Skip to main content

Inflammatory Mediators as Therapeutic Targets for Inflammatory Breast Cancer

  • Chapter
  • First Online:
Inflammatory Breast Cancer: An Update

Abstract

The molecular signature of inflammatory breast cancer (IBC) includes activation of target genes of the nuclear factor-kappa B (NF-κB) transcription factor. These NF-κB target genes are differentially activated in IBC tumors and primarily produce pro-inflammatory mediators such as the chemokine interleukin-8 (IL-8), the lipid mediator prostaglandin E2, the chemokine receptor CXCR4 and its ligand partner CXCL12, and the axis defined by IL-6/Janus kinases and signal tranducer and activator of transcription 3 (STAT3). While these genes are known to regulate innate immune responses, they also are critically important to survival of tumor cells and to metastatic progression. Ongoing research is defining the roles of these inflammatory mediators and associated signaling pathways in breast cancer, in general, and in IBC. Some of these studies have evaluated pharmacological and biological agents that effectively target these pro-inflammatory mediators and have led to development of new therapeutics that may effectively abrogate IBC growth and metastasis. In summary, this chapter reviews the inflammatory mediators that have been identified as part of the molecular fingerprint of IBC and describes new evidence for the potential for inhibitors of these mediators to target specific populations of cells within IBC tumors that contribute to tumor initiation and metastatic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bFGF:

basic fibroblast growth factor

Cox-2:

cyclooxygenase-2

CXCL:

chemokine (C-X-C motif) ligand

CXCR:

C-X-C chemokine receptor

EGFR:

epidermal growth factor receptor

EP:

prostanoid receptor

ER:

estrogen receptor

GROα:

growth-related oncogene alpha

IBC:

inflammatory breast cancer

IL:

interleukin

JAK:

Janus kinase

MAPK:

mitogen-activated protein kinase

NF-κB:

nuclear factor kappa B

PGE2 :

prostaglandin E2

PI3K:

phosphatidylinositol 3 kinase

RANKL:

receptor activator of nuclear factor kappa B

sIL-6R:

soluble interleukin-6 receptor

STAT3:

signal transducers and activators of transcription 3

VEGF:

vascular endothelial growth factor

References

  1. Haagansen CD (1973) Inflammatory carcinoma. In: Haagensen CD (ed) Diseases of the breast, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  2. Resetkova E (2008) Pathologic aspects of inflammatory breast carcinoma: part 1. Histomorphology and differential diagnosis. Semin Oncol 35(1):25–32

    Article  PubMed  Google Scholar 

  3. Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN, Barsky SH, Woodward WA, Buchholz T, Lucci A, Ueno Naoto T, Cristofanilli M (2010) Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin 60(6):351–375

    Article  PubMed  Google Scholar 

  4. Singletary SE, Cristofanilli M (2008) Defining the clinical diagnosis of inflammatory breast cancer. Semin Oncol 35(1):7–10

    Article  PubMed  Google Scholar 

  5. Vermeulen PB, van Golen KL, Dirix LY (2010) Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 116(11 Suppl):2748–2754

    Article  PubMed  CAS  Google Scholar 

  6. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C, Nguyen C, Xerri L, Houlgatte R, Jacquemier J, Viens P, Birnbaum D (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65(6):2170–2178

    Article  PubMed  CAS  Google Scholar 

  7. Van Laere SJ, Van der Auwera I, Van den Eynden GG et al (2005) Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer ResTreat 3:237–246

    Article  CAS  Google Scholar 

  8. Van Laere SJ, Van der Auwera I, Van den Eynden GG, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2007) NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br J Cancer 97(5):659–669

    Article  PubMed  CAS  Google Scholar 

  9. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071

    Article  PubMed  CAS  Google Scholar 

  10. Goel A, Aggarwal BB (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 62(7):919–930

    Article  PubMed  CAS  Google Scholar 

  11. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    PubMed  CAS  Google Scholar 

  12. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351(1):19–29

    Article  PubMed  CAS  Google Scholar 

  13. Sreekanth CN, Bava SV, Sreekumar E, Anto RJ (2011) Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene 30(28):3139–3152. doi: 10.1038/onc.2011.23. Epub 2011 Feb 14.

    Article  PubMed  CAS  Google Scholar 

  14. National Institutes of Health. Trial of curcumin in advanced pancreatic cancer. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT00094445. Accessed Dec 15, 2011

  15. Yang CH, Gonzalez-Angulo AM, Reuben JM, Booser DJ, Pusztai L, Krishnamurthy S, Esseltine D, Stec J, Broglio KR, Islam R, Hortobagyi GN, Cristofanilli M (2006) Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 17(5):813–817

    Article  PubMed  CAS  Google Scholar 

  16. Pan Q, Bao LW, Merajver SD (2003) Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade. Mol Cancer Res 1(10):701–706

    PubMed  CAS  Google Scholar 

  17. Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, De Carvalho M, Mesri EA, Robins DM, Dick RD, Brewer GJ, Merajver SD (2002) Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res 62(17):4854–4859

    PubMed  CAS  Google Scholar 

  18. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M (2010) Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79(9):1272–1280

    Article  PubMed  CAS  Google Scholar 

  19. Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y (2008) NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 111(3):419–427

    Article  PubMed  CAS  Google Scholar 

  20. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    Article  PubMed  CAS  Google Scholar 

  21. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    Article  PubMed  CAS  Google Scholar 

  22. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    Article  PubMed  CAS  Google Scholar 

  23. Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173(2):561–574

    Article  PubMed  CAS  Google Scholar 

  24. Fujiwara Y, Furukawa K, Haruki K, Shimada Y, Iida T, Shiba H, Uwagawa T, Ohashi T, Yanaga K (2011) Nafamostat mesilate can prevent adhesion, invasion and peritoneal dissemination of pancreatic cancer thorough nuclear factor kappa-B inhibition. J Hepatobiliary Pancreat Sci 18(5):731–739

    Article  PubMed  Google Scholar 

  25. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-KB. Nat Med 5:412–417

    Article  PubMed  CAS  Google Scholar 

  26. Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-KB. Science (Wash DC) 274:784–787

    Article  CAS  Google Scholar 

  27. Arlt A, Schäfer H (2002) NFkappaB-dependent chemoresistance in solid tumors. Int J Clin Pharmacol Ther 40(8):336–347

    PubMed  CAS  Google Scholar 

  28. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, Ojeifo J, Jiao X, Yeow WS, Katiyar S, Shirley LA, Joyce D, Lisanti MP, Albanese C, Pestell RG (2010) The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 70(24):10464–10473

    Article  PubMed  CAS  Google Scholar 

  29. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75–84

    Article  PubMed  CAS  Google Scholar 

  30. Bièche I, Chavey C, Andrieu C, Busson M, Vacher S, Le Corre L, Guinebretière JM, Burlinchon S, Lidereau R, Lazennec G (2007) CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer 14(4):1039–1052

    Article  PubMed  CAS  Google Scholar 

  31. Freund A, Jolivel V, Durand S, Kersual N, Chalbos D, Chavey C, Vignon F, Lazennec G (2004) Mechanisms underlying differential expression of interleukin-8 in breast cancer cells. Oncogene 23(36):6105–6114

    Article  PubMed  CAS  Google Scholar 

  32. Yao C, Lin Y, Chua MS, Ye CS, Bi J, Li W, Zhu YF, Wang SM (2007) Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 121(9):1949–1957

    Article  PubMed  CAS  Google Scholar 

  33. Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C, Huang RP (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109(4):507–515

    Article  PubMed  CAS  Google Scholar 

  34. Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22(2):256–265

    Article  PubMed  CAS  Google Scholar 

  35. Robertson FM, Ogasawara MA, Ye Z, Chu K, Pickei R, Debeb BG, Woodward WA, Hittelman WN, Cristofanilli M, Barsky SH (2010) Imaging and analysis of 3D tumor spheroids enriched for a cancer stem cell phenotype. J Biomol Screen 15(7):820–829

    Article  PubMed  CAS  Google Scholar 

  36. Robertson FM, Woodward WA, Pickei R, Ye Z, Bornmann W, Pal A, Peng Z, Hall CS, Cristofanilli M (2010) Suberoylanilide hydroxamic acid blocks self-renewal and homotypic aggregation of inflammatory breast cancer spheroids. Cancer 116(11 Suppl):2760–2767

    Article  PubMed  CAS  Google Scholar 

  37. Debeb BG, Xu W, Mok H, Li L, Robertson F, Ueno NT, Reuben J, Lucci A, Cristofanilli M, Woodward WA (2010) Differential radiosensitizing effect of valproic acid in differentiation versus self-renewal promoting culture conditions. Int J Radiat Oncol Biol Phys 76(3):889–895

    Article  PubMed  CAS  Google Scholar 

  38. Alpaugh ML, Barsky SH (2002) Reversible model of spheroid formation allows for high efficiency of gene delivery ex vivo and accurate gene assessment in vivo. Hum Gene Ther 13(10):1245–1258

    Article  PubMed  CAS  Google Scholar 

  39. Hirsch J, Johnson CL, Nelius T, Kennedy R, Riese WD, Filleur S (2011) PEDF inhibits IL8 production in prostate cancer cells through PEDF receptor/phospholipase A2 and regulation of NFκB and PPARγ. Cytokine 55(2):202–210. Epub 2011 May 13

    Article  PubMed  CAS  Google Scholar 

  40. Torti D, Sassi F, Galimi F, Gastaldi S, Perera T, Comoglio PM, Trusolino L, Bertotti A (2012) A preclinical algorithm of soluble surrogate biomarkers that correlate with therapeutic inhibition of the MET oncogene in gastric tumors. Int J Cancer 130(6):1357–1366. doi: 10.1002/ijc.26137. Epub 2011 May 30

    Google Scholar 

  41. Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, van Dam P, Colpaert CG, Fox SB, Turley H, Harris AL, Van Marck EA, Vermeulen PB, Dirix LY (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10(23):7965–7971

    Article  PubMed  Google Scholar 

  42. Rouzer CA, Marnett LJ (2009) Cyclooxygenases: structural and functional insights. J Lipid Res 50(Suppl):S29–S34

    Article  PubMed  CAS  Google Scholar 

  43. Hla T, Bishop-Bailey D, Liu CH, Schaefers HJ, Trifan OC (1999) Cyclooxygenase-1 and -2 isoenzymes. Int J Biochem Cell Biol 31(5):551–557

    Article  PubMed  CAS  Google Scholar 

  44. Cohn SMZ, Schloemann S, Tessner T, Seibert K, Stenson WF (1997) Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. J Clin Invest 99(6):1367–1379

    Article  PubMed  CAS  Google Scholar 

  45. Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 89(16):7384–7388

    Article  PubMed  CAS  Google Scholar 

  46. Wang D, Dubois RN (2004) Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol 31(1 Suppl 3):64–73

    Article  PubMed  CAS  Google Scholar 

  47. Menter DG, Schilsky RL, DuBois RN (2010) Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin Cancer Res 16(5):1384–1390

    Article  PubMed  CAS  Google Scholar 

  48. Parrett M, Harris R, Joarder F, Ross M, Clausen K, Robertson F (1997) Cyclooxygenase-2 gene expression in human breast cancer. Int J Oncol 10(3):503–507

    PubMed  CAS  Google Scholar 

  49. Hwang D, Scollard D, Byrne J, Levine E (1998) Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 90(6):455–460

    Article  PubMed  CAS  Google Scholar 

  50. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89(12):2637–2645

    Article  PubMed  CAS  Google Scholar 

  51. Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM (1999) Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140(1–2):27–35

    Article  PubMed  CAS  Google Scholar 

  52. Robertson FM (2001) Regulation of aromatase in breast cancer and correlation of aromatase and cyclooxygenase gene expression. In: Li JJ, Daling JR, Li SA (eds) Hormonal carcinogenesis III. Springer, New York

    Google Scholar 

  53. Prosperi JR, Robertson FM (2006) Cyclooxygenase-2 directly regulates gene expression of P450 Cyp19 aromatase promoter regions pII, pI.3 and pI.7 and estradiol production in human breast tumor cells. Prostaglandins Other Lipid Mediat 81(1–2):55–70

    Article  PubMed  CAS  Google Scholar 

  54. Brodie AM, Lu Q, Long BJ, Fulton A, Chen T, Macpherson N, DeJong PC, Blankenstein MA, Nortier JW, Slee PH, van de Ven J, van Gorp JM, Elbers JR, Schipper ME, Blijham GH, Thijssen JH (2001) Aromatase and COX-2 expression in human breast cancers. J Steroid Biochem Mol Biol 79(1–5):41–47

    Article  PubMed  CAS  Google Scholar 

  55. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60(5):1306–1311

    PubMed  CAS  Google Scholar 

  56. Abou-Issa HM, Alshafie GA, Seibert K, Koki AT, Masferrer JL, Harris RE (2001) Dose-response effects of the COX-2 inhibitor, celecoxib, on the chemoprevention of mammary carcinogenesis. Anticancer Res 21(5):3425–3432

    PubMed  CAS  Google Scholar 

  57. Psaty BM, Furberg CD (2005) COX-2 inhibitors–lessons in drug safety. N Engl J Med 352(11):1133–1135

    Article  PubMed  CAS  Google Scholar 

  58. Graham DJ, Campen D, Hui R, Spence M, Cheetham C, Levy G, Shoor S, Ray WA (2005) Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 365(9458):475–481

    PubMed  CAS  Google Scholar 

  59. Jones RL, Giembycz MA, Woodward DF (2009) Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol 158(1):104–145

    Article  PubMed  CAS  Google Scholar 

  60. Narumiya S, Furuyashiki T (2011) Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years. FASEB J 25(3):813–818

    Article  PubMed  CAS  Google Scholar 

  61. Ma X, Kundu N, Rifat S, Walser T, Fulton AM (2006) Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Res 66(6):2923–2927

    Article  PubMed  CAS  Google Scholar 

  62. Robertson FM, Simeone AM, Lucci A, McMurray JS, Ghosh S, Cristofanilli M (2010) Differential regulation of the aggressive phenotype of inflammatory breast cancer cells by prostanoid receptors EP3 and EP4. Cancer 116(11 Suppl):2806–2814

    Article  PubMed  CAS  Google Scholar 

  63. Robertson FM, Simeone AM, Mazumdar A, Shah AH, McMurray JS, Ghosh S, Cristofanilli M (2008) Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. J Exp Ther Oncol 7(4):299–312

    PubMed  CAS  Google Scholar 

  64. Suzawa H, Kikuchi S, Ichikawa K, Koda A (1992) Inhibitory action of tranilast, an anti-allergic drug, on the release of cytokines and PGE2 from human monocytes-macrophages. Jpn J Pharmacol 60(2):85–90

    Article  PubMed  CAS  Google Scholar 

  65. Pae HO, Jeong SO, Koo BS, Ha HY, Lee KM, Chung HT (2008) Tranilast, an orally active anti-allergic drug, up-regulates the anti-inflammatory heme oxygenase-1 expression but down-regulates the pro-inflammatory cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW264.7 macrophages. Biochem Biophys Res Commun 371(3):361–365

    Article  PubMed  CAS  Google Scholar 

  66. Chakrabarti R, Subramaniam V, Abdalla S, Jothy S, Prud’homme GJ (2009) Tranilast inhibits the growth and metastasis of mammary carcinoma. Anticancer Drugs 20(5):334–345

    Article  PubMed  CAS  Google Scholar 

  67. Subramaniam V, Chakrabarti R, Prud’homme GJ, Jothy S (2010) Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anticancer Drugs 21(4):351–361

    Article  PubMed  CAS  Google Scholar 

  68. Subramaniam V, Ace O, Prud’homme GJ, Jothy S (2011) Tranilast treatment decreases cell growth, migration and inhibits colony formation of human breast cancer cells. Exp Mol Pathol 90(1):116–122

    Article  PubMed  CAS  Google Scholar 

  69. Prud’homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V, Jothy S (2010) Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS One 5(11):e13831

    Article  PubMed  CAS  Google Scholar 

  70. Capper EA, Roshak AK, Bolognese BJ, Podolin PL, Smith T, Dewitt DL, Anderson KM, Marshall LA (2000) Modulation of human monocyte activities by tranilast, SB 252218, a compound demonstrating efficacy in restenosis. J Pharmacol Exp Ther 295(3):1061–1069

    PubMed  CAS  Google Scholar 

  71. Koyama S, Takagi H, Otani A, Suzuma K, Nishimura K, Honda Y (1999) Tranilast inhibits protein kinase C-dependent signalling pathway linked to angiogenic activities and gene expression of retinal microcapillary endothelial cells. Br J Pharmacol 127(2):537–545

    Article  PubMed  CAS  Google Scholar 

  72. Isaji M, Miyata H, Ajisawa Y, Yoshimura N (1998) Inhibition by tranilast of vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF)-induced increase in vascular permeability in rats. Life Sci 63(4):PL71–PL74

    Article  PubMed  CAS  Google Scholar 

  73. Isaji M, Miyata H, Ajisawa Y, Takehana Y, Yoshimura N (1997) Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo. Br J Pharmacol 122(6):1061–1066

    Article  PubMed  CAS  Google Scholar 

  74. National Institutes of Health. APRiCOT-P: Study to evaluate the safety and efficacy of apricoxib with gemcitabine and erlotinib in the treatment of patients with advanced pancreatic cancer (TP2001-203). ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT00709826. Accessed Oct 27, 2012

  75. National Institutes of Health. APRiCOT-L: Study to evaluate efficacy and safety of apricoxib with erlotinib in patients with non-small cell lung cancer (TP2001-201). ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT00652340. Accessed Mar 16 2010

  76. Senzaki M, Ishida S, Yada A, Hanai M, Fujiwara K, Inoue S, Kimura T, Kurakata S (2008) CS-706, a novel cyclooxygenase-2 selective inhibitor, prolonged the survival of tumor-bearing mice when treated alone or in combination with anti-tumor chemotherapeutic agents. Int J Cancer 122(6):1384–1390

    Article  PubMed  CAS  Google Scholar 

  77. Reckamp K, Gitlitz B, Chen LC, Patel R, Milne G, Syto M, Jezior D, Zaknoen S (2011) Biomarker-based phase I dose-escalation, pharmacokinetic, and pharmacodynamic study of oral apricoxib in combination with erlotinib in advanced nonsmall cell lung cancer. Cancer 117(4):809–818

    Article  PubMed  CAS  Google Scholar 

  78. Cabioglu N, Gong Y, Islam R, Broglio KR, Sneige N, Sahin A, Gonzalez-Angulo AM, Morandi P, Bucana C, Hortobagyi GN, Cristofanilli M (2007) Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol 18(6):1021–1029

    Article  PubMed  CAS  Google Scholar 

  79. Clézardin P (2011) Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res 13(2):207

    Article  PubMed  CAS  Google Scholar 

  80. Liekens S, Schols D, Hatse S (2010) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16(35):3903–3920

    Article  PubMed  CAS  Google Scholar 

  81. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469

    Article  PubMed  CAS  Google Scholar 

  82. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 17(8):2074–2080

    Article  PubMed  CAS  Google Scholar 

  83. Greenfield JP, Cobb WS, Lyden D (2010) Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. J Clin Invest 120(3):663–667

    Article  PubMed  CAS  Google Scholar 

  84. Singh B, Cook KR, Martin C, Huang EH, Mosalpuria K, Krishnamurthy S, Cristofanilli M, Lucci A (2010) Evaluation of a CXCR4 antagonist in a xenograft mouse model of inflammatory breast cancer. Clin Exp Metastasis 27(4):233–240

    Article  PubMed  CAS  Google Scholar 

  85. Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, Cook KR, Lucci A (2009) A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 155(2):231–236

    Article  PubMed  CAS  Google Scholar 

  86. Ravishankaran P, Karunanithi R (2011) Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol 9(1):18

    Article  PubMed  Google Scholar 

  87. Carpi A, Nicolini A, Antonelli A, Ferrari P, Rossi G (2009) Cytokines in the management of high risk or advanced breast cancer: an update and expectation. Curr Cancer Drug Targets 9(8):888–903

    Article  PubMed  CAS  Google Scholar 

  88. Goldberg JE, Schwertfeger KL (2010) Proinflammatory cytokines in breast cancer: ­mechanisms of action and potential targets for therapeutics. Curr Drug Targets 11(9):1133–1146

    Article  PubMed  CAS  Google Scholar 

  89. van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD (2000) RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2(5):418–425

    Article  PubMed  CAS  Google Scholar 

  90. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108(4):1397–1402

    Article  PubMed  CAS  Google Scholar 

  91. Hinohara K, Gotoh N (2010) Inflammatory signaling pathways in self-renewing breast cancer stem cells. Curr Opin Pharmacol 10(6):650–654

    Article  PubMed  CAS  Google Scholar 

  92. Murohashi M, Hinohara K, Kuroda M, Isagawa T, Tsuji S, Kobayashi S, Umezawa K, Tojo A, Aburatani H, Gotoh N (2010) Gene set enrichment analysis provides insight into novel signaling pathways in breast cancer stem cells. Br J Cancer 102:206–212

    Article  PubMed  CAS  Google Scholar 

  93. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20

    Article  PubMed  CAS  Google Scholar 

  94. Tawara K, Oxford JT, Jorcyk CL (2011) Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res 3:177–189

    PubMed  CAS  Google Scholar 

  95. Li J, Hu XF, Xing PX (2005) CNTO-328 (Centocor). Curr Opin Investig Drugs 6(6):639–645

    PubMed  Google Scholar 

  96. Zaki MH, Nemeth JA, Trikha M (2004) CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int J Cancer 111(4):592–595

    Article  PubMed  CAS  Google Scholar 

  97. Trikha M, Corringham R, Klein B, Rossi JF (2003) Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9(13):4653–4665

    PubMed  CAS  Google Scholar 

  98. Rossi JF, Négrier S, James ND, Kocak I, Hawkins R, Davis H, Prabhakar U, Qin X, Mulders P, Berns B (2010) A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer 103(8):1154–1162

    Article  PubMed  CAS  Google Scholar 

  99. Puchalski T, Prabhakar U, Jiao Q, Berns B, Davis HM (2010) Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin Cancer Res 16(5):1652–1661

    Article  PubMed  CAS  Google Scholar 

  100. Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN Jr, Van Veldhuizen PJ, DI Jr Q, Vogelzang NJ, Thompson IM Jr, Hussain MH (2010) Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 16(11):3028–3034

    Article  PubMed  CAS  Google Scholar 

  101. van Rhee F, Fayad L, Voorhees P, Furman R, Lonial S, Borghaei H, Sokol L, Crawford J, Cornfeld M, Qi M, Qin X, Herring J, Casper C, Kurzrock R (2010) Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman’s disease. J Clin Oncol 28(23):3701–3708

    Article  PubMed  CAS  Google Scholar 

  102. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gönen M, Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE, Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE, Hahn WC, Frank DA, Polyak K (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44 + CD24- stem cell-like breast cancer cells in human tumors. J Clin Invest 121(7):2723–2735. doi: 10.1172/JCI44745

    Article  PubMed  CAS  Google Scholar 

  103. Speer R, Wulfkuhle J, Espina V, Aurajo R, Edmiston KH, Liotta LA, Petricoin EF 3rd (2008) Molecular network analysis using reverse phase protein microarrays for patient tailored therapy. Adv Exp Med Biol 610:177–186

    Article  PubMed  CAS  Google Scholar 

  104. Wilson B, Liotta LA, Petricoin E 3 rd (2010) Monitoring proteins and protein networks using reverse phase protein arrays. Dis Markers 28(4):225–232

    PubMed  CAS  Google Scholar 

  105. Espina V, Liotta LA, Petricoin EF 3 rd (2009) Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 520:89–105

    Article  PubMed  CAS  Google Scholar 

  106. Mandal PK, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle JS, Kaluarachchi KK, Chen X, Bast RC, Liao WS, McMurray JS (2011) Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 54(10):3549–3563

    Article  PubMed  CAS  Google Scholar 

  107. Thudi N, Mandal P, McMurray JS, Robertson, FM (2009) STAT3 as a molecular signature and therapeutic target in inflammatory breast cancer. In: Proceedings of the annual meeting of the American Association for Cancer Research 2009, Washington, DC, Apr 17–21. AACR 2009, Philadelphia. Abstract nr. 653

    Google Scholar 

  108. Ma L, Zhao B, Walgren RA, Clayton JR, Burkholder TP (2011) LY2784544, a small molecule JAK2 inhibitor, induces apoptosis in inflammatory breast cancer spheres through targeting IL-6-JAK-STAT3 pathway. In: Proceedings of the annual meeting of the American Association for Cancer Research 2011, Orlando, FL, Apr 2–6. AACR 2011, Philadelphia. Abstract nr.2820

    Google Scholar 

Download references

Acknowledgments

Supported by the American Airlines-Komen For the Cure Foundation Promise Grant KGO81287 (FMR, MC) and The State of Texas Fund for Rare and Aggressive Breast Tumors (FMR). The authors appreciate the generous support of Dr. Vikas Chandhoke and the College of Life Sciences at George Mason University. This work was partially supported by the Italian Istituto Superiore di Sanità within the framework Italy/USA cooperation agreement between the U.S. Department of Health and Human Services, George Mason University, and the Italian Ministry of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredika M. Robertson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Robertson, F.M. et al. (2012). Inflammatory Mediators as Therapeutic Targets for Inflammatory Breast Cancer. In: Ueno, N., Cristofanilli, M. (eds) Inflammatory Breast Cancer: An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3907-9_16

Download citation

Publish with us

Policies and ethics