The Plant Family Brassicaceae: An Introduction

Part of the Environmental Pollution book series (EPOL, volume 21)


This chapter introduces the plant family Brassicaceae (Cruciferae or mustard family) and also summarizes significant roles of some representative plant species from this family for metals and metalloids phytoremediation. Brassicaceae family is one of the largest dicot families of flowering (angiospermic) plant kingdom which comprises 10–19 tribes with a total of 338–360 genera and nearly 3,709 species. The Brassicaceae are easily recognized by having unique flowers [with four petals, forming a cross or sometimes reduced or lacking; six stamens, the outer two being shorter than the inner four (however, sometimes only two or four stamens are present) and capsule (having two valves capsule with a septum dividing it into two chambers)]. The plant family Brassicaceae includes several plant species of great scientific, economic and agronomic importance including model species (Arabidopsis and Brassica), developing model generic systems (Boechera, Brassica, and Cardamine), as well as many widely cultivated species. The well-known model plants from the family Brassicaceae viz., Arabidopsis (Arabidopsis thaliana) and Brassica species have revolutionized our knowledge in almost every field of modern plant biology. In addition, several representatives of the family Brassicaceae are equally playing significant roles for achieving environmental sustainability.


Brassicaceae Biosystematics Arabidopsis spp. Brassica spp. Alssum spp. Thlaspi spp. Metals Hyperaccumulation 



NAA (SFRH/BPD/64690/2009), IA, MP, ACD and EP are grateful to the Portuguese Foundation for Science and Technology (FCT) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) for partial financial supports. SSG, SU and NAK would like to acknowledge the receipt of funds from DBT, DST and UGC, Govt. of India, New Delhi. Authors apologize if some references related to the main theme of the current chapter could not be cited due to space constraint.


  1. Abdel Khalik K, Van Den Berg RG, Van Der Maesen LJG, El Hadidi MN (2002) Pollen morphology of some tribes of Brassicaceae from Egypt and its systematic implications. Feddes Repert 113:211–223Google Scholar
  2. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195Google Scholar
  3. Adıgüzel N, Reeves RD (2002) New observations on the serpentine flora of Turkey. Metallophytes Conference, Linnean Society of London, UK, Dec 2002Google Scholar
  4. Adriano DC, Chlopecka A, Kaplan KI (1998) Role of soil chemistry in soil remediation and ecosystem conservation. Soil Science Society of America, Madison, pp 361–386, Special PublicationGoogle Scholar
  5. Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trend Plant Sci 5:22–29Google Scholar
  6. Al-Shehbaz IA (1973) The biosystematics of the genus Thelypodium (Cruciferae). Contrib Gray Herb Harv Univ 204:3–148Google Scholar
  7. Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373Google Scholar
  8. Al-Shehbaz IA (1986) The genera of Lepideae (Cruciferae: Brassicaceae) in the southeastern United States. J Arnold Arbor 67:265–311Google Scholar
  9. Al-Shehbaz IA (2005) Nomenclatural notes on Eurasian Arabis (Brassicaceae). Novon 15:519–524Google Scholar
  10. Al-Shehbaz IA, Mummenhoff K (2005) Transfer of the South African genera Brachycarpaea, Cycloptychis, Schlechteria, Silicularia, and Thlaspeocarpa to Heliophila (Brassicaceae). Novon 15:385–389Google Scholar
  11. Al-Shehbaz IA, O’Kane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, RockvilleGoogle Scholar
  12. Al-Shehbaz IA, Warwick SI (2006) A synopsis of Smelowskia (Brassicaceae). Harv Pap Bot 11:91–99Google Scholar
  13. Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harv Pap Bot 12:429–433Google Scholar
  14. Al-Shehbaz IA, O’Kane SL Jr, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9:296–307Google Scholar
  15. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120Google Scholar
  16. Anchev M, Deneva B (1997) Pollen morphology of seventeen species from the family Brassicaceae (Cruciferae). Phytol Balc 3:75–82Google Scholar
  17. Angelini L, Lazzeri L, Galletti S et al (1998) Antigerminative activity of three glucosinolatederived products generated by myrosinase hydrolysis. Seed Sci Technol 26:771–780Google Scholar
  18. Anjum NA, Gill SS, Ahmad I, Duarte AC, Umar S, Khan NA, Pereira E (2012) Metals and metalloids accumulation variability in Brassica species – a review. In: Anjum NA, Pereira E, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press/Taylor and Francis Group, Boca Raton, USAGoogle Scholar
  19. Apel P, Horstmann C, Pfeffer M (1997) The Moricandia syndrome in species of the Brassicaceae – evolutionary aspects. Photosynthetica 33:205–215Google Scholar
  20. Appel O, Al-Shehbaz IA (2003) Cruciferae. In: Kubitzki K (ed) Families and genera of vascular plants. Springer, Berlin, pp 75–174Google Scholar
  21. Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36:255–259Google Scholar
  22. Ashraf M, Noor R (1993) Growth and pattern of ion uptake in Eruca sativa Mill. under salt stress. Ange Bot 67:17–21Google Scholar
  23. Assunção AGL, Schat H, Aarts MGM (2003a) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360Google Scholar
  24. Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003b) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419Google Scholar
  25. Bailey CD, Price RA, Doyle JJ (2002) Systematics of the halimolobine Brassicaceae: evidence from three loci and morphology. Syst Bot 27:318–332Google Scholar
  26. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL, Warwick SI et al (2006) A global nrDNA ITS phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160Google Scholar
  27. Bailey CD, Al-Shehbaz IA, Rajanikanth G (2007) Generic limits in tribe Halimolobeae and description of the new genus Exhalimolobos (Brassicaceae). Syst Bot 32:140–156Google Scholar
  28. Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metalophyte Thlaspi caerulenscens J. & C. Presl (Brassicaceae). New Phytol 127:61–68Google Scholar
  29. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G, Vangronsveld J (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 85–107Google Scholar
  30. Bani A, Echevarria G, Sulçe S, Mullaj A, Morel JL (2007) In-situ phytoextraction of nickel by native population of A. murale on ultramai c site in Albania. Plant Soil 293:79–89Google Scholar
  31. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316Google Scholar
  32. Basic N, Besnard G (2006) Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae. J Plant Res 119:479–487Google Scholar
  33. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619Google Scholar
  34. Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327Google Scholar
  35. Belimov AA, Safronova VI, Demchinskaya SV, Dzyuba OO (2007) Intraspecific variability of cadmium tolerance in hydroponically grown Indian mustard (Brassica juncea (L.) Czern.) seedlings. Acta Physiol Plant 29:473–478Google Scholar
  36. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metals-contaminated mine tailings. J Environ Qual 32:432–440Google Scholar
  37. Bert V, Macnair MR, DeLaguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233Google Scholar
  38. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188Google Scholar
  39. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438Google Scholar
  40. Boyd RS, Barbour MG (1986) Relative salt tolerance of Cakile edentula (Brassicaceae) from lacustrine and marine beaches. Am J Bot 73:236–241Google Scholar
  41. Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265Google Scholar
  42. Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300Google Scholar
  43. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu J-K (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360Google Scholar
  44. Broadhurst CL, Chaney RL, Angle JA, Erbe EF, Maugel TK (2004a) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaceumulator Alyssum murale Kotodesh. Plant Soil 265:225–242Google Scholar
  45. Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erhe EF, Murphy CA (2004b) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf tnchomes. Environ Sci Technol 38:5797–5802Google Scholar
  46. Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314:35–48Google Scholar
  47. Brooks RR (1998) Biogeochemistry and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 95–118Google Scholar
  48. Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc R Soc Lond B 200:217–224Google Scholar
  49. Brooks RR, Lee J, Reeves RD, Jaffr T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57Google Scholar
  50. Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc R Soc London B 203:387–403Google Scholar
  51. Brown SL, Chaney RL, Angle JS, Baker AJM (1995a) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585Google Scholar
  52. Brown SL, Chaney RL, Angle JS, Baker AJM (1995b) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133Google Scholar
  53. Buell CR, Last RL (2010) Twenty-first century plant biology: impacts of the Arabidopsis genome on plant biology and agriculture. Plant Physiol 154:497–500Google Scholar
  54. Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767Google Scholar
  55. Chaney RL, Angle JS, Baker AJM, Li Y-M (1999) Method for phytomining of nickel, cobalt and other metals from soil. US Patent No. 5,944,872, issued 31 Aug 1999 (continuation-inpart of US Patent 5,711,784, issued 27 Jan 1998)Google Scholar
  56. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443Google Scholar
  57. Chen ZJ, Comai L, Pikaard CS (1998) Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc Natl Acad Sci U S A 95:14891–14899Google Scholar
  58. Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trend Plant Sci 11:449–459Google Scholar
  59. Clauss MJ, Dietel S, Schubert G et al (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373Google Scholar
  60. Cobbett CS (2003) Heavy metals and plants – model systems and hyperaccumulators. New Phytol 159:289–293Google Scholar
  61. Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71Google Scholar
  62. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719Google Scholar
  63. de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573Google Scholar
  64. Davis AR, Pylatuik JD, Paradis JC, Low NH (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta 205:305–318Google Scholar
  65. Deniau AX, Peiper B, Ten Bookum WM, Lindhout P, Aarts MG, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920Google Scholar
  66. Dierig DA, Tomasi PM, Salywon AM et al (2004) Improvement in hydroxy fatty acid seed oil content and other traits from interspecific hybrids of three Lesquerella species: Lesquerella fendleri, L. pallida, and L. lindheimeri. Euphytica 139:199–206Google Scholar
  67. Dubois S, Cheptou P-O, Petit C, Meerts P, Poncelet M, Vekemans X, Lefèbvre C, Escarré J (2003) Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens. New Phytol 157:633–641Google Scholar
  68. Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806Google Scholar
  69. Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437Google Scholar
  70. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates among plants. Phytochemistry 56:5–51Google Scholar
  71. Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 58:425–437Google Scholar
  72. Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trend Plant Sci 16:108–116Google Scholar
  73. Fuentes-Soriano S (2004) A taxonomic revision of Pennellia (Brassicaceae). Harv Pap Bot 8:173–202Google Scholar
  74. German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae (Cruciferae). Harv Pap Bot 13:165–170Google Scholar
  75. Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007) Hyperaccumulation of nickel by two Alyssum species; from the serpentine soils of Iran. Plant Soil 293:91–97Google Scholar
  76. Gleba D, Borisjuk MV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S et al (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci U S A 96:5973–5977Google Scholar
  77. Hall AE, Fiebig A, Preuss D (2002) Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol 129:1439–1447Google Scholar
  78. Hassan Z, Aarts MGM (2010) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63Google Scholar
  79. Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beihefte zum Botanischen Centralblatt 27:127–335Google Scholar
  80. Hemingway JS (1976) Mustards, Brassica spp. and Sinapis alba (Cruciferae). In: Simmonds NW (ed) Evolution of crop plants. Longman, New York, pp 19–21Google Scholar
  81. Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeogr 29:125–134Google Scholar
  82. Retrieved 10 Mar 2012
  83. Inamdar JA, Rao NV (1983) Light and scanning electron microscopic studies on trichomes of some Brassicaceae. Feddes Repert 94:183–190Google Scholar
  84. Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737Google Scholar
  85. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106Google Scholar
  86. Iwabuchi M, Itoh K, Shimamoto K (1991) Molecular and cytological characterization of repetitive DNA sequences in Brassica. Theor Appl Genet 81:349–355Google Scholar
  87. Janchen E (1942) Das System der Cruciferen. Osterr Botan Z 91:1–18Google Scholar
  88. Kemper FH, Bertram HP (1991) Thallium. In: Merian E (ed) Metals and their compounds in the environment. VCH Vrlg mbH, Weinham, FRG, pp 1227–1241Google Scholar
  89. Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724Google Scholar
  90. Koch M (2003) Molecular phylogenetics, evolution and population biology in Brassicaceae. In: Sharma AK, Sharma A (eds) Plant genome biodiversity and evolution, vol 1, Part A Phanerogams. Science, Enfield, pp 1–35Google Scholar
  91. Koch M, Al-Shehbaz IA (2004) Taxonomic and phylogenetic evaluation of the American “Thlaspi” species: identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst Bot 29:375–384Google Scholar
  92. Koch MA, Al-Shehbaz IA (2009) Molecular systematics and evolution of “wild” crucifers (Brassicaceae or Cruciferae). In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–19Google Scholar
  93. Koch M, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142Google Scholar
  94. Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst Evol 227:209–225Google Scholar
  95. Koch MA, Mummenhoff K (2006) Evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259:81–83Google Scholar
  96. Koch M, Huthmann M, Hurka H (1998) Molecular biogeography and evolution of the Microthlaspi perfoliatum s.l. polyploid complex (Brassicaceae): chloroplast DNA and nuclear ribosomal DNA restriction site variation. Can J Bot 76:382–396Google Scholar
  97. Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544Google Scholar
  98. Koch MA, Dobeš C, Kiefer C, Schmickl R, Klimeš L, Lysak MA (2007) Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73Google Scholar
  99. Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943Google Scholar
  100. Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172Google Scholar
  101. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534Google Scholar
  102. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638Google Scholar
  103. Kruckeberg AR, Reeves RD (1995) Nickel accumulation by serpentine species of Streptanthus (Brassicaceae): field and greenhouse studies. Madroño 42:458–469Google Scholar
  104. Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238Google Scholar
  105. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84Google Scholar
  106. Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300Google Scholar
  107. Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910Google Scholar
  108. Lasat MM, Baker AJM, Kochain LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883Google Scholar
  109. Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003a) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115Google Scholar
  110. Li YM, Chaney RL, Brewer F, Angle JS, Nelkin J (2003b) Phytoextraetion of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468Google Scholar
  111. Likar M, Pongrac P, Vogel-Mikuš K, Regvar M (2010) Molecular diversity and metal accumulation of different Thlaspi praecox populations from Slovenia. Plant Soil 330:195–205Google Scholar
  112. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20Google Scholar
  113. Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105Google Scholar
  114. Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Biol Sci 266:2175–2179Google Scholar
  115. Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thalspi caerulescens from continental Europe. Plant Ecol 133:221–231Google Scholar
  116. Megdiche W, Ben Amor N, Bebez A et al (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384Google Scholar
  117. Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, Worblaufen-BernGoogle Scholar
  118. Meyer FK (1973) Conspectus der “Thlaspi”—Artern Europas, Afrikas und Vorderasiens. Feddes Repert 84:449–470Google Scholar
  119. Meyer KF (1979) Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. I. Geschichte, Morphologie und Chorologie. Feddes Repert 90:129–154Google Scholar
  120. Meyer FK (2006) Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens, Spezieller Tiel. IX. Noccaea Moench. Haussknechtia 12:1–341Google Scholar
  121. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13Google Scholar
  122. Minguzzi C, Vergnano O (1948) Il contenuto del nichel nelle ceneri di Alyssum bertolonii Desv. Atti Soc Toscana Sci Natl Ser A 55:49–77Google Scholar
  123. Mummenhoff K, Koch M (1994) Chloroplast DNA restriction site variation and phylogenetic relationships in the genus Thlaspi sensulato (Brassicaceae). Syst Bot 19:73–88Google Scholar
  124. Mummenhoff K, Zunk K (1991) Should Thlaspi (Brassicaceae) be split? Preliminary evidence from isoelectric focusing analysis of Rubisco. Taxon 40:427–434Google Scholar
  125. Mummenhoff K, Franzke A, Koch M (1997) Molecular phyogenetics of Thlaspi s.l. (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. Can J Bot 75:469–482Google Scholar
  126. Mummenhoff K, Al-Shehbaz IA, Bakker FT, Linder HP, Mühlhaussen A (2005) Phylogeny, morphological evolution, and speciation of endemic Brassicaceae genera in the Cape flora of southern Africa. Ann Mo Bot Gard 92:400–424Google Scholar
  127. Nedelkoska TV, Doran PM (2001) Hyperaccumulation of nickel by hairy roots of Alyssum species: comparison with whole regenerated plants. Biotechnol Prog 17:752–759Google Scholar
  128. NRC (1999) Metals and radionuclides: technologies for characterization, remediation and containment. In: Groundwater and soil cleanup: improving management of persistent contaminants. National Academy Press, Washington, DC, pp 72–128Google Scholar
  129. O’Kane SL, Al-Shehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7:323–327Google Scholar
  130. Oran S (1996) Trichomes of the genus Alyssum L. (Crucifera) in Jordan. Webbia 50:237–245Google Scholar
  131. Palmer CE, Warwick SI, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytorem 3:245–287Google Scholar
  132. Papoyan A, Piñeros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58Google Scholar
  133. Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430Google Scholar
  134. Peer WA, Mahmoudian M, Freeman JL, Lahner B, Richards EL, Reeves RD, Murphy AS, Salt DE (2006) Assessment of plants from the Brassicaceae family as a model for the study nickel and zinc hyperaccumulation. New Phytol 172:248–260Google Scholar
  135. Persans MW, Yan X, Patnoe JM, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126Google Scholar
  136. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177Google Scholar
  137. Pilson-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39Google Scholar
  138. Plazibat M (2009) A short synopsis of the tribe Alysseae (Brassicaceae) in Croatia with some taxonomic novelties. Nat Croat 18:401–426Google Scholar
  139. Pongrac P, Vogel-Mikus K, Kump P, Poschenrieder C, Barcelo J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609Google Scholar
  140. Prakash S (1980) Cruciferous oilseeds in India. In: Tsumoda S, Hinata K, Gomes Campo C (eds) Brassica crops and wild allies: biology and breeding. Japan Science Society Press, Tokyo, pp 151–163Google Scholar
  141. Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electron J Biotechnol http://www/
  142. Price R, Palmer J, Al-Shehbaz IA (1994) Systematic relationships of Arabidopsis, a molecular and morphological perspective. In: Meyerowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 7–19Google Scholar
  143. Przedpelska E, Wierzbicka M (2007) Arabidopsis arenosa (Brassicaceae) from lead-zinc waste heap in southern Poland – a plant with high tolerance to heavy metals. Plant Soil 299:43–53Google Scholar
  144. Razmjoo K, Toriyama K, Ishii R et al (1996) Photosynthetic properties of hybrids between Diplotaxis muralis DC, a C3 species, and Moricandia arvensis (L.) DC, a C3–C4 intermediate species in Brassicaceae. Genes Genet Syst 71:189–192Google Scholar
  145. Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. Taxon 37:309–318Google Scholar
  146. Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils. Intercept Ltd., Andover, pp 253–277Google Scholar
  147. Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65Google Scholar
  148. Reeves RD, Adıgüzel N (2004) Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turk J Bot 28:147–153Google Scholar
  149. Reeves RD, Adıgüzel N (2008) The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: a review with new data. Turk J Biol 32:143–153Google Scholar
  150. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  151. Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera and other genera of old world tribus Alysseae. Taxon 32:184–192Google Scholar
  152. Reeves RD, Kruckeberg AR, Adıgüzel N et al (2001) Studies on the flora of serpentine and other metalliferous areas of western Turkey. South Afr J Sci 97:513–517Google Scholar
  153. Rigola D, Fiers M, Vurro E, Aarts MG (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–765Google Scholar
  154. Riley R (1956) The influence of the breeding system on the genecology of Thlaspi alpestre L. New Phytol 55:319–330Google Scholar
  155. Robinson BH, Leblanc M, Petit D, Brooks R, Kirkman J, Gregg P (1998) The potential of some plant hyperaccumulators for phytoremediation of contaminated soils. International Soil Congress, MontepelierGoogle Scholar
  156. Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trend Plant Sci 13:208–215Google Scholar
  157. Rylott EL, Metzlaff K, Rawsthorne S (1998) Developmental and environmental effects on the expression of the C3–C4 intermediate phenotype in Moricandia arvensis. Plant Physiol 118:1277–1284Google Scholar
  158. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668Google Scholar
  159. Schat H, Llugany M, Bernhard R (2000) Metal specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 171–188Google Scholar
  160. Schranz E, Dobeš C, Koch M, Mitchell-Olds T (2006) Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810Google Scholar
  161. Schranz ME, Song B-H, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175Google Scholar
  162. Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) Die natürlichen pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, pp 227–658Google Scholar
  163. Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906Google Scholar
  164. Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Intl J Mass Spectrom 260:107–114Google Scholar
  165. Snowdon RJ, Köhler W, Friedt W, Köhler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324Google Scholar
  166. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  167. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2046Google Scholar
  168. Tolrà R, Pongrac P, Poschenrieder C, Vogel-Mikuš K, Regvar M, Barceló J (2006) Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant Soil 288:333–341Google Scholar
  169. Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM et al (1993) Flora Europaea. Cambridge University Press, CambridgeGoogle Scholar
  170. UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452Google Scholar
  171. Uprety DC, Shyam-Prakash P, Abrol YP et al (1995) Variability for photosynthesis in Brassica and allied genera. Ind J Plant Physiol 38:207–213Google Scholar
  172. Vaughan CE, Gregg ER, Delouche JC (1976) Beneficiamento e manuseio de sementes. Ministério da Agricultura/AGIPLAN, BrasilGoogle Scholar
  173. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776Google Scholar
  174. Vinterhalter B, Savić J, Platisa J, Raspor M, Ninković S, Mitić N, Vinterhalter D (2008) Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst et Kit. Plant Cell Tiss Organ Cult 94:299–303Google Scholar
  175. Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine. Environ Pollut 133:233–242Google Scholar
  176. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371Google Scholar
  177. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Simčič J, Pelicon J et al (2007) Localisation and quantification of elements within seeds of the Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut 147:50–59Google Scholar
  178. Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crops and models, Springer, New York, 9:33–65Google Scholar
  179. Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248Google Scholar
  180. Warwick SI, Sauder CA (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483Google Scholar
  181. Warwick SI, Al-Shehbaz IA, Price RA, Sauder CA (2002) Phylogeny of Sisymbrium (Brassicaceae) based on ITS sequences of nuclear ribosomal DNA. Can J Bot 80:1002–1017Google Scholar
  182. Warwick SI, Al-Shehbaz IA, Sauder CA (2005) Phylogeny and cytological diversity of Sisymbrium (Brassicaceae). In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution. 1C: phanerogams (Angiosperm – Dicotyledons). Oxford & IBH Publishing Co. Pvt. Ltd./Science, New Delhi/Enfield, pp 219–250Google Scholar
  183. Warwick SI, Al-Shehbaz IA, Sauder CA (2006) Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 84:269–281Google Scholar
  184. Warwick SI, Sauder CA, Al-Shehbaz IA, Jacquemoud F (2007) Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal its DNA sequences. Ann Mo Bot Gard 94:56–78Google Scholar
  185. Warwick SI, Sauder CA, Al-Shehbaz IA (2008) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Botany-Botanique 86:315–336Google Scholar
  186. Warwick SI, Sauder CA, Mayer MS, Al-Shehbaz IA (2009) Phylogenetic relationships in the tribes Schizopetaleae and Thelypodieae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndhF DNA sequences. Botony 87:961–985Google Scholar
  187. Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA (2010) Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285:209–232Google Scholar
  188. Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325Google Scholar
  189. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of diversification between Brassica and other angiosperm lineages. J Mol Evol 48:597–604Google Scholar
  190. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189Google Scholar
  191. Zunk K, Mummenhoff K, Koch M, Hurka H (1996) Phytogenetic relationships of Thlaspi s.l. (subtribe Thlaspidinae, Lepidieae) and allied genera based on chloroplast DNA restriction-site variation. Theor Appl Genet 92:375–381Google Scholar
  192. Zunk K, Mummenhoff K, Hurka H (1999) Phylogenetic relationships in tribe Lepidieae (Brassicaceae) based on chloroplast DNA restriction site variation. Can J Bot 77:1504–1512Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Centre for Environmental and Marine Studies (CESAM) & Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.Plant Molecular Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  3. 3.Stress Physiology and Molecular Biology Lab, Centre for BiotechnologyMD UniversityRohtakIndia
  4. 4.Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry and BiologyUniversity of AveiroAveiroPortugal
  5. 5.Centre for Environmental and Marine Studies (CESAM) & Department of BiologyUniversity of AveiroAveiroPortugal
  6. 6.Department of Botany, Faculty of ScienceHamdard UniversityNew DelhiIndia
  7. 7.Department of Botany, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations