Skip to main content

Phytochemicals and Gut Microbial Populations in Non-ruminants

  • Chapter
  • First Online:

Abstract

Phytochemicals are bioactive non-nutrient plant compounds, which have been great interests to the researchers because of their potential effects as antioxidants, antiestrogenics, anti-inflammatory, immunomodulatory, and anticarcinogenics. However, the bioavailability and effects of polyphenols greatly depend on their transformation by components of the gut microbiota. Phytochemicals and their metabolic products may also inhibit pathogenic bacteria while stimulate the growth of beneficial bacteria, exerting prebiotic-like effects. Gut microbiota influences the development and maturation of the digestive and immune systems and is a source of regulatory signals, some of which may be suitable for exploitation for therapeutic purposes. This chapter focuses on interaction between phyto-metabolites or plant secondary metabolites and gut microbial population in non-ruminants and harvesting nutritional, health and environmental benefits, consequently in the interest of human population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abubakar EM (2009) Efficacy of crude extracts of garlic (Allium sativum Linn.) against nosocomial Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniea and Pseudomonas aeruginosa. J Med Plants Res 3:179–185

    Google Scholar 

  • Andoh A, Tsujikawa T, Fujiyama Y (2003) Role of dietary fibre and short chain fatty acids in the colon. Curr Pharm Des 9:347–358

    PubMed  CAS  Google Scholar 

  • Ayachi A, Alloui N, Bennoune O et al (2009) Antibacterial activity of some fruits; berries and medicinal herb extracts against poultry strains of Salmonella. American-Eurasian J Agric Environ Sci 6:12–15

    Google Scholar 

  • Backhed F, Crawford PA (2010) Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim Biophys Acta 1801:240–245

    PubMed  Google Scholar 

  • Belenguer A, Fondevila M, Balcells J et al (2008) In vivo and in vitro study of caecal fermentation pattern and methanogenesis in rabbits. In: 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008, pp 535–539

    Google Scholar 

  • Bennet RN, Wallsgrove RM (1998) Secondary metabolism in plant defence mechanisms. New Phytol 127:617–633

    Google Scholar 

  • Berard NC, Holley RA, McAllister TA et al (2009) Potential to reduce Escherichia coli shedding in cattle feces by using sainfoin (Onobrychis viciifolia) forage, tested in vitro and in vivo. Appl Environ Microbiol 75:1074–1079

    PubMed  CAS  Google Scholar 

  • Berry ED, Wells JE (2010) Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production environment. In: Taylor SL (ed) Advances in food and nutrition research, vol 60. Academic, Burlington

    Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253

    PubMed  CAS  Google Scholar 

  • Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ (2009) Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Curr Issues Mol Biol 11:67–80

    PubMed  CAS  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW et al (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595

    PubMed  CAS  Google Scholar 

  • Carson CF, Cookson BD, Farrelly HD, Riley TV (1995) Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J Antimicrob Chemother 35:421–424

    PubMed  CAS  Google Scholar 

  • Cencic A, Chingwaru W (2010) The role of functional food, nutraceuticals, and food supplements in intestinal health. Nutrients 2:611–625

    PubMed  CAS  Google Scholar 

  • Chao SC, Young DG (2000) Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J Essent Oil Res 12:639–649

    CAS  Google Scholar 

  • Chaudhry NMA, Tariq P (2006) Anti-microbial activity of Cinnamomum cassia against diverse microbial flora with its nutritional and medicinal impacts. Pak J Bot 38:169–174

    Google Scholar 

  • Chaudhry NMA, Saeed S, Tariq P (2007) Antibacterial effects of oregano (Origanum vulgare) against gram negative bacilli. Pak J Bot 39:609–613

    Google Scholar 

  • Choi J, Lee KT, Ka H et al (2001) Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch Pharm Res 24:418–423

    PubMed  CAS  Google Scholar 

  • Chung KT, Lu Z, Chou MW (1998) Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol 36:1053–1060

    PubMed  CAS  Google Scholar 

  • Cox SD, Mann CM, Markam JL (2001) Interaction between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 91:492–497

    PubMed  CAS  Google Scholar 

  • Cunningham-Rundles S, McNeeley DF, Moon A (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115:1119–1128

    PubMed  CAS  Google Scholar 

  • Deans SG, Ritchie G (1987) Antibacterial properties of plant essential oils. Int J Food Microbiol 5:165–180

    Google Scholar 

  • Dearing MD, Foley WJ, McLean S (2005) The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu Rev Ecol Evol Syst 36:169–189

    Google Scholar 

  • Demir E, Sarica Ş, Özcan MA et al (2003) The use of natural feed additives as alternatives for an antibiotics growth promoter in broiler diets. Br Poult Sci 44(S1):44–45

    Google Scholar 

  • Deresse D (2010) Antibacterial effect of garlic (Allium sativum) on Staphylococcus aureus: an in vitro study. Asian J Med Sci 2:62–65

    Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman D (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    PubMed  CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    PubMed  CAS  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT et al (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    PubMed  CAS  Google Scholar 

  • Foley WJ, Moore BD (2005) Plant secondary metabolites and vertebrate herbivores – from physiological regulation to ecosystem function. Curr Opin Plant Biol 8:430–435

    PubMed  CAS  Google Scholar 

  • Genena AK, Hense H, Smânia Junior A et al (2008) Rosemary (Rosmarinus officinalis) – a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciênc Tecnol Aliment, Campinas 28:463–469

    CAS  Google Scholar 

  • Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal GA, Berenbaum (eds) Herbivores: their interactions with secondary plant metabolites, vol 1. Academic, San Diego

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiotica: introducing the concept of prebiotics. J Nutr 125:1401–1402

    PubMed  CAS  Google Scholar 

  • Gremmels JF (2010) Defense mechanisms against toxic phytochemicals in the diet of domestic animals. Mol Nutr Food Res 54:249–258

    Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    PubMed  CAS  Google Scholar 

  • Hara Y (1997) Influence of tea catechins on the digestive tract. J Cell Biochem Suppl 27:52–58

    PubMed  CAS  Google Scholar 

  • Hara H, Orita N, Hatano S et al (1995) Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. J Vet Med Sci 57:45–49

    PubMed  CAS  Google Scholar 

  • Harborne JB (2001) Twenty-five years of ecology. Nat Prod Rep 18:361–379

    PubMed  CAS  Google Scholar 

  • Haristoy X, Fahey JW, Scholtus I et al (2005) Evaluation of antimicrobial effect of several isothiocyanates on Helicobacter pylori. Planta Med 71:326–330

    PubMed  CAS  Google Scholar 

  • Hobson PN, Stewart CS (1997) The rumen microbial ecosystem. Chapman & Hall, London

    Google Scholar 

  • Johanning GL, Barr DF, Iannotti EL et al (1984) Effect of dietary fiber on a guinea pig intestinal anaerobe, Bacteroides ovatus. J Nutr 114:354–360

    PubMed  CAS  Google Scholar 

  • Juven BJ, Kanner J, Schved F et al (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631

    PubMed  CAS  Google Scholar 

  • Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33:641–664

    Google Scholar 

  • Katsunuma Y, Otsuka M, Nakamura Y et al (2000) Effects of the administration of Yucca schidigera saponins on pigs intestinal microbial population. Anim Sci J 71:594–599

    CAS  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336

    PubMed  CAS  Google Scholar 

  • Kaur GJ, Arora DS (2009) Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med 9:30. doi:10.1186/1472-6882-9-30

    PubMed  Google Scholar 

  • Kelley D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333

    Google Scholar 

  • Keskin D, Toroglu S (2011) Studies on antimicrobial activities of solvent extracts of different spices. J Environ Biol 32:251–256

    PubMed  Google Scholar 

  • Kong X, Wu G, Yin Y (2011) Roles of phytochemicals in amino acid nutrition. Front Biosci (School Ed) 3:372–384

    Google Scholar 

  • Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219–225

    PubMed  CAS  Google Scholar 

  • Launchbaugh KL, Provenza FD, Pfister JA (2001) Herbivore response to anti-quality factors in forages. J Range Manag 54:431–440

    Google Scholar 

  • Lee SH, Shinde PL, Choi JY et al (2010) Effects of tannic acid supplementation on growth performance, blood hematology, iron status and faecal microflora in weanling pigs. Livest Sci 131:281–286

    Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    PubMed  CAS  Google Scholar 

  • Louis P, Scott KP, Duncan SH et al (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208

    PubMed  CAS  Google Scholar 

  • Macfarlane GT, Macfarlane S (1997) Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl 222:3–9

    PubMed  CAS  Google Scholar 

  • Mahmoud ALE (1994) Antifungal action and anti-aflatoxigenic properties of some essential oil constituents. Lett Appl Microbiol 19:110–113

    PubMed  CAS  Google Scholar 

  • Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–1391

    CAS  Google Scholar 

  • Malu SP, Obochi GO, Nyong BE (2009) Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Global J Pure Appl Sci 15:365–368

    Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249

    CAS  Google Scholar 

  • Medini H, Marzouki H, Chemli R et al (2009) Comparison of the antimicrobial activity and the essential oil composition of Juniperus oxycedrus subsp. macrocarpa and J. oxycedrus subsp. rufescens obtained by hydrodistillation and supercritical carbon dioxide extraction methods. Chem Nat Comp 45:739–741

    CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Min BR, Pinchak WE, Anderson RC et al (2007) Effect of tannins on the in vitro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers. J Food Prot 70:543–550

    PubMed  CAS  Google Scholar 

  • Naganawa R, Iwata N, Ishikawa K et al (1996) Inhibition of microbial growth by ajoene, a garlic. Sulfur-containing compound derived from garlic. Appl Environ Microbiol 62:4238–4242

    PubMed  CAS  Google Scholar 

  • Okubo T, Ishihara N, Oura A et al (1992) In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism. Biosci Biotechnol Biochem 56:588–591

    CAS  Google Scholar 

  • Osawa R, Rainey F, Fujisawa T et al (1995) Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. Syst Appl Microbiol 18:368–373

    CAS  Google Scholar 

  • Ouattara B, Simard RE, Holley RA et al (1997) Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 37:155–162

    PubMed  CAS  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37

    PubMed  CAS  Google Scholar 

  • Piattoni F, Demeyer DI, Maertens L (1996) In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits. Reprod Nutr Dev 36:253–261

    PubMed  CAS  Google Scholar 

  • Prajwal RR, Barbara U, Metzler-Zebeli et al (2011) Starch with high amylase content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes Bifidobacteria in pigs. J Nutr 141:1273–1280

    Google Scholar 

  • Puchala R, Min BR, Goetsch AL (2005) The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci 83:182–186

    PubMed  CAS  Google Scholar 

  • Pundir RK, Jain P, Sharma C (2010) Antimicrobial activity of ethanolic extracts of Syzygium aromaticum and Allium sativum against food associated bacteria and fungi. Ethnobot Leafl 14:344–360

    Google Scholar 

  • Rees LP, Minney SF, Plummer NT et al (1993) A quantitative assessment of the antimicrobial activity of garlic (Allium sativum). World J Microbiol Biotechnol 9:303–307

    Google Scholar 

  • Ricciardiello L, Bazzoli F, Fogliano V (2011) Phytochemicals and colorectal cancer prevention-myth or reality? Nat Rev Gastroenterol Hepatol 8:592–596

    PubMed  CAS  Google Scholar 

  • Romero-Pérez GA, Ominski KH, McAllister TA et al (2011) Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Appl Environ Microbiol 77:258–268

    PubMed  Google Scholar 

  • Ross ZM, O’Gara EA, Hill DJ et al (2001) Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microbiol 67:475–480

    PubMed  CAS  Google Scholar 

  • Rota MC, Herrera A, Martínez RM et al (2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 19:681–687

    CAS  Google Scholar 

  • Rožman T, Jeršek B (2009) Antimicrobial activity of rosemary extracts (Rosmarinus officinalis L.) against different species of Listeria. Acta Agric Slov 93:51–58

    Google Scholar 

  • Russell WR, Scobbie L, Chesson A et al (2008) Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 60:636–642

    PubMed  CAS  Google Scholar 

  • Saeed S, Tariq P (2008) In vitro antibacterial activity of clove against gram negative bacteria. Pak J Bot 40:2157–2160

    Google Scholar 

  • Saikia LR, Upadhyaya S (2011) Antioxidant activity, phenol and flavonoid content of A. racemosus Willd. a medicinal plant grown using different organic manures. Res J Pharm Biol Chem Sci 2:457–463

    Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    CAS  Google Scholar 

  • Schäfer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703

    PubMed  Google Scholar 

  • Schneider H, Blaut M (2000) Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch Microbiol 173:71–75

    PubMed  CAS  Google Scholar 

  • Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11:247–251

    PubMed  Google Scholar 

  • Sekirov I, Russel SL, Antunes LCM et al (2010) Gut microbiota in health and diseases. Physiol Rev 90:859–904

    PubMed  CAS  Google Scholar 

  • Shanahan F (2010) Gut microbes: from bugs to drugs. Am J Gastroenterol 105:275–279

    PubMed  Google Scholar 

  • Sivropoulou A, Papanikolaou E, Nikolaou C et al (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44:1202–1205

    CAS  Google Scholar 

  • Smith AH, Mackie RI (2004) Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol 70:1104–1115

    PubMed  CAS  Google Scholar 

  • Smith AH, Zoetendal EG, Mackie RI (2005) Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50:197–205

    PubMed  CAS  Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122

    PubMed  CAS  Google Scholar 

  • Soetarno S, Sukrasno YE et al (1997) Antimicrobial activities of the ethanol extracts of capsicum fruits with different levels of pungency. JMS 2:57–63

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrates gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    PubMed  CAS  Google Scholar 

  • Suarez M, Entenza JM, Doerries C et al (2003) Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities. Biotechnol Bioeng 81:13–20

    PubMed  CAS  Google Scholar 

  • Suarez M, Haenni M, Canarelli S et al (2005) Structure–function characterization and optimization of a plant-derived antibacterial peptide. Antimicrob Agents Chemother 49:3847–3857

    PubMed  CAS  Google Scholar 

  • Tavendale MH, Meagher LP, Pacheco D et al (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 123–124:403–419

    Google Scholar 

  • Thomas CM, Versalovic J (2010) Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes 1:1–16

    Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    PubMed  CAS  Google Scholar 

  • Velagapudi VR, Hezaveh R, Reigstad CS et al (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51:1101–1112

    PubMed  CAS  Google Scholar 

  • Villalba JJ, Provenza FD (2009) Learning and dietary choice in herbivores. Rangeland Ecol Manag 62:399–406

    Google Scholar 

  • Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230

    PubMed  CAS  Google Scholar 

  • Wenk C (2003) Herbs and botanicals as feed additives in monogastric animals. Asian-Aust J Anim Sci 16:282–289

    Google Scholar 

  • Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effect of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703

    PubMed  CAS  Google Scholar 

  • Yili A, Aisa HA, Maksimov VV et al (2009) Chemical composition and antimicrobial activity of essential oil from seeds of Anethum graveolens growing in Uzbekistan. Chem Nat Comp 45:280–281

    CAS  Google Scholar 

  • Zoetendal EG, Cheng B, Koike S et al (2004) Molecular microbial ecology of the gastrointestinal tract: from phylogeny to function. Curr Issues Intest Microbiol 5:31–48

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artabandhu Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sahoo, A., Soren, N.M. (2012). Phytochemicals and Gut Microbial Populations in Non-ruminants. In: Patra, A. (eds) Dietary Phytochemicals and Microbes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3926-0_13

Download citation

Publish with us

Policies and ethics