:603–615

    PubMed  CAS  Google Scholar 

  • Grubb CD, Abbel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11(2):89–100

    PubMed  CAS  Google Scholar 

  • Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2(11):425–431

    Google Scholar 

  • Haristoy X, Angioi-Duprez K, Duprez A et al (2003) Efficacy of sulforaphane in eradicating Helicobacter pylori in human gastric xenografts implanted in nude mice. Antimicrob Agents Chemother 47:3982–3984

    PubMed  CAS  Google Scholar 

  • Haristoy X, Fahey JW, Scholtus I et al (2005) Evaluation of the antibacterial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71:326–330

    PubMed  CAS  Google Scholar 

  • Higdon JV, Delage B, Williams DE et al (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    PubMed  CAS  Google Scholar 

  • Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447

    PubMed  CAS  Google Scholar 

  • Isshiki K, Tokuoka K, Mori R et al (1992) Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci Biotech Biochem 56(9):1476–1477

    CAS  Google Scholar 

  • James DC, Rossiter JT (1991) Development and characteristics of myrosinase in Brassica napus during early seedling growth. Physiol Plant 82:163–170

    CAS  Google Scholar 

  • Kasornchandra J, Chutchawanchaipan W, Thavornyutikarn M et al (2005) Application of garlic (Allium sativum) as an alternate therapeutic for marine shrimp. In: Proceeding of the JSPS-NRCT international symposium: productivity techniques and effective utilization of aquatic animal resources into the new century, Kasetsart University, Thailand, Dec 2005, pp 114–119

    Google Scholar 

  • Kawakishi S, Kaneko T (1987) Interaction of proteins with allyl isothiocyanate. J Agric Food Chem 35:85–88

    CAS  Google Scholar 

  • Kim JW, Kyung KH (2003) Antiyeast activity of heated garlic in the absence of alliinase enzyme action. J Food Sci 68(5):1766–1770

    CAS  Google Scholar 

  • Kim MG, Lee HS (2009) Growth-inhibiting activities of phenethyl isothiocyanate and its derivatives against intestinal bacteria. J Food Sci 74(8):467–471

    Google Scholar 

  • Kim JE, Choi NH, Kang SC (2007) Anti-listerial properties of garlic shoot juice at growth and morphology of Listeria monocytogenes. Food Control 18(10):1198–1203

    CAS  Google Scholar 

  • Kjaer A (1976) Glucosinolates in the Cruciferae. In: Vaughan JG, MacLeod AJ, Jones BMG (eds) The biology and chemistry of the Cruciferae. Academic, London

    Google Scholar 

  • Kumar M, Berwal JS (1998) Sensitivity of food pathogens to garlic (Allium sativum). J Appl Microbiol 84:213–215

    PubMed  CAS  Google Scholar 

  • Kurt S, Gunes U, Soylu EM (2011) In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Manag Sci 67:869–875

    PubMed  CAS  Google Scholar 

  • Kyung KH, Fleming HP (1997) Antimicrobial activity of sulfur compounds derived from cabbage. J Food Prot 60:67–71

    PubMed  CAS  Google Scholar 

  • Lahtinen SJ, Tammela L, Korpela J et al (2009) Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age 31(1):59–66

    PubMed  Google Scholar 

  • Lanzotti V (2006) The analysis of onion and garlic. J Chromatogr A 1112:3–22

    PubMed  CAS  Google Scholar 

  • Lawson LD (1996) The composition and chemistry of garlic cloves and processed garlic. In: Koch HP, Lawson LD (eds) Garlic: the science and therapeutic application of Allium sativum L. and related species. Williams and Wilkins Press, Baltimore

    Google Scholar 

  • Lawson LD (1998) Garlic: a review of its medicinal effects and indicated active compounds. In: Lawson LD, Bauer R (eds) Phytomedicines of Europe: chemistry and biological activity, ACS symposium series. Am Chem S, Washington DC

    Google Scholar 

  • Lim S, Lee J, Kim J-K (2009) Analysis of isothiocyanates in newly generated vegetables, Baemuchae (Brassicoraphanus) as affected by growth. Int J Food Sci Technol 44:1401–1407

    CAS  Google Scholar 

  • Lin C, Preston JF, Wei C (2000) Antibacterial mechanism of allyl isothiocyanate. J Food Prot 63(6):727–734

    PubMed  CAS  Google Scholar 

  • Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517–520

    Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479–3485

    Google Scholar 

  • Lun ZR, Burri C, Menzinger M et al (1994) Antiparasitic activity of diallyl trisulfide (Dasuansu) on human and animal pathogenic protozoa (Trypanosoma sp., Entamoeba histolytica and Giardia lamblia) in vitro. Ann Soc Belg Med Trop 74:51–59

    PubMed  CAS  Google Scholar 

  • Mari M, Leoni O, Lori R et al (2002) Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillium expansum on pears. Plant Pathol 51:231–236

    CAS  Google Scholar 

  • Mazza G (2002) Functional foods: biochemical and processing aspects. CRC Press, Boca Raton

    Google Scholar 

  • Muthukumarasamy P, Han JH, Holley RA (2003) Bactericidal effects of Lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157:H7 in refrigerated ground beef. J Food Prot 66(11):2038–2044

    PubMed  CAS  Google Scholar 

  • Nadarajah D, Han JH, Holley RA (2005) Inactivation of Escherichia coli O157:H7 in packaged ground beef by allyl isothiocyanate. Int J Food Microbiol 99:269–279

    PubMed  CAS  Google Scholar 

  • Naganawa R, Iwata N, Ishikawa K et al (1996) Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl Environ Microbiol 62(11):4238–4242

    PubMed  CAS  Google Scholar 

  • O’gara EA, Hill DJ, Maslin DJ (2000) Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Appl Environ Microbiol 66(5):2269–2273

    PubMed  Google Scholar 

  • Obadiat MM, Frank JF (2009a) Inactivation of Salmonella and Escherichia coli O157:H7 on sliced and whole tomatoes by allyl isothiocyanate, carvacrol and cinnamaldehyde in vapor phase. J Food Prot 72(2):315–324

    Google Scholar 

  • Obadiat MM, Frank JF (2009b) Inactivation of Escherichia coli O157:H7 on the intact and damaged portions of lettuce and spinach leaves by using allyl isothiocyanate, carvacrol and cinnamaldehyde in vapor phase. J Food Prot 72(10):2046–2055

    Google Scholar 

  • Ogawa T, Nakatani A, Matsuzaki H et al (2000) Combined effects of hydrostatic pressure, temperature, and addition of allyl isothiocyanate on inactivation of Escherichia coli. J Food Prot 63(7):884–888

    PubMed  CAS  Google Scholar 

  • Park SY, Yoo SS, Shim JH et al (2008) Physicochemical properties, and antioxidant and antimicrobial effects of garlic and onion powder in fresh pork belly and loin during refrigerated storage. J Food Sci 73(8):577–584

    Google Scholar 

  • Patra AK, Saxena J (2010) A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198–1222

    PubMed  CAS  Google Scholar 

  • Pengelly A (2004) The constituents of medicinal plants: an introduction to the chemistry & therapeutics of herbal medicines, 2nd edn. CABI Publishing, Wallingford

    Google Scholar 

  • Peter KV (2000) Handbook of herbs and spices. CRC Press Woodhead Publishing, Cambridge

    Google Scholar 

  • Polat U (2010) The effects on metabolism of glucosinolates and theirs hydrolysis products. J Biol Environ Sci 4(10):39–42

    Google Scholar 

  • Polshettiwar V, Kaushik MP (2004) A new, efficient and simple method for the thionation of ketones to thioketones using P4S10/Al2O3. Tetrahedron Lett 45:6255–6257

    CAS  Google Scholar 

  • Rahman K (2003) Garlic and aging: new insights into an old remedy. Ageing Res Rev 2:39–56

    PubMed  Google Scholar 

  • Sagun E, Durmaz H, Tarakci Z et al (2006) Antibacterial activities of the extracts of some herbs used in Turkish herby cheese against Listeria monocytogenes serovars. Int J Food Prop 9:255–260

    Google Scholar 

  • Salama HMH, Marraiki N (2010) Antimicrobial activity and phytochemical analysis of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt. Saudi J Bio Sci 17:57–63

    Google Scholar 

  • Salem AM, Amin RA, Afifi GSA (2010) Studies on antimicrobial and antioxidant efficiency of some essential oils in minced beef. J Am Sci 6(12):691–700

    Google Scholar 

  • Sallam KI, Ishioroshi M, Samejima K (2004) Antioxidant and antimicrobial effects of garlic in chicken sausage. Lebenson Wiss Technol – Food Sci Tech 37:849–855

    CAS  Google Scholar 

  • Sellam A, Iacomi-Vacilescu B, Hudhomme P et al (2007) In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol 56:296–301

    CAS  Google Scholar 

  • Shams-Ghahfarokhi M, Shokoohamiri M, Amirrajab N et al (2006) In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia 77:321–323

    PubMed  Google Scholar 

  • Shi J, Ho CT, Shahidi F (2005) Asian functional foods. CRC Press, Boca Raton

    Google Scholar 

  • Shin J, Harte B, Ryser E et al (2010) Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J Food Sci 75(2):65–71

    Google Scholar 

  • Shofran BG, Purrington ST, Breidt F et al (1998) Antimicrobial properties of sinigrin and its hydrolysis products. J Food Sci 63(4):621–624

    CAS  Google Scholar 

  • Shoji S, Furuishi K, Yanase R et al (1993) Allyl compounds selectively killed human deficiency virus-type 1-infected cells. Biochem Biophys Res Commun 194:610–621

    PubMed  CAS  Google Scholar 

  • Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224

    PubMed  CAS  Google Scholar 

  • Song L, Morrison JJ, Botting NP et al (2005) Analysis of glucosinolates, isothiocyanates and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS. Anal Biochem 347:234–243

    PubMed  CAS  Google Scholar 

  • Stoewsand GS (1995) Bioactive organosulfur phytochemicals in Brassica oleracea vegetables: a review. Food Chem Toxicol 33(6):537–543

    PubMed  CAS  Google Scholar 

  • Tansey MR, Appleton JA (1975) Inhibition of fungal growth by garlic extract. Mycologia 67:409–413

    PubMed  CAS  Google Scholar 

  • Tatarintsev AV, Vrzhets PV, Ershov DE et al (1992) The ajoene blockade of integrin-dependent processes in an HIV-infected cell system. Vestn Ross Akad Med Nauk 11:6–10

    Google Scholar 

  • Tierens KFM, Thomma BPHJ, Brouwer M et al (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    PubMed  CAS  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8(1):269–282

    CAS  Google Scholar 

  • Troncoso-Rojas R, Sanchez-Estrada A, Ruelas C (2005) Effect of benzyl isothiocyanate on tomato fruit infection development by Alternaria alternata. J Sci Food Agric 85:1427–1434

    CAS  Google Scholar 

  • Tsao S, Yin M (2001) In vitro activity of garlic oil and four diallyl sulfides against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. J Antimicrob Chemother 47:665–670

    PubMed  CAS  Google Scholar 

  • Tsao R, Peterson CJ, Coats JR (2002) Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecol 2:5. doi:10.1186/1472-6785-2-5

    PubMed  Google Scholar 

  • VanEtten CH, Daxenbichler ME, Williams PH et al (1976) Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible part from twenty-two varieties of cabbage. J Agric Food Chem 24:452–455

    PubMed  CAS  Google Scholar 

  • Vaughn SF (1999) Glucosinolates as natural pesticides. In: Cutler HG, Cutler SJ (eds) Biologically active natural products: agrochemicals. CRC Press, New York

    Google Scholar 

  • Vazquez-Prieto MA, Miatello RM (2010) Organosulfur compounds and cardiovascular disease. Mol Aspects Med 31:540–545

    PubMed  CAS  Google Scholar 

  • Vinson JA, Hap Y, Su X et al (1998) Phenolic antioxidant quantity and quality in foods: vegetables. J Agric Food Chem 46:3630–3634

    CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-ROM. Plant Syst Evol 259:249–258

    Google Scholar 

  • Weber ND, Anderson DO, North JA et al (1992) In vitro virucidal activity of Allium sativum (garlic) extract and compounds. Planta Med 58:417–423

    PubMed  CAS  Google Scholar 

  • Whitmore B, Naidu A (2000) Glucosinolates. In: Naidu A (ed) Natural food antimicrobial systems. CRC Press, New York

    Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7(6):263–270

    PubMed  CAS  Google Scholar 

  • Wong PYY, Kitts DD (2002) The effects of herbal pre-seasoning on microbial and oxidative changes in irradiated beef steaks. Food Chem 76:197–205

    CAS  Google Scholar 

  • Wu H, Zhang X, Zhang G-A et al (2011) Antifungal vapour-phase activity of a combination of allyl isothiocyanate and ethyl isothiocyanate against Botrytis cinerea and Penicillium expansum infection on apples. J Phytopathol 159:450–455

    Google Scholar 

  • Yamada Y, Azuma K (1977) Evaluation of the in vitro antifungal activity of allicin. Antimicrob Agents Chemother 11:743–749

    PubMed  CAS  Google Scholar 

  • Yanaka A, Fahey JW, Fukumoto A et al (2009) Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori – infected mice and humans. Cancer Prev Res 2(4):353–360

    CAS  Google Scholar 

  • Yin M, Cheng W (2003) Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci 63:23–28

    PubMed  Google Scholar 

  • Yin M, Tsao S (1999) Inhibitory effect of seven Allium plants upon three Aspergillus species. Int J Food Microbiol 49:49–56

    PubMed  CAS  Google Scholar 

  • Yoshida S, Kasuga S, Hayashi N et al (1987) Antifungal activity of ajoene derived from garlic. Appl Environ Microbiol 53(3):615–617

    PubMed  CAS  Google Scholar 

  • Yoshida H, Iwata N, Katsuzaki H et al (1998) Antimicrobial activity of a compound isolated from an oil-macerated garlic extract. Biosci Biotechnol Biochem 62(5):1014–1017

    PubMed  CAS  Google Scholar 

  • Yoshida H, Katsuzaki H, Ohta R et al (1999) An organosulfur compound isolated from oil-macerated garlic extract, and its antimicrobial effect. Biosci Biotechnol Biochem 63(3):588–590

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Sagdic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sagdic, O., Tornuk, F. (2012). Antimicrobial Properties of Organosulfur Compounds. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_4

Download citation

Publish with us

Policies and ethics