Skip to main content

Molecules That Drive the Invasion and Metastasis of Inflammatory Breast Cancer

  • Chapter
  • First Online:
Inflammatory Breast Cancer: An Update

Abstract

Invasion and metastasis represent two of the most critical and rate ­limiting steps of cancer progression. It is very well known that IBC is lympho-angioinvasive and appears to be metastatic upon inception. Therefore, identifying and targeting molecules that regulate these critical steps formulate a logical treatment approach for IBC. This chapter focuses on the advancements that have taken place so far in terms of identifying unique molecular determinants that potentially drive IBC invasion and metastasis. Studies before 2000 established SUM149 and SUM190 IBC cell lines, identified hormonal status, differential expression of RhoC GTPase, LIBC (now known as WISP3) and E-cadherin, as potential metastatic markers along with creation of the MARY-X xenograft model. These findings developed a strong foundation for studies post 2001 that investigated various pre- and posttranslational signaling events, pro-angiogenic factors and potential targeted therapy approaches for IBC. We conclude this chapter with a comprehensive model summarizing all the breakthrough findings and their potential interdependence that could ultimately ­produce a unique response of preventing IBC invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abl:

Abelson proto-oncogene

Ang-1:

Angiopoietin 1

bFGF:

basic Fibroblast Growth Factor

BRCA:

Breast Cancer Susceptibility Protein

CCR-7:

C-C motif chemokine receptor type 7

Cox-2:

cyclooxygenase-2

CXCR-4:

C-X-C motif chemokine receptor type 4

EGF(R):

Epidermal Growth Factor Receptor

eIF4G1:

Eukaryotic Translation Initiation factor 4 Gamma 1

ER:

Estrogen Receptor

ERK(1/2):

Extracellular-signal-Regulated Kinases

EST:

Expressed Sequence Tag

FTI:

Farnesyl Transferase Inhibitor

GAP:

GTPase Activating Protein

GDI:

Guanosine Dissociation Inhibitor

GEF:

Guanosine Exchange Factor

GIST:

Gastro Intestinal Stromal Tumors

H19:

Imprinted maternally expressed transcript (non-protein coding)

HDAC:

Histone Deacetylase

HMEC:

Human Mammary Epithelial Cells

HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A

IGFBP:

Insulin Growth Factor Binding Protein

IGFBP-rp9:

Insulin Growth Factor Binding Protein Related Protein 9

IGF(R) (I/II):

Insulin Growth Factor Receptor (I/II)

IL:

Interleukin

IRES:

Internal Ribosomal Entry Site

IRS-1:

Insulin Receptor Substrate-1

KDR:

Kinase Insert Domain Receptor

LIBC:

Lost in Inflammatory Breast Cancer

MAPK:

Mitogen Activated Protein Kinase

MMP-2:

Matrix Metalloprotease-2

mTOR :

Mammalian Target of Rapamycin

NFκB :

nuclear factor kappa-light-chain-enhancer of activated B cells

PDGF(R):

Platelet Derived Growth Factor Receptor

PGE-2:

Prostaglandin E2

pHER-2/neu:

phospho - Human Epidermal Growth Factor Receptor- 2

PR:

Progesteron Receptor

Prox-1:

Prospero homeobox 1

Rex-1:

RNA exonuclease 1 homolog

SCID:

Severe Combined Immunodeficiency

SEER:

Surveillance epidemiology and end results

sLex/a:

sialyl-Lewis(x/a)

TGF (α/β):

Transforming Growth Factor

Tie (1/2):

Tyrosine kinase with Immunoglobulin-like and EGF-like domains

VEGF:

Vascular Endothelial Growth Factor

WISP 3:

WNT1 Inducible Signaling pathway Protein 3

References

  1. Tabbane F, el May A, Hachiche M, Bahi J et al (1985) Breast cancer in women under 30 years of age. Breast Cancer Res Treat 6(2):137–144

    Article  PubMed  CAS  Google Scholar 

  2. Lucas FV, Perez-Mesa C (1978) Inflammatory carcinoma of the breast. Cancer 41(4):1595–1605

    Google Scholar 

  3. Kleer CG, van Golen KL, Merajver SD (2000) Molecular biology of breast cancer metastasis. Inflammatory breast cancer: clinical syndrome and molecular determinants. Breast Cancer Res 2(6):423–429

    Article  PubMed  CAS  Google Scholar 

  4. Dawood S (2010) Biology and management of inflammatory breast cancer. Expert Rev Anticancer Ther 10(2):209–220. doi:10.1586/era.09.90

    Article  PubMed  CAS  Google Scholar 

  5. Dawood S, Merajver SD, Viens P, Vermeulen PB et al (2011) International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol 22(3):515–523. doi:10.1093/annonc/mdq345

    Article  PubMed  CAS  Google Scholar 

  6. Robertson FM, Simeone AM, Lucci A, McMurray JS et al (2010) Differential regulation of the aggressive phenotype of inflammatory breast cancer cells by prostanoid receptors EP3 and EP4. Cancer 116(11 Suppl):2806–2814. doi:10.1002/cncr.25167

    Article  PubMed  CAS  Google Scholar 

  7. Piera JM, Alonso MC, Ojeda MB, Biete A (1986) Locally advanced breast cancer with inflammatory component: a clinical entity with a poor prognosis. Radiother Oncol 7(3):199–204

    Article  PubMed  CAS  Google Scholar 

  8. Chevallier B, Asselain B, Kunlin A, Veyret C (1987) Inflammatory breast cancer. Determination of prognostic factors by univariate and multivariate analysis. Cancer 60(4):897–902

    Article  PubMed  CAS  Google Scholar 

  9. Fields JN, Kuske RR, Perez CA, Fineberg BB et al (1989) Prognostic factors in inflammatory breast cancer. Univariate and multivariate analysis. Cancer 63(6):1225–1232

    Article  PubMed  CAS  Google Scholar 

  10. Jaiyesimi IA, Buzdar AU, Hortobagyi G (1992) Inflammatory breast cancer: a review. J Clin Oncol 10(6):1014–1024

    PubMed  CAS  Google Scholar 

  11. Gruber G, Ciriolo M, Altermatt HJ, Aebi S et al (2004) Prognosis of dermal lymphatic invasion with or without clinical signs of inflammatory breast cancer. Int J Cancer 109(1):144–148. doi:10.1002/ijc.11684

    Article  PubMed  CAS  Google Scholar 

  12. Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ et al (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 11(21):7637–7642. doi:10.1158/1078-0432.CCR-05-1142

    Article  PubMed  CAS  Google Scholar 

  13. Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10(23):7965–7971. doi:10.1158/1078-0432.CCR-04-0063

    Article  PubMed  Google Scholar 

  14. Vermeulen PB, van Golen KL, Dirix LY (2010) Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 116(11 Suppl):2748–2754. doi:10.1002/cncr.25169

    Article  PubMed  CAS  Google Scholar 

  15. Robertson FM, Bondy M, Yang W, Yamauchi H et al (2010) Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin 60(6):351–375. doi:10.3322/caac.20082

    Article  PubMed  Google Scholar 

  16. Radunsky GS, van Golen KL (2005) The current understanding of the molecular determinants of inflammatory breast cancer metastasis. Clin Exp Metastasis 22(8):615–620. doi:10.1007/s10585-006-9000-7

    Article  PubMed  Google Scholar 

  17. Osborne BM (1989) Granulomatous mastitis caused by histoplasma and mimicking inflammatory breast carcinoma. Hum Pathol 20(1):47–52

    Article  PubMed  CAS  Google Scholar 

  18. Dahlbeck SW, Donnelly JF, Theriault RL (1995) Differentiating inflammatory breast cancer from acute mastitis. Am Fam Physician 52(3):929–934

    PubMed  CAS  Google Scholar 

  19. Chambler AF, Drew PJ, Hill AD, Darzi A et al (1995) Inflammatory breast carcinoma. Surg Oncol 4(5):245–254

    Article  PubMed  CAS  Google Scholar 

  20. Dvoretsky PM, Woodard E, Bonfiglio TA, Hempelmann LH et al (1980) The pathology of breast cancer in women irradiated for acute postpartum mastitis. Cancer 46(10):2257–2262

    Article  PubMed  CAS  Google Scholar 

  21. Ellis LM, Bland KI, Copeland EM 3rd (1988) Inflammatory breast cancer: advances in therapy. Semin Surg Oncol 4(4):261–267

    Article  PubMed  CAS  Google Scholar 

  22. Giordano SH, Hortobagyi GN (2003) Inflammatory breast cancer: clinical progress and the main problems that must be addressed. Breast Cancer Res 5(6):284–288. doi:10.1186/bcr608

    Article  PubMed  Google Scholar 

  23. Burton GV, Cox EB, Leight GS Jr, Prosnitz LR et al (1987) Inflammatory breast carcinoma. Effective multimodal approach. Arch Surg 122(11):1329–1332

    Article  PubMed  CAS  Google Scholar 

  24. Maloisel F, Dufour P, Bergerat JP, Herbrecht R et al (1990) Results of initial doxorubicin, 5-fluorouracil, and cyclophosphamide combination chemotherapy for inflammatory carcinoma of the breast. Cancer 65(4):851–855

    Article  PubMed  CAS  Google Scholar 

  25. Krutchik AN, Buzdar AU, Blumenschein GR, Hortobagyi GN et al (1979) Combined chemoimmunotherapy and radiation therapy of inflammatory breast carcinoma. J Surg Oncol 11(4):325–332

    Article  PubMed  CAS  Google Scholar 

  26. Buzdar AU, Montague ED, Barker JL, Hortobagyi GN et al (1981) Management of inflammatory carcinoma of breast with combined modality approach – an update. Cancer 47(11):2537–2542

    Article  PubMed  CAS  Google Scholar 

  27. Pawlicki M, Skolyszewski J, Brandys A (1983) Results of combined treatment of patients with locally advanced breast cancer. Tumori 69(3):249–253

    PubMed  CAS  Google Scholar 

  28. Ravaioli A, Gentilini P, Ridolfi R, Amadori D et al (1984) Inflammatory breast carcinoma: results from sixteen patients treated with chemo-radiotherapy and surgery. Chemioterapia 3(2):86–89

    PubMed  CAS  Google Scholar 

  29. Attia-Sobol J, Ferriere JP, Cure H, Kwiatkowski F et al (1993) Treatment results, survival and prognostic factors in 109 inflammatory breast cancers: univariate and multivariate analysis. Eur J Cancer 29A(8):1081–1088

    Article  PubMed  CAS  Google Scholar 

  30. Rouesse J, Friedman S, Sarrazin D, Mouriesse H et al (1986) Primary chemotherapy in the treatment of inflammatory breast carcinoma: a study of 230 cases from the institut gustave-roussy. J Clin Oncol 4(12):1765–1771

    PubMed  CAS  Google Scholar 

  31. Elias EG, Vachon DA, Didolkar MS, Aisner J (1991) Long-term results of a combined modality approach in treating inflammatory carcinoma of the breast. Am J Surg 162(3):231–235

    Article  PubMed  CAS  Google Scholar 

  32. Chang S, Parker SL, Pham T, Buzdar AU et al (1998) Inflammatory breast carcinoma incidence and survival: the Surveillance, Epidemiology, and End Results program of the National Cancer Institute, 1975–1992. Cancer 82(12):2366–2372

    Article  PubMed  CAS  Google Scholar 

  33. Delarue JC, May-Levin F, Mouriesse H, Contesso G et al (1981) Oestrogen and progesterone cytosolic receptors in clinically inflammatory tumours of the human breast. Br J Cancer 44(6):911–916

    Article  PubMed  CAS  Google Scholar 

  34. Harvey HA, Lipton A, Lawrence BV, White DS et al (1982) Estrogen receptor status in inflammatory breast carcinoma. J Surg Oncol 21(1):42–44

    Article  PubMed  CAS  Google Scholar 

  35. Paradiso A, Tommasi S, Brandi M, Marzullo F et al (1989) Cell kinetics and hormonal receptor status in inflammatory breast carcinoma. Comparison with locally advanced disease. Cancer 64(9):1922–1927

    Article  PubMed  CAS  Google Scholar 

  36. Charpin C, Bonnier P, Khouzami A, Vacheret H et al (1992) Inflammatory breast carcinoma: an immunohistochemical study using monoclonal anti-pHER-2/neu, pS2, cathepsin, ER and PR. Anticancer Res 12(3):591–597

    PubMed  CAS  Google Scholar 

  37. Chen RX, Xia YH, Xue TC, Ye SL (2010) Transcription factor c-myb promotes the invasion of hepatocellular carcinoma cells via increasing osteopontin expression. J Exp Clin Cancer Res 29:172. doi:10.1186/1756-9966-29-172

    Article  PubMed  CAS  Google Scholar 

  38. Tanno B, Sesti F, Cesi V, Bossi G et al (2010) Expression of slug is regulated by c-myb and is required for invasion and bone marrow homing of cancer cells of different origin. J Biol Chem 285(38):29434–29445. doi:10.1074/jbc.M109.089045

    Article  PubMed  CAS  Google Scholar 

  39. Guerin M, Sheng ZM, Andrieu N, Riou G (1990) Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 5(1):131–135

    PubMed  CAS  Google Scholar 

  40. Guerin M, Gabillot M, Mathieu MC, Travagli JP et al (1989) Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 43(2):201–208

    Article  PubMed  CAS  Google Scholar 

  41. Gudas JM, Klein RC, Oka M, Cowan KH (1995) Posttranscriptional regulation of the c-myb proto-oncogene in estrogen receptor-positive breast cancer cells. Clin Cancer Res 1(2): 235–243

    PubMed  CAS  Google Scholar 

  42. Guerin M, Barrois M, Riou G (1988) The expression of c-myb is strongly associated with the presence of estrogen and progesterone receptors in breast cancer]. C R Acad Sci III 307(20):855–861

    PubMed  CAS  Google Scholar 

  43. Cox LA, Chen G, Lee EY (1994) Tumor suppressor genes and their roles in breast cancer. Breast Cancer Res Treat 32(1):19–38

    Article  PubMed  CAS  Google Scholar 

  44. Michalovitz D, Halevy O, Oren M (1990) Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62(4):671–680

    Article  PubMed  CAS  Google Scholar 

  45. Diller L, Kassel J, Nelson CE, Gryka MA et al (1990) P53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10(11):5772–5781

    PubMed  CAS  Google Scholar 

  46. Martinez J, Georgoff I, Martinez J, Levine AJ (1991) Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 5(2):151–159

    Article  PubMed  CAS  Google Scholar 

  47. Nigro JM, Baker SJ, Preisinger AC, Jessup JM et al (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342(6250):705–708. doi:10.1038/342705a0

    Article  PubMed  CAS  Google Scholar 

  48. Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A 89(15):7262–7266

    Article  PubMed  CAS  Google Scholar 

  49. Riou G, Le MG, Travagli JP, Levine AJ et al (1993) Poor prognosis of p53 gene mutation and nuclear overexpression of p53 protein in inflammatory breast carcinoma. J Natl Cancer Inst 85(21):1765–1767

    Article  PubMed  CAS  Google Scholar 

  50. Zheng WQ, Lu J, Zheng JM, Hu FX et al (2001) Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression*. Steroids 66(12):905–910

    Article  PubMed  CAS  Google Scholar 

  51. Sezgin C, Gokmen E, Kapkac M, Zekioglu O et al (2011) P53 protein accumulation and presence of visceral metastasis are independent prognostic factors for survival in patients with metastatic inflammatory breast carcinoma. Med Princ Pract 20(2):159–164. doi:10.1159/000319916

    Article  PubMed  Google Scholar 

  52. Turpin E, Bieche I, Bertheau P, Plassa LF et al (2002) Increased incidence of ERBB2 overexpression and TP53 mutation in inflammatory breast cancer. Oncogene 21(49):7593–7597. doi:10.1038/sj.onc.1205932

    Article  PubMed  CAS  Google Scholar 

  53. Gonzalez-Angulo AM, Sneige N, Buzdar AU, Valero V et al (2004) P53 expression as a prognostic marker in inflammatory breast cancer. Clin Cancer Res 10(18 Pt 1):6215–6221. doi:10.1158/1078-0432.CCR-04-0202

    Article  PubMed  CAS  Google Scholar 

  54. Yang CH, Cristofanilli M (2006) The role of p53 mutations as a prognostic factor and therapeutic target in inflammatory breast cancer. Future Oncol 2(2):247–255. doi:10.2217/14796694.2.2.247

    Article  PubMed  CAS  Google Scholar 

  55. van Golen KL, Davies S, Wu ZF, Wang Y et al (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5(9): 2511–2519

    PubMed  Google Scholar 

  56. Van den Eynden GG, Van der Auwera I, Van Laere S, Colpaert CG et al (2004) Validation of a tissue microarray to study differential protein expression in inflammatory and non-inflammatory breast cancer. Breast Cancer Res Treat 85(1):13–22. doi:10.1023/B:BREA. 0000021028.33926.a8

    Article  PubMed  Google Scholar 

  57. Van Laere S, Van der Auwera I, Van den Eynden GG, Fox SB et al (2005) Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat 93(3):237–246. doi:10.1007/s10549-005-5157-z

    Article  PubMed  CAS  Google Scholar 

  58. Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20(6):761–787

    Article  PubMed  CAS  Google Scholar 

  59. Thorstensen L, Diep CB, Meling GI, Aagesen TH et al (2001) WNT1 inducible signaling pathway protein 3, WISP-3, a novel target gene in colorectal carcinomas with microsatellite instability. Gastroenterology 121(6):1275–1280

    Article  PubMed  CAS  Google Scholar 

  60. Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrinol 178(2): 169–175

    Article  PubMed  CAS  Google Scholar 

  61. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. doi:10.1146/annurev.cellbio.21.020604.150721

    Article  PubMed  CAS  Google Scholar 

  62. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399

    Article  PubMed  CAS  Google Scholar 

  63. Hall A, Paterson HF, Adamson P, Ridley AJ (1993) Cellular responses regulated by ­rho-related small GTP-binding proteins. Philos Trans R Soc Lond B Biol Sci 340(1293):267–271. doi:10.1098/rstb.1993.0067

    Article  PubMed  CAS  Google Scholar 

  64. Takai Y, Kaibuchi K, Sasaki T, Tanaka K et al (1994) Rho small G protein and cytoskeletal control. Princess Takamatsu Symp 24:338–350

    PubMed  CAS  Google Scholar 

  65. Nobes CD, Hall A (1995) Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 23(3):456–459

    PubMed  CAS  Google Scholar 

  66. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722

    PubMed  CAS  Google Scholar 

  67. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2(2):133–142. doi:10.1038/nrc725

    Article  PubMed  Google Scholar 

  68. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180. doi:10.1038/nrm1587

    Article  PubMed  CAS  Google Scholar 

  69. Moon SY, Zheng Y (2003) Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 13(1):13–22

    Article  PubMed  CAS  Google Scholar 

  70. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in rho GTPase activation. Trends Cell Biol 15(7):356–363. doi:10.1016/j.tcb.2005.05.001

    Article  PubMed  CAS  Google Scholar 

  71. Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H et al (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5(9):1321–1328

    PubMed  CAS  Google Scholar 

  72. Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for rho GTPases: turning on the switch. Genes Dev 16(13):1587–1609. doi:10.1101/gad.1003302

    Article  PubMed  CAS  Google Scholar 

  73. Garrett MD, Self AJ, van Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem 264(1):10–13

    PubMed  CAS  Google Scholar 

  74. Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41(1):31–40

    Article  PubMed  CAS  Google Scholar 

  75. Wennerberg K, Der CJ (2004) Rho-family GTPases: It’s not only rac and rho (and I like it). J Cell Sci 117(Pt 8):1301–1312. doi:10.1242/jcs.01118

    Article  PubMed  CAS  Google Scholar 

  76. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1): 153–208

    PubMed  CAS  Google Scholar 

  77. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81(5):682–687

    Article  PubMed  CAS  Google Scholar 

  78. Moscow JA, He R, Gnarra JR, Knutsen T et al (1994) Examination of human tumors for rhoA mutations. Oncogene 9(1):189–194

    PubMed  CAS  Google Scholar 

  79. Hall A, Marshall CJ, Spurr NK, Weiss RA (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303(5916):396–400

    Article  PubMed  CAS  Google Scholar 

  80. Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249(4969):635–640

    Article  PubMed  CAS  Google Scholar 

  81. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514

    Article  PubMed  CAS  Google Scholar 

  82. van Golen KL, Wu ZF, Qiao XT, Bao LW et al (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60(20):5832–5838

    PubMed  Google Scholar 

  83. van Golen KL, Wu ZF, Qiao XT, Bao L et al (2000) RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2(5):418–425

    Article  PubMed  CAS  Google Scholar 

  84. Larsson O (1994) Effects of isoprenoids on growth of normal human mammary epithelial cells and breast cancer cells in vitro. Anticancer Res 14(1A):123–128

    PubMed  CAS  Google Scholar 

  85. Wejde J, Carlberg M, Hjertman M, Larsson O (1993) Isoprenoid regulation of cell growth: identification of mevalonate-labelled compounds inducing DNA synthesis in human breast cancer cells depleted of serum and mevalonate. J Cell Physiol 155(3):539–548. doi:10.1002/jcp. 1041550312

    Article  PubMed  CAS  Google Scholar 

  86. Addeo R, Altucci L, Battista T, Bonapace IM et al (1996) Stimulation of human breast cancer MCF-7 cells with estrogen prevents cell cycle arrest by HMG-CoA reductase inhibitors. Biochem Biophys Res Commun 220(3):864–870. doi:10.1006/bbrc.1996.0494

    Article  PubMed  CAS  Google Scholar 

  87. Park HJ, Kong D, Iruela-Arispe L, Begley U et al (2002) 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 91(2):143–150

    Article  PubMed  CAS  Google Scholar 

  88. Alpaugh ML, Tomlinson JS, Shao ZM, Barsky SH (1999) A novel human xenograft model of inflammatory breast cancer. Cancer Res 59(20):5079–5084

    PubMed  CAS  Google Scholar 

  89. Kleer CG, van Golen KL, Braun T, Merajver SD (2001) Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol 14(5):458–464. doi:10.1038/modpathol.3880334

    Article  PubMed  CAS  Google Scholar 

  90. Blick T, Widodo E, Hugo H, Waltham M et al (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25(6):629–642. doi:10.1007/s10585-008-9170-6

    Article  PubMed  CAS  Google Scholar 

  91. De Leeuw WJ, Berx G, Vos CB, Peterse JL et al (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol 183(4):404–411. doi:2-9

    Article  PubMed  Google Scholar 

  92. Yoshida R, Kimura N, Harada Y, Ohuchi N (2001) The loss of E-cadherin, alpha- and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol 18(3):513–520

    PubMed  CAS  Google Scholar 

  93. Tomlinson JS, Alpaugh ML, Barsky SH (2001) An intact overexpressed E-cadherin/alpha, beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res 61(13):5231–5241

    PubMed  CAS  Google Scholar 

  94. Alpaugh ML, Tomlinson JS, Ye Y, Barsky SH (2002) Relationship of sialyl-lewis(x/a) underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast carcinoma. Am J Pathol 161(2):619–628. doi:10.1016/S0002-9440(10)64217-4

    Article  PubMed  CAS  Google Scholar 

  95. Alpaugh ML, Tomlinson JS, Kasraeian S, Barsky SH (2002) Cooperative role of E-cadherin and sialyl-lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Oncogene 21(22):3631–3643. doi:10.1038/sj.onc.1205389

    Article  PubMed  CAS  Google Scholar 

  96. Mahooti S, Porter K, Alpaugh ML, Ye Y et al (2010) Breast carcinomatous tumoral emboli can result from encircling lymphovasculogenesis rather than lymphovascular invasion. Oncotarget 1(2):131–147

    PubMed  Google Scholar 

  97. Price JE, Carr D, Tarin D (1984) Spontaneous and induced metastasis of naturally occurring tumors in mice: analysis of cell shedding into the blood. J Natl Cancer Inst 73(6):1319–1326

    PubMed  CAS  Google Scholar 

  98. Silvera D, Arju R, Darvishian F, Levine PH et al (2009) Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11(7):903–908. doi:10.1038/ncb1900

    Article  PubMed  CAS  Google Scholar 

  99. Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K et al (2011) HDACi–going through the mechanisms. Front Biosci 16:340–359

    Article  PubMed  CAS  Google Scholar 

  100. Robertson FM, Woodward WA, Pickei R, Ye Z et al (2010) Suberoylanilide hydroxamic acid blocks self-renewal and homotypic aggregation of inflammatory breast cancer spheroids. Cancer 116(11 Suppl):2760–2767. doi:10.1002/cncr.25176

    Article  PubMed  CAS  Google Scholar 

  101. Atadja PW (2011) HDAC inhibitors and cancer therapy. Prog Drug Res 67:175–195

    PubMed  CAS  Google Scholar 

  102. Mani S, Herceg Z (2010) DNA demethylating agents and epigenetic therapy of cancer. Adv Genet 70:327–340. doi:10.1016/B978-0-12-380866-0.60012-5

    Article  PubMed  CAS  Google Scholar 

  103. Silvera D, Schneider RJ (2009) Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle 8(19):3091–3096

    Article  PubMed  CAS  Google Scholar 

  104. Colpaert CG, Vermeulen PB, Benoy I, Soubry A et al (2003) Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer 88(5):718–725. doi:10.1038/sj.bjc.6600807

    Article  PubMed  CAS  Google Scholar 

  105. Van Laere SJ, Van den Eynden GG, Van der Auwera I, Vandenberghe M et al (2006) Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat 95(3):243–255. doi:10.1007/s10549-005- 9015-9

    Article  PubMed  CAS  Google Scholar 

  106. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E et al (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65(6):2170–2178. doi:10.1158/0008-5472.CAN-04-4115

    Article  PubMed  CAS  Google Scholar 

  107. Iwamoto T, Bianchini G, Qi Y, Cristofanilli M et al (2011) Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 125(3):785–795. doi:10.1007/s10549-010-1280-6

    Article  PubMed  CAS  Google Scholar 

  108. Van Laere SJ, Van der Auwera I, Van den Eynden GG, Elst HJ et al (2006) Nuclear factor-kappaB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding. Clin Cancer Res 12(11 Pt 1):3249–3256. doi:10.1158/1078-0432.CCR-05-2800

    Article  PubMed  Google Scholar 

  109. Biswas DK, Shi Q, Baily S, Strickland I et al (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 101(27):10137–10142. doi:10.1073/pnas.0403621101

    Article  PubMed  CAS  Google Scholar 

  110. Van Laere SJ, Van der Auwera I, Van den Eynden GG, van Dam P et al (2007) NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br J Cancer 97(5):659–669. doi:10.1038/sj.bjc.6603906

    Article  PubMed  CAS  Google Scholar 

  111. Creighton CJ, Hilger AM, Murthy S, Rae JM et al (2006) Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66(7):3903–3911. doi:10.1158/0008-5472.CAN-05-4363

    Article  PubMed  CAS  Google Scholar 

  112. Oh AS, Lorant LA, Holloway JN, Miller DL et al (2001) Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15(8):1344–1359

    Article  PubMed  CAS  Google Scholar 

  113. Holloway JN, Murthy S, El-Ashry D (2004) A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells: the role of nuclear factor-kappaB. Mol Endocrinol 18(6):1396–1410. doi:10.1210/me.2004-0048

    Article  PubMed  CAS  Google Scholar 

  114. Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS et al (1999) Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140(1–2):27–35

    Article  PubMed  CAS  Google Scholar 

  115. Prosperi JR, Mallery SR, Kigerl KA, Erfurt AA et al (2004) Invasive and angiogenic phenotype of MCF-7 human breast tumor cells expressing human cyclooxygenase-2. Prostaglandins Other Lipid Mediat 73(3–4):249–264

    Article  PubMed  CAS  Google Scholar 

  116. Mukherjee D, Nissen SE, Topol EJ (2001) Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286(8):954–959

    Article  PubMed  CAS  Google Scholar 

  117. Robertson FM, Simeone AM, Mazumdar A, Shah AH et al (2008) Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. J Exp Ther Oncol 7(4):299–312

    PubMed  CAS  Google Scholar 

  118. Xiao Y, Ye Y, Yearsley K, Jones S et al (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173(2):561–574. doi:10.2353/ajpath.2008.071214

    Article  PubMed  CAS  Google Scholar 

  119. Liu R, Wang X, Chen GY, Dalerba P et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226. doi:10.1056/NEJMoa063994

    Article  PubMed  CAS  Google Scholar 

  120. Van Laere S, Limame R, Van Marck EA, Vermeulen PB et al (2010) Is there a role for mammary stem cells in inflammatory breast carcinoma? A review of evidence from cell line, animal model, and human tissue sample experiments. Cancer 116(11 Suppl):2794–2805. doi:10.1002/cncr.25180

    Article  PubMed  CAS  Google Scholar 

  121. van Golen KL, Bao LW, Pan Q, Miller FR et al (2002) Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19(4):301–311

    Article  PubMed  Google Scholar 

  122. Kleer CG, Zhang Y, Pan Q, Merajver SD (2004) WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia 6(2):179–185. doi:10.1593/neo.03316

    Article  PubMed  CAS  Google Scholar 

  123. Cabioglu N, Gong Y, Islam R, Broglio KR et al (2007) Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Ann Oncol 18(6):1021–1029. doi:10.1093/annonc/mdm060

    Article  PubMed  CAS  Google Scholar 

  124. Cox AD, Der CJ (1992) Protein prenylation: more than just glue? Curr Opin Cell Biol 4(6): 1008–1016

    Article  PubMed  CAS  Google Scholar 

  125. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional ­consequences. Annu Rev Biochem 65:241–269. doi:10.1146/annurev.bi.65.070196.001325

    Article  PubMed  CAS  Google Scholar 

  126. Adamson P, Marshall CJ, Hall A, Tilbrook PA (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267(28):20033–20038

    PubMed  CAS  Google Scholar 

  127. Mazieres J, Tillement V, Allal C, Clanet C et al (2005) Geranylgeranylated, but not farnesylated, RhoB suppresses ras transformation of NIH-3T3 cells. Exp Cell Res 304(2):354–364. doi:10.1016/j.yexcr.2004.10.019

    Article  PubMed  CAS  Google Scholar 

  128. Lebowitz PF, Casey PJ, Prendergast GC, Thissen JA (1997) Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem 272(25): 15591–15594

    Article  PubMed  CAS  Google Scholar 

  129. Du W, Lebowitz PF, Prendergast GC (1999) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 19(3):1831–1840

    PubMed  CAS  Google Scholar 

  130. Du W, Prendergast GC (1999) Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res 59(21):5492–5496

    PubMed  CAS  Google Scholar 

  131. van Golen KL, Bao L, DiVito MM, Wu Z et al (2002) Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther 1(8):575–583

    PubMed  Google Scholar 

  132. Van den Eynden GG, Van Laere SJ, Van der Auwera I, Merajver SD et al (2006) Overexpression of caveolin-1 and-2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat 95(3):219–228. doi:10.1007/s10549-005-9002-1

    Article  PubMed  CAS  Google Scholar 

  133. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23(47):7893–7897. doi:10.1038/sj.onc.1208062

    Article  PubMed  CAS  Google Scholar 

  134. Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5(3):214. doi:10.1186/gb-2004-5-3-214

    Article  PubMed  Google Scholar 

  135. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR et al (2003) Overexpression of AKT2/protein kinase bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 63(1):196–206

    PubMed  CAS  Google Scholar 

  136. Cheng GZ, Chan J, Wang Q, Zhang W et al (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67(5):1979–1987. doi:10.1158/0008-5472.CAN-06-1479

    Article  PubMed  CAS  Google Scholar 

  137. Huang M, Duhadaway JB, Prendergast GC, Laury-Kleintop LD (2007) RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27(12):2597–2605. doi:10.1161/ATVBAHA.107.154211

    Article  PubMed  CAS  Google Scholar 

  138. Orsenigo M, Brich S, Riva C, Conca E et al (2010) Fluorescence in situ hybridization analysis and immunophenotyping of c-Kit/PDGFRA and bcl-2 expression in gastrointestinal stromal tumors. Anal Quant Cytol Histol 32(4):225–233

    PubMed  Google Scholar 

  139. Clarke ID, Dirks PB (2003) A human brain tumor-derived PDGFR-alpha deletion mutant is transforming. Oncogene 22(5):722–733. doi:10.1038/sj.onc.1206160

    Article  PubMed  CAS  Google Scholar 

  140. Ganjoo KN, Patel S (2011) Current and emerging pharmacological treatments for gastrointestinal stromal tumour. Drugs 71(3):321–330. doi:10.2165/11585370-000000000-00000

    Article  PubMed  Google Scholar 

  141. Keating MT, Harryman CC, Williams LT (1989) Platelet-derived growth factor receptor inducibility is acquired immediately after translation and does not require glycosylation. J Biol Chem 264(16):9129–9132

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. van Golen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Joglekar, M., van Golen, K.L. (2012). Molecules That Drive the Invasion and Metastasis of Inflammatory Breast Cancer. In: Ueno, N., Cristofanilli, M. (eds) Inflammatory Breast Cancer: An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3907-9_15

Download citation

Publish with us

Policies and ethics