Skip to main content

Angiogenesis and Lymphangiogenesis in IBC: Insights from a Genome-Wide Gene Expression Profiling Study

  • Chapter
  • First Online:
Inflammatory Breast Cancer: An Update

Abstract

Inflammatory breast cancer (IBC) is an aggressive form of locally advanced breast cancer. Past molecular and morphological studies on cell lines, animal models and human tissue samples have unambiguously demonstrated that IBC is highly (lymph)angiogenic. Nevertheless, two vital questions remain unanswered: A. what is the role of the differential distribution of the molecular subtypes (particularly Luminal A) between IBC and nIBC in determining the observed difference in (lymph)angiogenesis and B. what are the exact molecular mechanisms that support angiogenesis in IBC? In this study, we aim to provide a clue for both questions by analyzing a gene expression data set of 137 IBC samples and 252 nIBC ­samples. In order to resolve the first question, a Gene Ontology analysis focusing on angiogenesis-related GO-terms was performed on the original data set and on the same data set after removing molecular subtype-specific variation in gene expression. In order to provide an answer to the second question, we identified angiogenesis-related IBC-specific genes that were subjected to Ingenuity Pathway Analysis. In addition, we focused part of our analysis on angiomiRs, microRNA-families that are known to regulate angiogenesis. Comparative analysis of all our data suggests that angiogenesis in IBC is not VEGFA-driven but is merely a consequence of a disturbed balance between proangiogenic and antiangiogenic factors, possibly involving PGF, TSP1 (THBS1) and the miR-221/-222-family. TSP1, a TGFβ-inducible gene that is upregulated in nIBC, is involved in the inhibition of angiogenesis, a process that also involves miR-221/-222. Therefore, we conclude that lack of inhibition of angiogenesis in IBC in conjunction with the increased expression of several angiogenesis-stimulating genes (PGF, mir-221/-222 gene targets) results in increased levels of angiogenesis-related histomorphometrical parameters in IBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vermeulen PB, van Golen KL, Dirix LY (2010) Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 116(11 Suppl):2748–2754

    Article  PubMed  CAS  Google Scholar 

  2. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    Article  PubMed  CAS  Google Scholar 

  3. Xiao Y, Ye Y, Zou X, Jones S, Yearsley K, Shetuni B et al (2011) The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene 30(3):287–300

    Article  PubMed  CAS  Google Scholar 

  4. Ye Y, Tellez JD, Durazo M, Belcher M, Yearsley K, Barsky SH (2010) E-cadherin accumulation within the lymphovascular embolus of inflammatory breast cancer is due to altered trafficking. Anticancer Res 30(10):3903–3910

    PubMed  CAS  Google Scholar 

  5. Mahooti S, Porter K, Alpaugh ML, Ye Y, Xiao Y, Jones S et al (2010) Breast carcinomatous tumoral emboli can result from encircling lymphovasculogenesis rather than lymphovascular invasion. Oncotarget 1(2):131–147

    PubMed  Google Scholar 

  6. Alpaugh ML, Tomlinson JS, Shao ZM, Barsky SH (1999) A novel human xenograft model of inflammatory breast cancer. Cancer Res 59(20):5079–5084

    PubMed  CAS  Google Scholar 

  7. Peña L, Perez-Alenza MD, Rodriguez-Bertos A, Nieto A (2003) Canine inflammatory mammary carcinoma: histopathology, immunohistochemistry and clinical implications of 21 cases. Breast Cancer Res Treat 78(2):141–148

    Article  PubMed  Google Scholar 

  8. Clemente M, Pérez-Alenza MD, Illera JC, Peña L (2010) Histological, immunohistological, and ultrastructural description of vasculogenic mimicry in canine mammary cancer. Vet Pathol 47(2):265–274

    Article  PubMed  CAS  Google Scholar 

  9. Shirakawa K, Tsuda H, Heike Y, Kato K, Asada R, Inomata M et al (2001) Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res 61(2):445–451

    PubMed  CAS  Google Scholar 

  10. Shirakawa K, Kobayashi H, Sobajima J, Hashimoto D, Shimizu A, Wakasugi H (2003) Inflammatory breast cancer: vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer Res 5(3):136–139

    Article  PubMed  Google Scholar 

  11. Colpaert CG, Vermeulen PB, Benoy I, Soubry A, Van Roy F, van Beest P et al (2003) Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer 88(5):718–725

    Article  PubMed  CAS  Google Scholar 

  12. Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, van Dam P, Colpaert CG et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10(23):7965–7971

    Article  PubMed  Google Scholar 

  13. Bièche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10(20):6789–6795

    Article  PubMed  Google Scholar 

  14. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B et al (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64(23):8558–8565

    Article  PubMed  CAS  Google Scholar 

  15. Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA et al (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 11(21):7637–7642

    Article  PubMed  Google Scholar 

  16. Dawood S, Merajver SD, Viens P, Vermeulen PB, Swain SM, Buchholz TA et al (2011) International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol 22(3):515–523

    Article  PubMed  CAS  Google Scholar 

  17. Van Laere S, Van der Auwera I, Van den Eynden G, Van Hummelen P, van Dam P, Van Marck E et al (2007) Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br J Cancer 97(8):1165–1174

    Article  PubMed  Google Scholar 

  18. Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, Woodward WA et al (2011) Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 125(3):785–795

    Article  PubMed  CAS  Google Scholar 

  19. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  Google Scholar 

  20. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  Google Scholar 

  21. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20(1):93–99

    Article  PubMed  CAS  Google Scholar 

  22. Wang S, Olson EN (2009) AngiomiRs – key regulators of angiogenesis. Curr Opin Genet Dev 19(3):205–211

    Article  PubMed  CAS  Google Scholar 

  23. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ (2010) Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 103(4):532–541

    Article  PubMed  Google Scholar 

  24. McCarthy NJ, Yang X, Linnoila IR, Merino MJ, Hewitt SM, Parr AL et al (2002) Microvessel density, expression of estrogen receptor alpha, MIB-1, p53, and c-erbB-2 in inflammatory breast cancer. Clin Cancer Res 8(12):3857–3862

    PubMed  CAS  Google Scholar 

  25. Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Buttarelli M, Jacquemier J et al (2009) How different are luminal A and basal breast cancers? Int J Cancer 124(6):1338–1348

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486

    Article  PubMed  CAS  Google Scholar 

  27. Das A, Shergill U, Thakur L, Sinha S, Urrutia R, Mukhopadhyay D et al (2010) Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am J Physiol Gastrointest Liver Physiol 298(6):G908–G915

    Article  PubMed  CAS  Google Scholar 

  28. Krasnoperov V, Kumar SR, Ley E, Li X, Scehnet J, Liu R et al (2010) Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am J Pathol 176(4):2029–2038

    Article  PubMed  CAS  Google Scholar 

  29. Yoo S, Yoon H, Kim H, Chae C, De Falco S, Cho C et al (2009) Role of placenta growth factor and its receptor flt-1 in rheumatoid inflammation: a link between angiogenesis and inflammation. Arthritis Rheum 60(2):345–354

    Article  PubMed  CAS  Google Scholar 

  30. Oura H, Bertoncini J, Velasco P, Brown LF, Carmeliet P, Detmar M (2003) A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 101(2):560–567

    Article  PubMed  CAS  Google Scholar 

  31. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583

    Article  PubMed  CAS  Google Scholar 

  32. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943

    Article  PubMed  CAS  Google Scholar 

  33. Luttun A, Brusselmans K, Fukao H, Tjwa M, Ueshima S, Herbert J et al (2002) Loss of placental growth factor protects mice against vascular permeability in pathological conditions. Biochem Biophys Res Commun 295(2):428–434

    Article  PubMed  CAS  Google Scholar 

  34. Adachi H, Tsujimoto M (2002) FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem 277(37):34264–34270

    Article  PubMed  CAS  Google Scholar 

  35. Tamura Y, Adachi H, Osuga J, Ohashi K, Yahagi N, Sekiya M et al (2003) FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. J Biol Chem 278(15):12613–12617

    Article  PubMed  CAS  Google Scholar 

  36. Chlenski A, Liu S, Guerrero LJ, Yang Q, Tian Y, Salwen HR et al (2006) SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. Int J Cancer 118(2):310–316

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Vermeulen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vermeulen, P.B. et al. (2012). Angiogenesis and Lymphangiogenesis in IBC: Insights from a Genome-Wide Gene Expression Profiling Study. In: Ueno, N., Cristofanilli, M. (eds) Inflammatory Breast Cancer: An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3907-9_18

Download citation

Publish with us

Policies and ethics