Skip to main content

Systemic and Targeted Therapy

  • Chapter
  • First Online:
  • 803 Accesses

Abstract

Historically, single-modality therapy failed to control inflammatory breast cancer (IBC), a very aggressive and rare type of advanced breast cancer with poor prognosis. With the introduction of multimodality treatment (primary and adjuvant systemic therapy, surgery, and radiation therapy), the prognosis of inflammatory breast cancer (IBC) has significantly improved. Current standard treatment of IBC consists of primary systemic therapy, including trastuzumab for HER-2/neu overexpressing IBC, followed by surgery with mastectomy and complete axillary lymph node dissection, and subsequently radiation therapy.

Novel agents for systemic therapy have been investigated. Lapatinib, neratinib, pertuzumab, TDM-1, are the most promising targeted therapy in HER2-positive IBC. Molecular targets for vasculolymphatic processes—angiogenesis, lymphangiogenesis, and vasculogenesis—have shown greater potential in IBC than in non-IBC. Recent developments in molecular targeting toward WISP3 and RhoC GTPase may also be effective against IBC. Although loss of E-cadherin is a hallmark of invasive disease and epithelial-to-mesenchymal transition, paradoxically, E-cadherin is overexpressed in IBC. IBC’s low incidence has limited the research on this aggressive disease, which points to the need for worldwide collaboration aimed at optimizing a more effective multidisciplinary approach to fight this disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gonzalez-Angulo AM, Hennessy BT, Broglio K et al (2007) Trends for inflammatory breast cancer: is survival improving? Oncologist 12:904–912

    Article  PubMed  Google Scholar 

  2. Bozzetti F, Saccozzi R, De Lena M et al (1981) Inflammatory cancer of the breast: analysis of 114 cases. J Surg Oncol 18:355–361

    Article  PubMed  CAS  Google Scholar 

  3. Haagensen CD, Stout AP (1951) Carcinoma of the breast. III. Results of treatment, 1935–1942. Ann Surg 134:151–172

    Article  PubMed  CAS  Google Scholar 

  4. Kell MR, Morrow M (2005) Surgical aspects of inflammatory breast cancer. Breast Dis 22:67–73

    PubMed  Google Scholar 

  5. Lamb CC, Eberlein TJ, Parker LM et al (1991) Results of radical radiotherapy for inflammatory breast cancer. Am J Surg 162:236–242

    Article  PubMed  CAS  Google Scholar 

  6. Jaiyesimi IA, Buzdar AU, Hortobagyi G (1992) Inflammatory breast cancer: a review. J Clin Oncol 10:1014–1024

    PubMed  CAS  Google Scholar 

  7. Ueno NT, Buzdar AU, Singletary SE et al (1997) Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M. D. Anderson Cancer Center. Cancer Chemother Pharmacol 40:321–329

    Article  PubMed  CAS  Google Scholar 

  8. Koh EH, Buzdar AU, Ames FC et al (1990) Inflammatory carcinoma of the breast: results of a combined-modality approach–M. D. Anderson Cancer Center experience. Cancer Chemother Pharmacol 27:94–100

    Article  PubMed  CAS  Google Scholar 

  9. Singletary SE, Ames FC, Buzdar AU (1994) Management of inflammatory breast cancer. World J Surg 18:87–92

    Article  PubMed  CAS  Google Scholar 

  10. Buzdar AU, Singletary SE, Booser DJ et al (1995) Combined modality treatment of stage III and inflammatory breast cancer. M. D. Anderson Cancer Center experience. Surg Oncol Clin N Am 4:715–734

    PubMed  CAS  Google Scholar 

  11. Cristofanilli M, Gonzalez-Angulo AM, Buzdar AU et al (2004) Paclitaxel improves the prognosis in estrogen receptor negative inflammatory breast cancer: the M. D. Anderson Cancer Center experience. Clin Breast Cancer 4:415–419

    Article  PubMed  CAS  Google Scholar 

  12. Bauer RL, Busch E, Levine E et al (1995) Therapy for inflammatory breast cancer: impact of doxorubicin-based therapy. Ann Surg Oncol 2:288–294

    Article  PubMed  CAS  Google Scholar 

  13. Harris EE, Schultz D, Bertsch H et al (2003) Ten-year outcome after combined modality ­therapy for inflammatory breast cancer. Int J Radiat Oncol Biol Phys 55:1200–1208

    Article  PubMed  Google Scholar 

  14. Baldini E, Gardin G, Evagelista G et al (2004) Long-term results of combined-modality ­therapy for inflammatory breast carcinoma. Clin Breast Cancer 5:358–363

    Article  PubMed  Google Scholar 

  15. Low JA, Berman AW, Steinberg SM et al (2004) Long-term follow-up for locally advanced and inflammatory breast cancer patients treated with multimodality therapy. J Clin Oncol 22:4067–4074

    Article  PubMed  CAS  Google Scholar 

  16. Cristofanilli M, Buzdar AU, Sneige N et al (2001) Paclitaxel in the multimodality treatment for inflammatory breast carcinoma. Cancer 92:1775–1782

    Article  PubMed  CAS  Google Scholar 

  17. Hennessy BT, Gonzalez-Angulo AM, Hortobagyi GN et al (2006) Disease-free and overall survival after pathologic complete disease remission of cytologically proven inflammatory breast carcinoma axillary lymph node metastases after primary systemic chemotherapy. Cancer 106:1000–1006

    Article  PubMed  Google Scholar 

  18. Costa SD, Loibl S, Kaufmann M et al (2010) Neoadjuvant chemotherapy shows similar response in patients with inflammatory or locally advanced breast cancer when compared with operable breast cancer: a secondary analysis of the GeparTrio trial data. J Clin Oncol 28:83–91

    Article  PubMed  CAS  Google Scholar 

  19. Cheng YC, Rondon G, Yang Y et al (2004) The use of high-dose cyclophosphamide, carmustine, and thiotepa plus autologous hematopoietic stem cell transplantation as consolidation therapy for high-risk primary breast cancer after primary surgery or neoadjuvant chemotherapy. Biol Blood Marrow Transplant 10:794–804

    Article  PubMed  CAS  Google Scholar 

  20. Viens P, Palangie T, Janvier M et al (1999) First-line high-dose sequential chemotherapy with rG-CSF and repeated blood stem cell transplantation in untreated inflammatory breast cancer: toxicity and response (PEGASE 02 trial). Br J Cancer 81:449–456

    Article  PubMed  CAS  Google Scholar 

  21. Yau JC, Gertler SZ, Hanson J et al (2000) A phase III study of high-dose intensification without hematopoietic progenitor cells support for patients with high-risk primary breast carcinoma. Am J Clin Oncol 23:292–296

    PubMed  CAS  Google Scholar 

  22. Arun B, Slack R, Gehan E et al (1999) Survival after autologous hematopoietic stem cell transplantation for patients with inflammatory breast carcinoma. Cancer 85:93–99

    Article  PubMed  CAS  Google Scholar 

  23. Schwartzberg L, Weaver C, Lewkow L et al (1999) High-dose chemotherapy with peripheral blood stem cell support for stage IIIB inflammatory carcinoma of the breast. Bone Marrow Transplant 24:981–987

    Article  PubMed  CAS  Google Scholar 

  24. Somlo G, Frankel P, Chow W et al (2004) Prognostic indicators and survival in patients with stage IIIB inflammatory breast carcinoma after dose-intense chemotherapy. J Clin Oncol 22:1839–1848

    Article  PubMed  Google Scholar 

  25. Veyret C, Levy C, Chollet P et al (2006) Inflammatory breast cancer outcome with epirubicin-based induction and maintenance chemotherapy: ten-year results from the French Adjuvant Study Group GETIS 02 trial. Cancer 107:2535–2544

    Article  PubMed  CAS  Google Scholar 

  26. Yamauchi H, Cristofanilli M, Nakamura S et al (2009) Molecular targets for treatment of inflammatory breast cancer. Nat Rev Clin Oncol 6:387–394

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Angulo AM, Guarneri V, Gong Y et al (2006) Downregulation of the cyclin-dependent kinase inhibitor p27kip1 might correlate with poor disease-free and overall survival in inflammatory breast cancer. Clin Breast Cancer 7:326–330

    Article  PubMed  CAS  Google Scholar 

  28. Guerin M, Gabillot M, Mathieu MC et al (1989) Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 43:201–208

    Article  PubMed  CAS  Google Scholar 

  29. Guerin M, Sheng ZM, Andrieu N et al (1990) Strong association between c-myb and ­oestrogen-receptor expression in human breast cancer. Oncogene 5:131–135

    PubMed  CAS  Google Scholar 

  30. Parton M, Dowsett M, Ashley S et al (2004) High incidence of HER-2 positivity in inflammatory breast cancer. Breast 13:97–103

    Article  PubMed  CAS  Google Scholar 

  31. Buzdar AU, Ibrahim NK, Francis D et al (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23:3676–3685

    Article  PubMed  CAS  Google Scholar 

  32. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  33. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  PubMed  CAS  Google Scholar 

  34. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  PubMed  CAS  Google Scholar 

  35. Burstein HJ, Harris LN, Gelman R et al (2003) Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol 21:46–53

    Article  PubMed  CAS  Google Scholar 

  36. Van Pelt AE, Mohsin S, Elledge RM et al (2003) Neoadjuvant trastuzumab and docetaxel in breast cancer: preliminary results. Clin Breast Cancer 4:348–353

    Article  PubMed  Google Scholar 

  37. Hurley J, Doliny P, Reis I et al (2006) Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol 24:1831–1838

    Article  PubMed  CAS  Google Scholar 

  38. Limentani SA, Brufsky AM, Erban JK et al (2007) Phase II study of neoadjuvant docetaxel, vinorelbine, and trastuzumab followed by surgery and adjuvant doxorubicin plus cyclophosphamide in women with human epidermal growth factor receptor 2-overexpressing locally advanced breast cancer. J Clin Oncol 25:1232–1238

    Article  PubMed  CAS  Google Scholar 

  39. Gianni L, Eiermann W, Semiglazov V et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375:377–384

    Article  PubMed  CAS  Google Scholar 

  40. Dawood S, Gong Y, Broglio K, et al (2010) Trastuzumab in primary inflammatory breast cancer (IBC): high pathological response rates and improved outcome. Breast J 16(5):529–532

    Google Scholar 

  41. Cabioglu N, Gong Y, Islam R et al (2007) Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol 18:1021–1029

    Article  PubMed  CAS  Google Scholar 

  42. Boussen H, Cristofanilli M, Zaks T et al (2010) Phase II study to evaluate the efficacy and safety of neoadjuvant lapatinib plus paclitaxel in patients with inflammatory breast cancer. J Clin Oncol 28:3248–3255

    Article  PubMed  CAS  Google Scholar 

  43. Johnston S, Trudeau M, Kaufman B et al (2008) Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol 26(7):1066–1072

    Article  PubMed  CAS  Google Scholar 

  44. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  PubMed  CAS  Google Scholar 

  45. Bieche I, Lerebours F, Tozlu S et al (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10:6789–6795

    Article  PubMed  CAS  Google Scholar 

  46. McCarthy NJ, Yang X, Linnoila IR et al (2002) Microvessel density, expression of estrogen receptor alpha, MIB-1, p53, and c-erbB-2 in inflammatory breast cancer. Clin Cancer Res 8:3857–3862

    PubMed  CAS  Google Scholar 

  47. Wedam SB, Low JA, Yang SX et al (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24:769–777

    Article  PubMed  CAS  Google Scholar 

  48. Weigand M, Hantel P, Kreienberg R et al (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8:197–204

    Article  PubMed  CAS  Google Scholar 

  49. Overmoyer B, Fu P, Hoppel C et al (2007) Inflammatory breast cancer as a model disease to study tumor angiogenesis: results of a phase IB trial of combination SU5416 and doxorubicin. Clin Cancer Res 13:5862–5868

    Article  PubMed  CAS  Google Scholar 

  50. http://www.clinicaltrials.gov/ct2/show/NCT00558103: A randomized, multicenter, Phase III study comparing the combination of Pazopanib and Lapatinib versus Lapatinib monotherapy in patients with ErbB2 over-expressing inflammatory breast cancer

  51. Achen MG, Mann GB, Stacker SA (2006) Targeting lymphangiogenesis to prevent tumour metastasis. Br J Cancer 94:1355–1360

    Article  PubMed  CAS  Google Scholar 

  52. Van der Auwera I, Van den Eynden GG, Colpaert CG et al (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 11:7637–7642

    Article  PubMed  Google Scholar 

  53. Van der Auwera I, Van Laere SJ, Van den Eynden GG et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10:7965–7971

    Article  PubMed  Google Scholar 

  54. Shirakawa K, Kobayashi H, Sobajima J et al (2003) Inflammatory breast cancer: vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer Res 5:136–139

    Article  PubMed  Google Scholar 

  55. Shirakawa K, Wakasugi H, Heike Y et al (2002) Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer 99:821–828

    Article  PubMed  CAS  Google Scholar 

  56. Shirakawa K, Shibuya M, Heike Y et al (2002) Tumor-infiltrating endothelial cells and endothelial precursor cells in inflammatory breast cancer. Int J Cancer 99:344–351

    Article  PubMed  CAS  Google Scholar 

  57. Shirakawa K, Tsuda H, Heike Y et al (2001) Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res 61:445–451

    PubMed  CAS  Google Scholar 

  58. van Golen KL, Davies S, Wu ZF et al (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5:2511–2519

    PubMed  Google Scholar 

  59. Kleer CG, Zhang Y, Pan Q et al (2004) WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res 6:R110–R115

    Article  Google Scholar 

  60. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  61. Rowinsky EK, Windle JJ, Von Hoff DD (1999) Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 17:3631–3652

    PubMed  CAS  Google Scholar 

  62. Cohen LH, Pieterman E, van Leeuwen RE et al (2000) Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics. Biochem Pharmacol 60:1061–1068

    Article  PubMed  CAS  Google Scholar 

  63. Colpaert CG, Vermeulen PB, Benoy I et al (2003) Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer 88:718–725

    Article  PubMed  CAS  Google Scholar 

  64. Tomlinson JS, Alpaugh ML, Barsky SH (2001) An intact overexpressed E-cadherin/alpha, beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res 61:5231–5241

    PubMed  CAS  Google Scholar 

  65. Kleer CG, van Golen KL, Braun T et al (2001) Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol 14:458–464

    Article  PubMed  CAS  Google Scholar 

  66. Charafe-Jauffret E, Tarpin C, Bardou VJ et al (2004) Immunophenotypic analysis of inflammatory breast cancers: identification of an ‘inflammatory signature’. J Pathol 202:265–273

    Article  PubMed  Google Scholar 

  67. Nguyen DM, Sam K, Tsimelzon A et al (2006) Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin Cancer Res 12:5047–5054

    Article  PubMed  CAS  Google Scholar 

  68. Silvera D, Arju R, Darvishian F et al (2009) Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11:903–908

    Article  PubMed  CAS  Google Scholar 

  69. Schwartzberg LS, Weaver CH, Campos L et al (1999) High-dose chemotherapy with peripheral blood stem cell support for operable locally advanced noninflammatory carcinoma of the breast. Breast J 5:238–245

    Article  PubMed  Google Scholar 

  70. Dazzi C, Cariello A, Rosti G et al (2001) Neoadjuvant high dose chemotherapy plus peripheral blood progenitor cells in inflammatory breast cancer: a multicenter phase II pilot study. Haematologica 86:523–529

    PubMed  CAS  Google Scholar 

  71. Bertucci F, Tarpin C, Charafe-Jauffret E et al (2004) Multivariate analysis of survival in inflammatory breast cancer: impact of intensity of chemotherapy in multimodality treatment. Bone Marrow Transplant 33:913–920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Valero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yamauchi, H., Yamauchi, T., Ueno, N.T., Valero, V. (2012). Systemic and Targeted Therapy. In: Ueno, N., Cristofanilli, M. (eds) Inflammatory Breast Cancer: An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3907-9_9

Download citation

Publish with us

Policies and ethics