Roles of Rhizospheric Processes and Plant Physiology in Applied Phytoremediation of Contaminated Soils Using Brassica Oilseeds

  • Sarah Neilson
  • Nishanta RajakarunaEmail author
Part of the Environmental Pollution book series (EPOL, volume 21)


The current chapter reviews in detail significant physiological mechanisms of metal accumulating Brassica species and discusses rhizospheric processes and soil management, including the role of soil amendments such as chelators in enhancing the uptake of toxic metals, focusing on their roles in phytoremediation of contaminated sites worldwide, in addition to presenting an overview of the field of phytoremediation, including its merits and shortcomings. Recent progress towards the use of oilseed Brassica species in field-based studies is also discussed.


Brassicaoilseeds Contaminatedsoils Phytoremediation Rhizospheric processes 


  1. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224CrossRefGoogle Scholar
  2. Alford EA, Pilon-Smits EAH, Paschke M (2010) Metallophytes – a view from the rhizosphere. Plant Soil 337:33–50CrossRefGoogle Scholar
  3. Angle JS, Linacre NA (2005) Metal phytoextraction – a survey of potential risks. Int J Phytoremediation 7:241–254CrossRefGoogle Scholar
  4. Angle JS, Chaney RL, Baker AJM, Li Y-M, Reeves R, Volk V et al (2001) Developing commercial phytoremediation technologies: practical considerations. S Afr J Sci 97:619–623Google Scholar
  5. Babaoglu M, Gezgin S, Topal A, Sade B, Dural H (2004) Gypsophila spaerocephala Fenzl ex Tchihat.: a boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turk J Bot 28:273–278Google Scholar
  6. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumlator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–108Google Scholar
  7. Banuelos G, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777CrossRefGoogle Scholar
  8. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268CrossRefGoogle Scholar
  9. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Bioremediation and biodegradation: analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440CrossRefGoogle Scholar
  10. Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15:1632–1642CrossRefGoogle Scholar
  11. Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567CrossRefGoogle Scholar
  12. Boyd RS (2009) High-nickel insects and nickel hyperaccumulator plants: a review. Insect Sci 16:19–31CrossRefGoogle Scholar
  13. Boyd RS, Davis MA (2001) Metal tolerance and accumulation ability of the Ni hyperaccumulator Streptanthus polygaloides Gray (Brassicaceae). Int J Phytoremediation 3:353–367CrossRefGoogle Scholar
  14. Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802CrossRefGoogle Scholar
  15. Brooks RR, Chambers MF, Larry NJ, Robinson BH (1998) Phytomining. Trend Plant Sci 3:359–362CrossRefGoogle Scholar
  16. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443CrossRefGoogle Scholar
  17. Chaney RL, Chen K-Y, Li Y-M, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140CrossRefGoogle Scholar
  18. Cho M, Chardonnens AN, Dietz K-J (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293CrossRefGoogle Scholar
  19. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486CrossRefGoogle Scholar
  20. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  21. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719Google Scholar
  22. Del Val C, Barea JM, Azcón-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723Google Scholar
  23. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114CrossRefGoogle Scholar
  24. Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 3–11Google Scholar
  25. Fones H, Davis CAR, Rico A, Fang F, Smith JAC et al (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog 6:e1001093CrossRefGoogle Scholar
  26. Galeas ML, Zhang L-H, Freeman JL, Wegner M, Pilon-Smits EAH (2006) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525CrossRefGoogle Scholar
  27. Ghasemi R, Ghaderian SM, Kramer U (2009) Accumulation of nickel in trichomes of a nickel hyperaccumulator plant, Alyssum inflatum. Northeast Nat 16(Special issue 5):81–92CrossRefGoogle Scholar
  28. Giasson P, Jaouich A, Gagné S, Massicotte L, Cayer P, Moutoglis P (2006) Enhanced phytoremediation: a study of mycorrhizoremediation of heavy metal contaminated soil. Remediation 17:97–110CrossRefGoogle Scholar
  29. Hanen Z, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M et al (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615CrossRefGoogle Scholar
  30. Harrison SP, Rajakaruna N (eds) (2011) Serpentine: evolution and ecology in a model system. University of California Press, BerkeleyGoogle Scholar
  31. Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269CrossRefGoogle Scholar
  32. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364CrossRefGoogle Scholar
  33. Koch M, Al-Shehbaz IA (2004) Taxonomic and phylogenetic evaluation of the American “Thlaspi” species: identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst Bot 29:375–384CrossRefGoogle Scholar
  34. Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst Evol 227:209–225CrossRefGoogle Scholar
  35. Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefGoogle Scholar
  36. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102CrossRefGoogle Scholar
  37. Lai H-Y, Chen S-W, Chen Z-S (2008) Pot experiment to study the uptake of Cd and Pb by three Indian mustard (Brassica juncea) grown in artificially contaminated soils. Int J Phytoremediation 10:91–105CrossRefGoogle Scholar
  38. Lasat MM, Kochian LV (2000) Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 167–177Google Scholar
  39. Li Y-M, Chaney RL, Brewer E, Roseberg RJ, Angle JS et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115CrossRefGoogle Scholar
  40. Maestri E, Marmiroli M, Visoli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRefGoogle Scholar
  41. Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  42. Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900CrossRefGoogle Scholar
  43. Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  44. Pilon-Smits EAH, Freeman JL (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4:203–210CrossRefGoogle Scholar
  45. Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212CrossRefGoogle Scholar
  46. Podar D, Ramsey MH, Hutchings MJ (2004) Effect of cadmium, zinc, and substrate heterogeneity on yield, shoot metal concentration and metal uptake by Brassica juncea: implications for human health risk assessment and phytoremediation. New Phytol 163:313–324CrossRefGoogle Scholar
  47. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566CrossRefGoogle Scholar
  48. Pongrac P, Zhao FJ, Razinger J, Zrimec A, Regvar M (2009) Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environ Exp Bot 66:479–486CrossRefGoogle Scholar
  49. Puschenreiter M, Wieczorek S, Horak O, Wenzel WW (2003) Chemical changes in the rhizosphere of metal hyperaccumulator excluder Thalspi species. J Plant Nutr Soil Sci 168:579–584CrossRefGoogle Scholar
  50. Quinn CF, Freeman JL, Reynolds RJB, Lindblom SD, Cappa JJ et al (2010) Selenium hyperaccumulation protects plants from cell disruptor herbivores. BMC Ecol 10:19CrossRefGoogle Scholar
  51. Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jorgensen SE, Fath B (eds) The encyclopedia of ecology, vol 2nd. Elsevier, Oxford, pp 1201–1207CrossRefGoogle Scholar
  52. Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Ceylon J Sci 35:25–39Google Scholar
  53. Rascio N, Navari-Izzo F (2011) Heavy metal accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181CrossRefGoogle Scholar
  54. Reeves RD (2002) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Dordrecht, pp 25–52Google Scholar
  55. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  56. Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PM et al (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116CrossRefGoogle Scholar
  57. Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789CrossRefGoogle Scholar
  58. Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 196–207Google Scholar
  59. Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 178–195Google Scholar
  60. Strauss SY, Boyd RS (2011) Herbivory and other cross-kingdom interactions on harsh soils. In: Harrison SP, Rajakaruna N (eds) Serpentine: evolution and ecology in a model system. University of California Press, Berkeley, pp 181–200Google Scholar
  61. Tsao DT (2003) Phytoremediation. Advances in biochemical engineering biotechnology 78. Springer, Berlin, p 206Google Scholar
  62. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  63. Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337CrossRefGoogle Scholar
  64. Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefGoogle Scholar
  65. Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138CrossRefGoogle Scholar
  66. Whiting SN, De Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150CrossRefGoogle Scholar
  67. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisee F, Paton A, Smith JAC et al (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116CrossRefGoogle Scholar
  68. Wright J, von Wettberg E (2009) Serpentinomics – an emerging new field of study. Northeast Nat 16(Special issue 5):285–296CrossRefGoogle Scholar
  69. Yang X, Feng Y, He Z, Stoffella PJ (2005a) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353CrossRefGoogle Scholar
  70. Yang X-E, Jin X-F, Feng Y, Islam E (2005b) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035CrossRefGoogle Scholar
  71. Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G et al (2010) Molecular diversity of arbuscular mycorrhyizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765CrossRefGoogle Scholar
  72. Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trend Plant Sci 19:436–442CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of the AtlanticBar HarborUSA

Personalised recommendations