Skip to main content

The Plant Family Brassicaceae: An Introduction

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

This chapter introduces the plant family Brassicaceae (Cruciferae or mustard family) and also summarizes significant roles of some representative plant species from this family for metals and metalloids phytoremediation. Brassicaceae family is one of the largest dicot families of flowering (angiospermic) plant kingdom which comprises 10–19 tribes with a total of 338–360 genera and nearly 3,709 species. The Brassicaceae are easily recognized by having unique flowers [with four petals, forming a cross or sometimes reduced or lacking; six stamens, the outer two being shorter than the inner four (however, sometimes only two or four stamens are present) and capsule (having two valves capsule with a septum dividing it into two chambers)]. The plant family Brassicaceae includes several plant species of great scientific, economic and agronomic importance including model species (Arabidopsis and Brassica), developing model generic systems (Boechera, Brassica, and Cardamine), as well as many widely cultivated species. The well-known model plants from the family Brassicaceae viz., Arabidopsis (Arabidopsis thaliana) and Brassica species have revolutionized our knowledge in almost every field of modern plant biology. In addition, several representatives of the family Brassicaceae are equally playing significant roles for achieving environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Khalik K, Van Den Berg RG, Van Der Maesen LJG, El Hadidi MN (2002) Pollen morphology of some tribes of Brassicaceae from Egypt and its systematic implications. Feddes Repert 113:211–223

    Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Google Scholar 

  • Adıgüzel N, Reeves RD (2002) New observations on the serpentine flora of Turkey. Metallophytes Conference, Linnean Society of London, UK, Dec 2002

    Google Scholar 

  • Adriano DC, Chlopecka A, Kaplan KI (1998) Role of soil chemistry in soil remediation and ecosystem conservation. Soil Science Society of America, Madison, pp 361–386, Special Publication

    Google Scholar 

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trend Plant Sci 5:22–29

    CAS  Google Scholar 

  • Al-Shehbaz IA (1973) The biosystematics of the genus Thelypodium (Cruciferae). Contrib Gray Herb Harv Univ 204:3–148

    Google Scholar 

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373

    Google Scholar 

  • Al-Shehbaz IA (1986) The genera of Lepideae (Cruciferae: Brassicaceae) in the southeastern United States. J Arnold Arbor 67:265–311

    Google Scholar 

  • Al-Shehbaz IA (2005) Nomenclatural notes on Eurasian Arabis (Brassicaceae). Novon 15:519–524

    Google Scholar 

  • Al-Shehbaz IA, Mummenhoff K (2005) Transfer of the South African genera Brachycarpaea, Cycloptychis, Schlechteria, Silicularia, and Thlaspeocarpa to Heliophila (Brassicaceae). Novon 15:385–389

    Google Scholar 

  • Al-Shehbaz IA, O’Kane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Al-Shehbaz IA, Warwick SI (2006) A synopsis of Smelowskia (Brassicaceae). Harv Pap Bot 11:91–99

    Google Scholar 

  • Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harv Pap Bot 12:429–433

    Google Scholar 

  • Al-Shehbaz IA, O’Kane SL Jr, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9:296–307

    Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Google Scholar 

  • Anchev M, Deneva B (1997) Pollen morphology of seventeen species from the family Brassicaceae (Cruciferae). Phytol Balc 3:75–82

    Google Scholar 

  • Angelini L, Lazzeri L, Galletti S et al (1998) Antigerminative activity of three glucosinolatederived products generated by myrosinase hydrolysis. Seed Sci Technol 26:771–780

    Google Scholar 

  • Anjum NA, Gill SS, Ahmad I, Duarte AC, Umar S, Khan NA, Pereira E (2012) Metals and metalloids accumulation variability in Brassica species – a review. In: Anjum NA, Pereira E, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press/Taylor and Francis Group, Boca Raton, USA

    Google Scholar 

  • Apel P, Horstmann C, Pfeffer M (1997) The Moricandia syndrome in species of the Brassicaceae – evolutionary aspects. Photosynthetica 33:205–215

    CAS  Google Scholar 

  • Appel O, Al-Shehbaz IA (2003) Cruciferae. In: Kubitzki K (ed) Families and genera of vascular plants. Springer, Berlin, pp 75–174

    Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36:255–259

    CAS  Google Scholar 

  • Ashraf M, Noor R (1993) Growth and pattern of ion uptake in Eruca sativa Mill. under salt stress. Ange Bot 67:17–21

    CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003a) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Google Scholar 

  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003b) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Google Scholar 

  • Bailey CD, Price RA, Doyle JJ (2002) Systematics of the halimolobine Brassicaceae: evidence from three loci and morphology. Syst Bot 27:318–332

    Google Scholar 

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL, Warwick SI et al (2006) A global nrDNA ITS phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    CAS  Google Scholar 

  • Bailey CD, Al-Shehbaz IA, Rajanikanth G (2007) Generic limits in tribe Halimolobeae and description of the new genus Exhalimolobos (Brassicaceae). Syst Bot 32:140–156

    Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metalophyte Thlaspi caerulenscens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G, Vangronsveld J (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 85–107

    Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Mullaj A, Morel JL (2007) In-situ phytoextraction of nickel by native population of A. murale on ultramai c site in Albania. Plant Soil 293:79–89

    CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    CAS  Google Scholar 

  • Basic N, Besnard G (2006) Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae. J Plant Res 119:479–487

    CAS  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    CAS  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Demchinskaya SV, Dzyuba OO (2007) Intraspecific variability of cadmium tolerance in hydroponically grown Indian mustard (Brassica juncea (L.) Czern.) seedlings. Acta Physiol Plant 29:473–478

    CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metals-contaminated mine tailings. J Environ Qual 32:432–440

    CAS  Google Scholar 

  • Bert V, Macnair MR, DeLaguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    CAS  Google Scholar 

  • Boyd RS, Barbour MG (1986) Relative salt tolerance of Cakile edentula (Brassicaceae) from lacustrine and marine beaches. Am J Bot 73:236–241

    Google Scholar 

  • Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265

    CAS  Google Scholar 

  • Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300

    CAS  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu J-K (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JA, Erbe EF, Maugel TK (2004a) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaceumulator Alyssum murale Kotodesh. Plant Soil 265:225–242

    CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erhe EF, Murphy CA (2004b) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf tnchomes. Environ Sci Technol 38:5797–5802

    CAS  Google Scholar 

  • Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314:35–48

    Google Scholar 

  • Brooks RR (1998) Biogeochemistry and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 95–118

    Google Scholar 

  • Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc R Soc Lond B 200:217–224

    CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffr T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc R Soc London B 203:387–403

    CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995a) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995b) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    CAS  Google Scholar 

  • Buell CR, Last RL (2010) Twenty-first century plant biology: impacts of the Arabidopsis genome on plant biology and agriculture. Plant Physiol 154:497–500

    CAS  Google Scholar 

  • Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767

    CAS  Google Scholar 

  • Chaney RL, Angle JS, Baker AJM, Li Y-M (1999) Method for phytomining of nickel, cobalt and other metals from soil. US Patent No. 5,944,872, issued 31 Aug 1999 (continuation-inpart of US Patent 5,711,784, issued 27 Jan 1998)

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    CAS  Google Scholar 

  • Chen ZJ, Comai L, Pikaard CS (1998) Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc Natl Acad Sci U S A 95:14891–14899

    CAS  Google Scholar 

  • Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trend Plant Sci 11:449–459

    CAS  Google Scholar 

  • Clauss MJ, Dietel S, Schubert G et al (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    CAS  Google Scholar 

  • Cobbett CS (2003) Heavy metals and plants – model systems and hyperaccumulators. New Phytol 159:289–293

    Google Scholar 

  • Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K (2010) Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Google Scholar 

  • Davis AR, Pylatuik JD, Paradis JC, Low NH (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta 205:305–318

    Google Scholar 

  • Deniau AX, Peiper B, Ten Bookum WM, Lindhout P, Aarts MG, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920

    CAS  Google Scholar 

  • Dierig DA, Tomasi PM, Salywon AM et al (2004) Improvement in hydroxy fatty acid seed oil content and other traits from interspecific hybrids of three Lesquerella species: Lesquerella fendleri, L. pallida, and L. lindheimeri. Euphytica 139:199–206

    CAS  Google Scholar 

  • Dubois S, Cheptou P-O, Petit C, Meerts P, Poncelet M, Vekemans X, Lefèbvre C, Escarré J (2003) Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens. New Phytol 157:633–641

    Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806

    CAS  Google Scholar 

  • Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates among plants. Phytochemistry 56:5–51

    CAS  Google Scholar 

  • Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 58:425–437

    Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trend Plant Sci 16:108–116

    CAS  Google Scholar 

  • Fuentes-Soriano S (2004) A taxonomic revision of Pennellia (Brassicaceae). Harv Pap Bot 8:173–202

    Google Scholar 

  • German DA, Al-Shehbaz IA (2008) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae, and Erysimeae) in the Brassicaceae (Cruciferae). Harv Pap Bot 13:165–170

    Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007) Hyperaccumulation of nickel by two Alyssum species; from the serpentine soils of Iran. Plant Soil 293:91–97

    CAS  Google Scholar 

  • Gleba D, Borisjuk MV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S et al (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci U S A 96:5973–5977

    CAS  Google Scholar 

  • Hall AE, Fiebig A, Preuss D (2002) Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol 129:1439–1447

    CAS  Google Scholar 

  • Hassan Z, Aarts MGM (2010) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63

    Google Scholar 

  • Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beihefte zum Botanischen Centralblatt 27:127–335

    Google Scholar 

  • Hemingway JS (1976) Mustards, Brassica spp. and Sinapis alba (Cruciferae). In: Simmonds NW (ed) Evolution of crop plants. Longman, New York, pp 19–21

    Google Scholar 

  • Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeogr 29:125–134

    Google Scholar 

  • http://en.wikipedia.org/wiki/Alyssum. Retrieved 10 Mar 2012

  • http://www.geochembio.com/biology/organisms/arabidopsis/. Retrieved 10 Mar 2012

  • Inamdar JA, Rao NV (1983) Light and scanning electron microscopic studies on trichomes of some Brassicaceae. Feddes Repert 94:183–190

    Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    CAS  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    CAS  Google Scholar 

  • Iwabuchi M, Itoh K, Shimamoto K (1991) Molecular and cytological characterization of repetitive DNA sequences in Brassica. Theor Appl Genet 81:349–355

    CAS  Google Scholar 

  • Janchen E (1942) Das System der Cruciferen. Osterr Botan Z 91:1–18

    Google Scholar 

  • Kemper FH, Bertram HP (1991) Thallium. In: Merian E (ed) Metals and their compounds in the environment. VCH Vrlg mbH, Weinham, FRG, pp 1227–1241

    Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    CAS  Google Scholar 

  • Koch M (2003) Molecular phylogenetics, evolution and population biology in Brassicaceae. In: Sharma AK, Sharma A (eds) Plant genome biodiversity and evolution, vol 1, Part A Phanerogams. Science, Enfield, pp 1–35

    Google Scholar 

  • Koch M, Al-Shehbaz IA (2004) Taxonomic and phylogenetic evaluation of the American “Thlaspi” species: identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst Bot 29:375–384

    Google Scholar 

  • Koch MA, Al-Shehbaz IA (2009) Molecular systematics and evolution of “wild” crucifers (Brassicaceae or Cruciferae). In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–19

    Google Scholar 

  • Koch M, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259:121–142

    CAS  Google Scholar 

  • Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst Evol 227:209–225

    CAS  Google Scholar 

  • Koch MA, Mummenhoff K (2006) Evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259:81–83

    Google Scholar 

  • Koch M, Huthmann M, Hurka H (1998) Molecular biogeography and evolution of the Microthlaspi perfoliatum s.l. polyploid complex (Brassicaceae): chloroplast DNA and nuclear ribosomal DNA restriction site variation. Can J Bot 76:382–396

    CAS  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544

    CAS  Google Scholar 

  • Koch MA, Dobeš C, Kiefer C, Schmickl R, Klimeš L, Lysak MA (2007) Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73

    CAS  Google Scholar 

  • Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943

    Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Kruckeberg AR, Reeves RD (1995) Nickel accumulation by serpentine species of Streptanthus (Brassicaceae): field and greenhouse studies. Madroño 42:458–469

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Google Scholar 

  • Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochain LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    CAS  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003a) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    CAS  Google Scholar 

  • Li YM, Chaney RL, Brewer F, Angle JS, Nelkin J (2003b) Phytoextraetion of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    CAS  Google Scholar 

  • Likar M, Pongrac P, Vogel-Mikuš K, Regvar M (2010) Molecular diversity and metal accumulation of different Thlaspi praecox populations from Slovenia. Plant Soil 330:195–205

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    CAS  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Biol Sci 266:2175–2179

    CAS  Google Scholar 

  • Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thalspi caerulescens from continental Europe. Plant Ecol 133:221–231

    Google Scholar 

  • Megdiche W, Ben Amor N, Bebez A et al (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384

    CAS  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, Worblaufen-Bern

    Google Scholar 

  • Meyer FK (1973) Conspectus der “Thlaspi”—Artern Europas, Afrikas und Vorderasiens. Feddes Repert 84:449–470

    Google Scholar 

  • Meyer KF (1979) Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. I. Geschichte, Morphologie und Chorologie. Feddes Repert 90:129–154

    Google Scholar 

  • Meyer FK (2006) Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens, Spezieller Tiel. IX. Noccaea Moench. Haussknechtia 12:1–341

    Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    CAS  Google Scholar 

  • Minguzzi C, Vergnano O (1948) Il contenuto del nichel nelle ceneri di Alyssum bertolonii Desv. Atti Soc Toscana Sci Natl Ser A 55:49–77

    CAS  Google Scholar 

  • Mummenhoff K, Koch M (1994) Chloroplast DNA restriction site variation and phylogenetic relationships in the genus Thlaspi sensulato (Brassicaceae). Syst Bot 19:73–88

    Google Scholar 

  • Mummenhoff K, Zunk K (1991) Should Thlaspi (Brassicaceae) be split? Preliminary evidence from isoelectric focusing analysis of Rubisco. Taxon 40:427–434

    Google Scholar 

  • Mummenhoff K, Franzke A, Koch M (1997) Molecular phyogenetics of Thlaspi s.l. (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. Can J Bot 75:469–482

    CAS  Google Scholar 

  • Mummenhoff K, Al-Shehbaz IA, Bakker FT, Linder HP, Mühlhaussen A (2005) Phylogeny, morphological evolution, and speciation of endemic Brassicaceae genera in the Cape flora of southern Africa. Ann Mo Bot Gard 92:400–424

    Google Scholar 

  • Nedelkoska TV, Doran PM (2001) Hyperaccumulation of nickel by hairy roots of Alyssum species: comparison with whole regenerated plants. Biotechnol Prog 17:752–759

    CAS  Google Scholar 

  • NRC (1999) Metals and radionuclides: technologies for characterization, remediation and containment. In: Groundwater and soil cleanup: improving management of persistent contaminants. National Academy Press, Washington, DC, pp 72–128

    Google Scholar 

  • O’Kane SL, Al-Shehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7:323–327

    Google Scholar 

  • Oran S (1996) Trichomes of the genus Alyssum L. (Crucifera) in Jordan. Webbia 50:237–245

    Google Scholar 

  • Palmer CE, Warwick SI, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytorem 3:245–287

    CAS  Google Scholar 

  • Papoyan A, Piñeros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

    CAS  Google Scholar 

  • Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430

    CAS  Google Scholar 

  • Peer WA, Mahmoudian M, Freeman JL, Lahner B, Richards EL, Reeves RD, Murphy AS, Salt DE (2006) Assessment of plants from the Brassicaceae family as a model for the study nickel and zinc hyperaccumulation. New Phytol 172:248–260

    CAS  Google Scholar 

  • Persans MW, Yan X, Patnoe JM, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    CAS  Google Scholar 

  • Pilson-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Google Scholar 

  • Plazibat M (2009) A short synopsis of the tribe Alysseae (Brassicaceae) in Croatia with some taxonomic novelties. Nat Croat 18:401–426

    Google Scholar 

  • Pongrac P, Vogel-Mikus K, Kump P, Poschenrieder C, Barcelo J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    Google Scholar 

  • Prakash S (1980) Cruciferous oilseeds in India. In: Tsumoda S, Hinata K, Gomes Campo C (eds) Brassica crops and wild allies: biology and breeding. Japan Science Society Press, Tokyo, pp 151–163

    Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electron J Biotechnol http://www/ejbiotechnology.info/content/vol6/issue3/index.html

  • Price R, Palmer J, Al-Shehbaz IA (1994) Systematic relationships of Arabidopsis, a molecular and morphological perspective. In: Meyerowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 7–19

    Google Scholar 

  • Przedpelska E, Wierzbicka M (2007) Arabidopsis arenosa (Brassicaceae) from lead-zinc waste heap in southern Poland – a plant with high tolerance to heavy metals. Plant Soil 299:43–53

    CAS  Google Scholar 

  • Razmjoo K, Toriyama K, Ishii R et al (1996) Photosynthetic properties of hybrids between Diplotaxis muralis DC, a C3 species, and Moricandia arvensis (L.) DC, a C3–C4 intermediate species in Brassicaceae. Genes Genet Syst 71:189–192

    Google Scholar 

  • Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. Taxon 37:309–318

    Google Scholar 

  • Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils. Intercept Ltd., Andover, pp 253–277

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    CAS  Google Scholar 

  • Reeves RD, Adıgüzel N (2004) Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turk J Bot 28:147–153

    Google Scholar 

  • Reeves RD, Adıgüzel N (2008) The nickel hyperaccumulating plants of the serpentines of Turkey and adjacent areas: a review with new data. Turk J Biol 32:143–153

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera and other genera of old world tribus Alysseae. Taxon 32:184–192

    Google Scholar 

  • Reeves RD, Kruckeberg AR, Adıgüzel N et al (2001) Studies on the flora of serpentine and other metalliferous areas of western Turkey. South Afr J Sci 97:513–517

    CAS  Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MG (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–765

    CAS  Google Scholar 

  • Riley R (1956) The influence of the breeding system on the genecology of Thlaspi alpestre L. New Phytol 55:319–330

    Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks R, Kirkman J, Gregg P (1998) The potential of some plant hyperaccumulators for phytoremediation of contaminated soils. International Soil Congress, Montepelier

    Google Scholar 

  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trend Plant Sci 13:208–215

    CAS  Google Scholar 

  • Rylott EL, Metzlaff K, Rawsthorne S (1998) Developmental and environmental effects on the expression of the C3–C4 intermediate phenotype in Moricandia arvensis. Plant Physiol 118:1277–1284

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 171–188

    Google Scholar 

  • Schranz E, Dobeš C, Koch M, Mitchell-Olds T (2006) Sexual reproduction, hybridization, apomixis and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Google Scholar 

  • Schranz ME, Song B-H, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175

    CAS  Google Scholar 

  • Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) Die natürlichen pflanzenfamilien. Verlag von Wilhelm Engelmann, Leipzig, pp 227–658

    Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    CAS  Google Scholar 

  • Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Intl J Mass Spectrom 260:107–114

    CAS  Google Scholar 

  • Snowdon RJ, Köhler W, Friedt W, Köhler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324

    CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2046

    Google Scholar 

  • Tolrà R, Pongrac P, Poschenrieder C, Vogel-Mikuš K, Regvar M, Barceló J (2006) Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant Soil 288:333–341

    Google Scholar 

  • Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM et al (1993) Flora Europaea. Cambridge University Press, Cambridge

    Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • Uprety DC, Shyam-Prakash P, Abrol YP et al (1995) Variability for photosynthesis in Brassica and allied genera. Ind J Plant Physiol 38:207–213

    Google Scholar 

  • Vaughan CE, Gregg ER, Delouche JC (1976) Beneficiamento e manuseio de sementes. Ministério da Agricultura/AGIPLAN, Brasil

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  Google Scholar 

  • Vinterhalter B, Savić J, Platisa J, Raspor M, Ninković S, Mitić N, Vinterhalter D (2008) Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst et Kit. Plant Cell Tiss Organ Cult 94:299–303

    CAS  Google Scholar 

  • Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine. Environ Pollut 133:233–242

    Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Simčič J, Pelicon J et al (2007) Localisation and quantification of elements within seeds of the Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut 147:50–59

    Google Scholar 

  • Warwick SI (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crops and models, Springer, New York, 9:33–65

    Google Scholar 

  • Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248

    Google Scholar 

  • Warwick SI, Sauder CA (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483

    CAS  Google Scholar 

  • Warwick SI, Al-Shehbaz IA, Price RA, Sauder CA (2002) Phylogeny of Sisymbrium (Brassicaceae) based on ITS sequences of nuclear ribosomal DNA. Can J Bot 80:1002–1017

    CAS  Google Scholar 

  • Warwick SI, Al-Shehbaz IA, Sauder CA (2005) Phylogeny and cytological diversity of Sisymbrium (Brassicaceae). In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution. 1C: phanerogams (Angiosperm – Dicotyledons). Oxford & IBH Publishing Co. Pvt. Ltd./Science, New Delhi/Enfield, pp 219–250

    Google Scholar 

  • Warwick SI, Al-Shehbaz IA, Sauder CA (2006) Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 84:269–281

    CAS  Google Scholar 

  • Warwick SI, Sauder CA, Al-Shehbaz IA, Jacquemoud F (2007) Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal its DNA sequences. Ann Mo Bot Gard 94:56–78

    Google Scholar 

  • Warwick SI, Sauder CA, Al-Shehbaz IA (2008) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Botany-Botanique 86:315–336

    CAS  Google Scholar 

  • Warwick SI, Sauder CA, Mayer MS, Al-Shehbaz IA (2009) Phylogenetic relationships in the tribes Schizopetaleae and Thelypodieae (Brassicaceae) based on nuclear ribosomal ITS region and plastid ndhF DNA sequences. Botony 87:961–985

    CAS  Google Scholar 

  • Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA (2010) Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst Evol 285:209–232

    CAS  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    CAS  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of diversification between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Zunk K, Mummenhoff K, Koch M, Hurka H (1996) Phytogenetic relationships of Thlaspi s.l. (subtribe Thlaspidinae, Lepidieae) and allied genera based on chloroplast DNA restriction-site variation. Theor Appl Genet 92:375–381

    CAS  Google Scholar 

  • Zunk K, Mummenhoff K, Hurka H (1999) Phylogenetic relationships in tribe Lepidieae (Brassicaceae) based on chloroplast DNA restriction site variation. Can J Bot 77:1504–1512

    CAS  Google Scholar 

Download references

Acknowledgements

NAA (SFRH/BPD/64690/2009), IA, MP, ACD and EP are grateful to the Portuguese Foundation for Science and Technology (FCT) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) for partial financial supports. SSG, SU and NAK would like to acknowledge the receipt of funds from DBT, DST and UGC, Govt. of India, New Delhi. Authors apologize if some references related to the main theme of the current chapter could not be cited due to space constraint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser A. Anjum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anjum, N.A. et al. (2012). The Plant Family Brassicaceae: An Introduction. In: Anjum, N., Ahmad, I., Pereira, M., Duarte, A., Umar, S., Khan, N. (eds) The Plant Family Brassicaceae. Environmental Pollution, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3913-0_1

Download citation

Publish with us

Policies and ethics