Skip to main content

Antimicrobial Properties of Flavonoids

  • Chapter
  • First Online:
Book cover Dietary Phytochemicals and Microbes

Abstract

Flavonoids are a class of plant constituents that have received increasing interest over the last decades. This chapter deals with the antimicrobial activity of some natural flavonoids or extracts rich in these constituents reported in the literature during the last 5 years.

An introduction explains briefly the chemical structure of this class of natural compounds, their biosynthesis, plant sources and health benefits. Then the most significant articles from the scientific literature are reported, divided into two sections: studies on flavonoids with antibacterial and antifungal activities, respectively. In each paragraph the papers are listed according to the chemical complexity of the flavonoid structures, from the simplest to the most complex ones, both aglicones and glycosides and often gathering together the articles according to the main microbial target. A paragraph on the antimicrobial activity of combination of different flavonoids or between flavonoids and antibiotics (synergic effect) is also present. For many of the flavonoids cited the MIC values of their activity were also reported.

The chemical structure of the majority of the compounds cited in the chapter are pictured in figures; tables have been compiled summarising the most important information reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Kader MS, Bahler BD, Malone S et al (2000) Bioactive saponins from Swartzia schomburgkii from the Suriname rainforest. J Nat Prod 63:1461–1464

    PubMed  CAS  Google Scholar 

  • Aherne SA, O’Brien NM (2002) Dietary flavonoids: chemistry, food content, and metabolism. Nutrition 18:75–81

    PubMed  CAS  Google Scholar 

  • Aiyegoro OA, Okoh AI (2009) Use of bioactive plant products in combination with standard antibiotics: implications in antimicrobial chemotherapy. J Med Plant Res 3:1147–1152

    CAS  Google Scholar 

  • Akroum S, Bendjeddou D, SattaD LK (2009) Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia. Am-Euras J Sci Res 4:93–96

    CAS  Google Scholar 

  • Alvarez MA, Debattista NB, Pappano NB (2006) Synergism of flavonoids with bacteriostatic action against Staphylococcus aureus ATCC 25 923 and Escherichia coli ATCC 25 922. Biocell 30:39–42

    CAS  Google Scholar 

  • Alvesalo J, Vuorela H, Tammela P et al (2006) Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures. Biochem Pharmacol 71:735–741

    PubMed  CAS  Google Scholar 

  • Andersen OM, Markham KR (eds) (2006) Flavonoids: chemistry, biochemistry and applications. Taylor & Francis, London

    Google Scholar 

  • Arima H, Danno G (2002) Isolation of antimicrobial compounds from guava (Psidium guajava L.). Biosci Biotechnol Biochem 66:1727–1730

    PubMed  CAS  Google Scholar 

  • Athikomkulchai S, Sriubolmas N, Ruangrungs N (2005) Antibacterial activity of flavonoids from Bauhinia sirindhorniae. Thai J Health Res 19:13–19

    CAS  Google Scholar 

  • Aubrey A (2007) Schotia latifolia Jacq. PlantzAfrica.com (http://www.plantzafrica.com/plantqrs/schotialati.htm)

  • Basile A, Conte B, Rigano D et al (2010) Antibacterial and antifungal properties of acetonic extract of Feijoa sellowiana fruits and its effect on Helicobacter pylori growth. J Med Food 13:189–195

    PubMed  CAS  Google Scholar 

  • Borel C, Hostettmann K (1987) Molluscicidal saponins from Swartzia madagascariensis Desvaux. Helv Chim Acta 70:571–576

    Google Scholar 

  • Borel C, Gupta MP, Hostettmann K (1987) Molluscicidal saponins from Swartzia simplex. Phytochemistry 26:2685–2689

    CAS  Google Scholar 

  • Brorson Ø, Brorson S-H (2007) Grapefruit seed extract is a powerful in vitro agent against motile and cystic forms of Borrelia burgdorferi sensu lato. Infection 35:206–208

    PubMed  CAS  Google Scholar 

  • Bylka W, Szaufer-Hajdrych M, Matławska I, Goliska O (2004) Antimicrobial activity of isocytisoside and extracts of Aquilegia vulgaris L. Lett Appl Microbiol 39:93–97

    PubMed  CAS  Google Scholar 

  • Cao YY, Dai B, Wang Y et al (2008) In vitro activity of baicalein against Candida albicans biofilms. Int J Antimicrob Agents 32:73–77

    PubMed  CAS  Google Scholar 

  • Chaillou LL, Nazareno MA (2009) Bioactivity of propolis from Santiago del Estero, Argentina, related to their chemical composition. LWT – Food Sci Technol 42:1422–1427

    CAS  Google Scholar 

  • Cho YS, Schiller NL, Oh KH (2008) Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Curr Microbiol 57:542–546

    PubMed  CAS  Google Scholar 

  • Chokchaisiri R, Suaisom C, Sriphota S et al (2009) Bioactive flavonoids of the flowers of Butea monosperma. Chem Pharm Bull 57:428–432

    PubMed  CAS  Google Scholar 

  • Chomchalow N, Bansiddhi J, MacBaine C (2003) Amazing Thai medicinal plants. Horticultural Research Institute (HRI), Department of Agriculture and Horticultural Science Society of Thailand (HSST), Bangkok

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    PubMed  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2006) Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine 13:187–191

    PubMed  CAS  Google Scholar 

  • De Araujo MF, Curcino Vieira IC, Braz-Filho R et al (2009) Chemical constituents from Swartzia apetala Raddi var. glabra and evaluation of their antifungal activity against Candida spp. Rev Bras Farmacogn 19:366–369

    Google Scholar 

  • De Campos MP, Cechinel Filho V, Rz Da Silva et al (2005) Evaluation of antifungal activity of Piper solmsianum C. DC. var. solmsianum (Piperaceae). Biol Pharm Bull 28:1527–1530

    PubMed  Google Scholar 

  • Drewes SE, van Vuuren SF (2008) Antimicrobial acylphloroglucinols and dibenzyloxy flavonoids from flowers of Helichrysum gymnocomum. Phytochemistry 69:1745–1749

    PubMed  CAS  Google Scholar 

  • Esquenazi D, Wigg MD, Miranda MMFS et al (2002) Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res Microbiol 153:647–652

    PubMed  CAS  Google Scholar 

  • Ferrazzano GF, Amato I, Ingenito A et al (2009) Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 80:255–262

    PubMed  CAS  Google Scholar 

  • Friedman M (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116–134

    PubMed  CAS  Google Scholar 

  • Goodwin CS, Armstrong JA, Chilvers T et al (1989) Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol 39:397–405

    Google Scholar 

  • Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants 1982–1993. Phytochemistry 37:19–42

    Google Scholar 

  • Gullo A (2009) Invasive fungal infections: the challenge continues. Drugs 69:65–73

    PubMed  Google Scholar 

  • Gustafsson B (1952) Inhibitory effect of flavones and flavonones on the acid production in saliva from caries-active patients. Svensk Tandlakaretidskrift 45:341–348

    Google Scholar 

  • Gustafsson B, Krasse B (1958) The caries reducing effect of naringenin and protamine in hamsters. Acta Odont Scand 16:355–361

    Google Scholar 

  • Habbu PV, Mahadevan KM, Shastry RA, Manjunatha H (2009) Antimicrobial activity of flavanoid sulphates and other fractions of Argyreia speciosa (Burm.f) Boj. Indian J Exp Biol 47:121–128

    PubMed  CAS  Google Scholar 

  • Hadacek F, Greger H (2000) Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal 11:137–147

    CAS  Google Scholar 

  • Hao H, Aixia Y, Dan L et al (2009) Baicalin suppresses expression of Chlamydia protease-like activity factor in Hep-2 cells infected by Chlamydia trachomatis. Fitoterapia 80:448–452

    PubMed  CAS  Google Scholar 

  • Hao H, Aixia Y, Lei F et al (2010) Effects of baicalin on Chlamydia trachomatis infection in vitro. Planta Med 76:76–78

    PubMed  CAS  Google Scholar 

  • Harborne JB and Baxter H (1999) The handbook of natural flavonoids. John Wiley & Sons, Chichester

    Google Scholar 

  • Harborne JB and Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    PubMed  CAS  Google Scholar 

  • Harris A (1998) Current regimens for treatment of Helicobacter pylori infection. Br Med Bull 54:195–205

    PubMed  CAS  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    PubMed  CAS  Google Scholar 

  • Hayacibara MF, Koo H, Rosalen PL et al (2005) In vitro and in vivo effects of isolated fractions of Brazilian propolis on caries development. J Ethnopharmacol 101:110–115

    PubMed  Google Scholar 

  • Heggers JP, Cottingham J, Gusman J et al (2002) The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J Altern Complement Med 8:333–340

    PubMed  Google Scholar 

  • Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15:639–652

    PubMed  CAS  Google Scholar 

  • Hirai I, Okuno M, Katsuma R et al (2010) Characterisation of anti-Staphylococcus aureus activity of quercetin. Int J Food Sci Tech 45:1250–1254

    CAS  Google Scholar 

  • Hirasawa M, Takada K (2004) Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J Antimicrob Chemother 53:225–229

    PubMed  CAS  Google Scholar 

  • Howell AB, Leahy M, Kurowska E, Guthrie N (2001) In vivo evidence that cranberry proanthocyanidines inhibit adherance of p-fimbriated E. coli bacteria to uroepithelial cells. Fed Am Soc Exp Biol J 15:A284

    Google Scholar 

  • Isobe T, Doe M, Morimoto Y et al (2006) The anti-Helicobacter pylori flavones in a Brazilian plant, Hyptis fasciculata, and the activity of methoxyflavones. Biol Pharm Bull 29:1039–1041

    PubMed  CAS  Google Scholar 

  • Ivashina T (2003) Flavonoid function an activity to plants and other organisms. Biol Sci Space 17:24–44

    Google Scholar 

  • Jung HJ, Sung WS, Yeo S-H et al (2006) Antifungal effect of amentoflavone derived from Selaginella tamariscina. Arch Pharm Res 29:746–751

    PubMed  CAS  Google Scholar 

  • Kamrani YY, Amanlou M, Esmaeelian B et al (2007) Inhibitory effects of a flavonoid-rich extract of Pistacia vera hull on growth and acid production of bacteria involved in dental plaque. Int J Pharmacol 3:219–226

    CAS  Google Scholar 

  • Kanwal Q, Hussain I, Siddiqui HL, Javaid A (2009) Flavonoids from mango leaves with antibacterial activity. J Serb Chem Soc 74:1389–1399

    CAS  Google Scholar 

  • Kaplan JE, Benson C, Holmes KK et al (2009) Guidelines for prevention and treatment of opportunistic infections in HIV-infected adult and adolescent. MMVVR Recomm Rep 58(RR04):1–198

    Google Scholar 

  • Khan A, Rahman M, Islam MS (2008) Antibacterial, antifungal and cytotoxic activities of 3,5-diacetyltambulin isolated from Amorphophallus campanulatus Blume ex. Decne. DARU 16:239–244

    CAS  Google Scholar 

  • Klannik A, Piskernik S, Jeraek B et al (2010) Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 81:121–126

    Google Scholar 

  • Kloucek P, Polesny Z, Svobodova B et al (2005) Antibacterial screening of some Peruvian medicinal plants used in Calleria District. J Ethnopharmacol 99:309–312

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Namikoshi M, Yoshimoto T, Yokochi T (1996) A screening method for antimitotic and antifungal substances using conidia of Pyricularia oryzae, modification and application to tropical marine fungi. J Antibiot 49:873–879

    PubMed  CAS  Google Scholar 

  • Krauze-Baranowska M, Wiwart M (2003) Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z Naturforsch C 58:65–69

    PubMed  CAS  Google Scholar 

  • Krauze-Baranowska M, Cisowski W, Wiwart M, Madziar B (1999) Antifungal biflavones from Cupressocypads leylandii. Planta Med 65:572–573

    PubMed  CAS  Google Scholar 

  • Kuete V, Simo KS, Ngameni B et al (2007) Antimicrobial activity of the methanolic extract, fractions and four flavonoids from the twigs of Dorstenia angusticornis Engl. (Moraceae). J Ethnopharmacol 112:271–277

    PubMed  CAS  Google Scholar 

  • Kuete V, Ngameni B, Fotso Simo CC (2008) Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). J Ethnopharmacol 120:17–24

    PubMed  CAS  Google Scholar 

  • Kuete V, Ngameni B, Mbaveng AT (2010) Evaluation of flavonoids from Dorstenia barteri for their antimycobacterial, antigonorrheal and anti-reverse transcriptase activities. Acta Trop 116:100–104

    PubMed  CAS  Google Scholar 

  • Kusuma IW, Itoh K, Takibana S (2005) Antifungal activities against plant pathogenic fungi of flavonoids isolated from Amboyna wood. Pak J Biol Sci 8:136–140

    CAS  Google Scholar 

  • Lee YS, Kang OH, Choi JG et al (2008) Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol 46:283–288

    PubMed  CAS  Google Scholar 

  • Li D, Calderone R (2008) Antifungal drugs, target and target discovery. In: San-Blas G, Calderone R (eds) Phatogenic fungi: host interaction and emerging strategies for control. Caister Academic Press, Norfolk

    Google Scholar 

  • Li S, Zhang Z, Cain A et al (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminate. J Agric Food Chem 53:32–37

    PubMed  CAS  Google Scholar 

  • Li L, Ge H, Seeram NP (2009) Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J Agric Food Chem 57:7282–7287

    PubMed  CAS  Google Scholar 

  • Lim Y-H, Kim I-H, Seo J-J (2007) In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. J Microbiol 45:473–477

    PubMed  CAS  Google Scholar 

  • Lin R-D, Chin Y-P, Lee M-H (2005) Antimicrobial activity of antibiotics in combination with natural flavonoids against clinical extended-spectrum β–lactamase (ESBL)-producing Klebsiella pneumoniae. Phytother Res 19:612–617

    PubMed  CAS  Google Scholar 

  • Magalhães AF, Tozzi AM, Santos CC et al (2003) Saponins from Swartzia langsdorffii: biological activities. Mem Inst Oswaldo Cruz 98(5):713–718

    PubMed  Google Scholar 

  • Mandatari G, Bennett RN, Bisognano G et al (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103:2056–2064

    Google Scholar 

  • Mann CM, Markham JL (1998) A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 84:538–544

    PubMed  CAS  Google Scholar 

  • Martini ND, Katerere DRP, Eloff JN (2004) Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol 93:207–212

    PubMed  CAS  Google Scholar 

  • Masika PJ, Sultana N, Afolayan AJ (2004) Antibacterial activity of two flavonoids isolated from Schotia latifolia. Pharm Biol 42:105–108

    CAS  Google Scholar 

  • Mativandlela SPN, Muthivhi T, Kikuchi H et al (2009) Antimycobacterial flavonoids from the leaf extract of Galenia africana. J Nat Prod 72:2169–2171

    PubMed  CAS  Google Scholar 

  • Maver M, Queiroz EF, Wolfender J-L, Hostettmann K (2005) Flavonoids from the stem of Eriophorum scheuchzeri. J Nat Prod 68:1094–1098

    PubMed  CAS  Google Scholar 

  • Mbaveng AT, Ngameni B, Kuete V et al (2008) Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J Ethnopharmacol 116:483–489

    PubMed  CAS  Google Scholar 

  • McNulty J, Nair JJ, Bollareddy E et al (2009) Isolation of flavonoids from the heartwood and resin of Prunus avium and some preliminary biological investigations. Phytochemistry 70:2040–2046

    PubMed  CAS  Google Scholar 

  • Mohammadzadeh S, Shariatpanahi M, Hamedi M et al (2007) Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem 103:1097–1103

    CAS  Google Scholar 

  • Moussaoui F, Zellagui A, Segueni N, Touil A, Rhouati S (2010) Flavonoid constituents from Algerian Launaea resedifolia (O.K.) and their antimicrobial activity. Rec Nat Prod 4:91–95

    CAS  Google Scholar 

  • Mulligan ME, Murray-Leisure KA, Ribner BS et al (1993) Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 94:313–328

    PubMed  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved guideline (M7-A5), vol 20(2). NCCLS, Wayne

    Google Scholar 

  • Nowack R (2007) Cranberry juice – a well-characterized folk-remedy against bacterial urinary tract infection. Wien Med Wochenschr 157:325–330

    PubMed  Google Scholar 

  • Oerke EC, Dehne HW, Schoenbeck F, Weber A (1994) Crop protection and crop production. Elsevier, Amsterdam

    Google Scholar 

  • Orhan DD, Ozcelik B, Ozgen S, Ergun F (2010) Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res 165:496–504

    PubMed  CAS  Google Scholar 

  • Ortuño A, Báidez A, Gómez P et al (2006) Citrus paradisi and Citrus sinensis flavonoids: their influence in the defence mechanism against Penicillium digitatum. Food Chem 98:351–358

    Google Scholar 

  • Otsuka N, Liu M-H, Shiota S, Ogawa W et al (2008) Anti-methicillin resistant Staphylococcus aureus (MRSA) compounds isolated from Laurus nobilis. Biol Pharm Bull 31:1794–1797

    PubMed  CAS  Google Scholar 

  • Pathak D, Pathak K, Singla AK (1991) Flavonoids as medicinal agent-recent advances. Fitoterapia 62:371–389

    CAS  Google Scholar 

  • Patil MV, Pawar S, Patil DA (2006) Ethnobotany of Butea monosperma (Lam.) Kuntze in North Maharashtra, India. Nat Prod Rad 5:323–25

    Google Scholar 

  • Pepeljnjak S, Kalodera Z, Zovko M (2005) Antimicrobial activity of flavonoids from Pelargonium radula (Cav.) L’Hérit. Acta Pharm 55:431–435

    PubMed  CAS  Google Scholar 

  • Pereira AC, Oliveira DF, Silva GH (2008) Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). An Acad Bras Cienc 80:427–432

    PubMed  CAS  Google Scholar 

  • Prabu GR, Gnanamani A, Sadulla S (2006) Guaijaverin – a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J Appl Microbiol 101:487–495

    PubMed  CAS  Google Scholar 

  • Prasad NR, Anandi C, Balasubramanian S, Pugalendi KV (2004) Antidermatophytic activity of extracts from Psoralea corylifolia (Fabaceae) correlated with the presence of a flavonoids compound. J Ethnopharmacol 91:21–24

    CAS  Google Scholar 

  • Pretorius JC (2003) Flavonoids: a review of its commercial application potential as anti-infective agents. Curr Med Chem – Anti-Infective Agents 2:335–353

    CAS  Google Scholar 

  • Radwan MM, Rodriguez-Guzman R, Manly SP et al (2009) Sepicanin A-A new geranyl flavanone from Artocarpus sepicanus with activity against methicillin-resistant Staphylococcus aureus (MRSA). Phytochem Lett 2:141–143

    CAS  Google Scholar 

  • Raghukumar R, Vali L, Watson D et al (2010) Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of ‘Pacific Propolis’ and isolated prenylflavanones. Phytother Res 24:1181–1187

    PubMed  CAS  Google Scholar 

  • Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638

    PubMed  CAS  Google Scholar 

  • Rao KS, Babu GV, Ramnareddy YV (2007) Acylated flavone glycosides from the roots of Saussurea lappa and their antifungal activity. Molecules 12:328–344

    PubMed  CAS  Google Scholar 

  • Rattanachaikunsopon P, Phumkhachorn P (2010) Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. J Med Plant Res 4:393–396

    CAS  Google Scholar 

  • Rigano D, Formisano C, Basile A, Lavatola A et al (2007) Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. Libanoticum. Phytother Res 21:395–397

    PubMed  CAS  Google Scholar 

  • Rıos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    PubMed  Google Scholar 

  • Rodríguez Vaquero MJ, Manca de Nadra MC (2008) Growth parameter and viability modifications of Escherichia coli by phenolic compounds and argentine wine extracts. Appl Biochem Biotechnol 151:342–352

    PubMed  Google Scholar 

  • Rodríguez Vaquero MJ, Alberto MR, Manca de Nadra MC (2007) Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Control 18:587–593

    Google Scholar 

  • Rojas R, Bustamante B, Ventosila P et al (2006) Larvicidal, antimycobacterial and antifungal compounds from the bark of the Peruvian plant Swartzia polyphylla DC. Chem Pharm Bull 54:278–279

    PubMed  CAS  Google Scholar 

  • Romero SM, Alberto MR, Manca de Nadra MC, Vaamonde G (2009) Inhibition of growth and ochratoxin A biosynthesis in Aspergillus carbonarius by flavonoids and nonflavonoid compounds. Mycotox Res 25:165–170

    CAS  Google Scholar 

  • Sakharkar MK, Jayaraman P, Soe WM et al (2009) In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J Microbiol Immunol Infect 42:364–370

    PubMed  CAS  Google Scholar 

  • Salas MP, Céliz G, Geronazzo H et al (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from Citrus species. Food Chem 124:1411–1415

    CAS  Google Scholar 

  • Santas J, Almajano MP, Carbo R (2010) Antimicrobial and antioxidant activity of crude onion (Allium cepa L.) extracts. Int J Food Sci Tech 45:403–409

    CAS  Google Scholar 

  • Sathiamoorthy B, Gupta P, Kumar M et al (2007) New antifungal flavonoid glycoside from Vitex negundo. Bioorg Med Chem Lett 17:239–242

    PubMed  CAS  Google Scholar 

  • Sato M, Fujiwara S, Tsuchiya H et al (1996) Flavones with antibacterial activity against cariogenic bacteria. J Ethnopharmacol 54:171–176

    PubMed  CAS  Google Scholar 

  • Sato M, Tanaka H, Fujiwara S et al (2003) Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine 10:427–433

    PubMed  CAS  Google Scholar 

  • Schouten MA, Hoogkamp-Korstanje JAA, Meis JFG, Voss A, The Europian VRE Study Group (2000) Prevalence of vancomycin-resistant enterococci in Europe. Eur J Clin Microbiol Infect Dis 19:816–822

    PubMed  CAS  Google Scholar 

  • Sengupta S (1987) The chemistry of Piper species: a review. Fitoterapia 58:147–166

    CAS  Google Scholar 

  • Shene C, Reyes A, Villarroel M et al (2009) Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts. Eur Food Res Technol 228:467–475

    CAS  Google Scholar 

  • Šmejkal K, Chudík S, Klouček P et al (2008) Antibacterial C-geranylflavonoids from Paulownia tomentosa fruits. J Nat Prod 71:706–709

    PubMed  Google Scholar 

  • Sohn H-Y, Son KH, Kwon C-S, Kwon G-S, Kang SS (2004) Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11:666–672

    PubMed  CAS  Google Scholar 

  • Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiol 96:680–685

    PubMed  CAS  Google Scholar 

  • Stothers L (2002) A randomized trial to evaluate effectiveness and cost effectiveness of naturopathic cranberry products as prophylaxis against urinary tract infection in women. Can J Urol 9:1558–1562

    PubMed  Google Scholar 

  • Sutthivaiyakit S, Thongnak O, Lhinhatrakool T et al (2009) Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J Nat Prod 72:1092–1096

    PubMed  CAS  Google Scholar 

  • Swain T (1976) Nature and properties of flavonoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic, London

    Google Scholar 

  • Takahashi T, Kokubo R, Sakaino M (2004) Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculate. Lett Appl Microbiol 39:60–64

    PubMed  CAS  Google Scholar 

  • Tanaka H, Sato M, Oh-Uchi T (2004) Antibacterial properties of a new isoflavonoid from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus. Phytomedicine 11:331–337

    PubMed  CAS  Google Scholar 

  • Törmäkangas L, Vuorela P, Saario E et al (2005) In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochem Pharmacol 70:1222–1230

    PubMed  Google Scholar 

  • Tsai P-J, Tsai T-H, Ho S-C (2007) In vitro inhibitory effects of rosemary extracts on growth and glucosyltransferase activity of Streptococcus sobrinus. Food Chem 105:311–316

    CAS  Google Scholar 

  • Tsuchiya H, Iinuma M (2000) Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 7:161–165

    PubMed  CAS  Google Scholar 

  • Tsuchiya H, Sato M, Iinuma M et al (1994) Inhibition of the growth of cariogenic bacteria in vitro by plant flavanones. Experientia 50:846–849

    PubMed  CAS  Google Scholar 

  • USDA Database for the Flavonoid Content of Selected Foods, Release 2.1 (2007) http://www.ars.usda.gov/Services/docs.htm?docid=6231

  • Wang X-g, Wei X-y, Tiang Y-q et al (2010) Antifungal flavonoids from Ficus sarmentosa var. henryi (King) Corner. Agric Sci Chin 9:690–694

    CAS  Google Scholar 

  • Winkel-Shirley (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Google Scholar 

  • Wollenweber E, Dietz VH (1981) Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 20:869–932

    CAS  Google Scholar 

  • Wood N (2007) The effects of selected dietary bioflavonoid supplementation on dental caries in young rats fed a high-sucrose diet. J Med Food 10:694–701

    PubMed  CAS  Google Scholar 

  • Xu ZH, Qin GW, Li XY, Xu RS (2001) New biflavanones and bioactive compounds from Stellera chamaejasnee L. Acta Pharm Sin 36:668–671

    CAS  Google Scholar 

  • Yadava RN, Tiwari L (2007) New antifungal flavone glycoside from Butea monosperma O. Kuntze. J Enzyme Inhib Med Chem 22:497–500

    PubMed  CAS  Google Scholar 

  • Yaghoubi SMJ, Ghorbani GR, Soleimanian Zad S, Satari R (2007) Antimicrobial activity of Iranian propolis and its chemical composition. DARU 15:45–48

    CAS  Google Scholar 

  • Yang G, Liao Z, Xu Z et al (2005) Antimitotic and antifungal C-3/C-3′-biflavanones from Stellera chamaejasme. Chem Pharm Bull 53:776–779

    PubMed  CAS  Google Scholar 

  • Yenjai C, Prasanphen K, Daodee S et al (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75:89–92

    PubMed  CAS  Google Scholar 

  • Yin S, Fan C-Q, Wang Y, Dong L, Yue J-M (2004) Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure–activity relationship study. Bioorg Med Chem 12:4387–4392

    PubMed  CAS  Google Scholar 

  • Yordanov M, Dimitrova P, Patkar S et al (2008) Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Can J Microbiol 54:435–440

    PubMed  CAS  Google Scholar 

  • Zhu Y, Zhang P, Yu H et al (2007) Anti-Helicobacter pylori and thrombin inhibitory components from Chinese Dragon’s Blood, Dracaena cochinchinensis. J Nat Prod 70:1570–1577

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Pistelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pistelli, L., Giorgi, I. (2012). Antimicrobial Properties of Flavonoids. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_2

Download citation

Publish with us

Policies and ethics