Skip to main content

Abiotic and Biotic Determinants of Steppe Productivity and Performance – A View from Central Asia

  • Chapter
  • First Online:
Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World

Part of the book series: Plant and Vegetation ((PAVE,volume 6))

Abstract

With over 13 Mio. km², grasslands of Eurasia form one of the largest continuous terrestrial biomes. They mostly represent environments with low productivity and with a long evolutionary history of natural grazing. Over the last few decades, increasing population sizes and socio-economic changes have subjected these steppes to increasing pressure, and associated degradation. We concentrate on the steppes of Central Asia (Mongolia, northern China and Tibet) and show that land use practice, climate and soil conditions are the most important drivers of change in these grasslands.

Grazing has strongly degrading effects on relatively moist grass and forest-steppes whereas evidence indicates that acute vegetation degradation in semi-arid desert steppes is largely absent. In such environments, precipitation controls community composition and productivity at both the local and regional scales. Recurrent droughts give rise to episodic fodder shortages, which results in animal numbers being maintained at relatively low levels. This may explain the lack of degradation in dry steppes, and supports predictions drawn from the non-equilibrium theory of rangeland science.

On the other hand, soil degradation due to grazing is found across the entire range of hygric conditions without any apparent interaction with precipitation. Soil nutrient contents were recently found to co-limit plant productivity, even at relatively dry sites, indicating that grazing may have indirect effects on steppe performance not predicted by standard theories.

We conclude that moister parts of Central Asia are sensitive to grazing degradation, which directly affects vegetation and soils, while semi-arid parts are mainly and more specifically influenced by soil degradation, which has more indirect effects on plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANPP:

Aboveground (annual) net primary productivity

CV:

Coefficient of variation

IMGERS:

Inner Mongolian Grassland Ecosystem Research Station

K:

Potassium

N:

Nitrogen

NEQT:

Non equilibrium theory

P:

Phosphorus

References

  • Aldenderfer M (2007) Modeling the Neolithic on the Tibetan Plateau. Dev Quaternary Sci 9:151–165

    Google Scholar 

  • Allen VG, Batello C, Berretta EJ, Hodgson J et al (2011) An international terminology for grazing lands and grazing animals. Grass and Forage Sci 66:2–28

    Google Scholar 

  • Angerer J, Han G, Fujisaki I, Havstad KM (2008) Climate change and ecosystems of Asia with emphasis on Inner Mongolia and Mongolia. Rangelands 30:46–51

    Google Scholar 

  • Atlas of Tibet en (Atlas of Tibetan Plateau) Plateau (1990) Institute of Geography – Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Anonymous (1996) Digitized vegetation map of China. Institute of Geography, Chinese Academy of Science, Beijing

    Google Scholar 

  • Bagchi S, Ritchie M (2010) Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia 164:1075–1082

    PubMed  Google Scholar 

  • Bai Y, Han X-G, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects on the Inner Mongolian grassland. Nature 431:181–184

    PubMed  CAS  Google Scholar 

  • Bai Y, Wu J, Pan Q, Huang J et al (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 44:1023–1034

    Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S et al (2009) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biol 16:889–889

    Google Scholar 

  • Barthel H (1983) Die regionale und jahreszeitliche Differenzierung des Klimas in der Mongolischen Volksrepublik. In: Barthel H, Brunner, H, Haase G (eds) Physischgeographische Studien in Asien. (= Studia Geographica 34), Ceskoslovenská Akademie Ved, Geografický ustav. Brno, pp 3–91

    Google Scholar 

  • Batjargal Z, Oyun R, Togtokh N, Sangidansranjav S (2002) Lessons learnt from the dzud 1999–2000. In: Chuluun T, Ojima D (eds) Fundamental issues affecting sustainability of the Mongolian steppe. IISCN, Ulaanbataar, pp 73–98

    Google Scholar 

  • Becker L, Seeber E, Wesche K, Spielvogel S et al (submitted) Non-uniform grazing effects on plant biodiversity, fodder quality and soil organic matter in upper montane grasslands of the Tibetan Plateau. Basic and Applied Ecol

    Google Scholar 

  • Begzuren S, Ellis JE, Ojima D, Coughenour MB, Chuluun T (2004) Livestock responses to drought and severe winter weather in the Gobi Three Beauty National Park, Mongolia. J Arid Environ 59:785–796

    Google Scholar 

  • Bläß C, Ronnenberg K, Hensen I, Wesche K (2008) Grazing impact on seed production in southern Mongolia. Mongolian J Biol Sci 6:3–9

    Google Scholar 

  • Breman H, De Wit CT (1983) Rangeland productivity and exploitation in the Sahel. Science 221:1341–1346

    PubMed  CAS  Google Scholar 

  • Cao M, Prince SD, Li K, Tao B et al (2003) Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biol 9:536–546

    Google Scholar 

  • Cheng X, An S, Chen J, Li B et al (2007) Spatial relationships among species, above-ground biomass, N, and P in degraded grasslands in Ordos Plateau, northwestern China. J Arid Environ 68:652–667

    Google Scholar 

  • Christensen L, Coughenour MB, Ellis JE, Zuo ZC (2004) Vulnerability of the Asian typical steppe to grazing and climatic change. Clim Change 63:351–368

    CAS  Google Scholar 

  • Cingolani AM, Noy-Meir I, Diaz S (2005) Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol Appl 15:757–773

    Google Scholar 

  • Clark FE, Woodmansee RG (1992) Nutrient cycling. In: Coupland RT (ed) Natural grasslands, Ecosystems of the world 8A. Elsevier, Amsterdam/New York/Tokyo, pp 137–149

    Google Scholar 

  • Coughenour MB, Behnke R, Lomas J, Price K (2008) Forage distributions, range condition, and the importance of pastoral movement in Central Asia – a remote sensing study. In: Behnke R (ed) The socio-economic causes and consequences of desertification in Central Asia. Springer, Heidelberg, pp 45–80

    Google Scholar 

  • Cowan PJ (2006) Geographic usage of the terms Middle Asia and Central Asia. J Arid Environ 69:359–363

    Google Scholar 

  • Cressey GB (1960) The deserts of Asia. J Asian Stud 19:389–402

    Google Scholar 

  • Cui X, Graf H-F (2009) Recent land cover changes on the Tibetan Plateau: a review. Clim Change 94:47

    Google Scholar 

  • Dagvadorj D, Khuldorj B, Aldover RZ (eds) (2009) Mongolia assessment report on climate change 2009. Ministry of Nature, Environment and Tourism, Ulaanbaatar

    Google Scholar 

  • Dai W, Huang Y (2006) Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena 65:87–94

    Google Scholar 

  • Drenovsky RE, Richards JH (2004) Critical N:P values: predicting deficiencies in desert shrublands. Plant Soil 259:59–69

    CAS  Google Scholar 

  • Dulamsuren C, Welk E, Jäger EJ, Hauck M, Mühlenberg M (2005) Range – habitat relationships of vascular plant species at the taiga forest-steppe borderline in the western Khentey Mountains, northern Mongolia. Flora 200:376–397

    Google Scholar 

  • Dulamsuren C, Hauck M, Leuschner C (2010) Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Global Change Biol 16:3024–3035

    Google Scholar 

  • Duraiappah AK, Naeem S (eds) (2005) Millennium ecosystem assessment. Ecosystems and human well-being. World Resource Institute, Washington, DC

    Google Scholar 

  • Ellis JE, Swift DM (1988) Stability of African pastoral ecosystems: alternate paradigms and implications for development. J Range Manag 41:450–459

    Google Scholar 

  • Ellis JE, Price K, Boone R, Yu F (2002) Integrated assessment of climate change effects on vegetation in Mongolia and Inner Mongolia. In: Chuluun T, Ojima D (eds) Fundamental issues affecting sustainability of the Mongolian steppe. IISCN, Ulaanbataar, pp 26–33

    Google Scholar 

  • Fan J, Zhong H, Harris W, Yu G et al (2008) Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Change 86:375–396

    CAS  Google Scholar 

  • Fanselow N, Schönbach P, Gong X, Lin S et al (2011) Short-term regrowth responses of four steppe grassland species to grazing intensity, water and nitrogen in Inner Mongolia. Plant Soil 340:279–289

    CAS  Google Scholar 

  • Fernández RJ (2007) On the frequent lack of response of plants to rainfall events in arid areas. J Arid Environ 68:688–691

    Google Scholar 

  • Fernandez-Gimenez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. J Appl Ecol 36:871–885

    Google Scholar 

  • Fernandez-Gimenez ME, Allen-Diaz B (2001) Vegetation change along gradients from water sources in three grazed Mongolian ecosystems. Plant Ecol 157:101–118

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    CAS  Google Scholar 

  • Gao YZ, Giese M, Lin S, Sattelmacher B et al (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307:41–50

    CAS  Google Scholar 

  • Gao Y, Giese M, Han X, Wang D et al (2009) Land use and drought interactively affect interspecific competition and species diversity at the local scale in a semiarid steppe ecosystem. Ecol Res 24:627

    Google Scholar 

  • Gao XY, Xu WX, Yang WK, Blank DA et al (2011) Status and distribution of ungulates in Xinjiang, China. J Arid Land 3:49–60

    Google Scholar 

  • Gillson L, Hoffman MT (2007) Rangeland ecology in a changing world. Science 315:54–54

    Google Scholar 

  • Grubov VI (1999ff) Plants of Central Asia. Science Publishers, Enfield

    Google Scholar 

  • Gunin PD, Vostokova EA, Dorofeyuk NI, Tarasov PE, Black CC (1995) Ecosystems of Mongolia. Nauka, Moscow

    Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Google Scholar 

  • Haase G (1983) Beiträge zur Bodengeographie der Mongolischen Volksrepublik. In: Barthel H et al (eds) Physischgeographische Studien in Asien. (= Studia Geographica 34), Ceskoslovenská Akademie Ved, Geografický ustav. Brno, pp 231–237

    Google Scholar 

  • Hambler C, Canney S, Coe MJ, Henderson PA, Illius AW (2007) Grazing and “degradation”. Science 316:1564–1565

    PubMed  CAS  Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    PubMed  CAS  Google Scholar 

  • Hansen MJ, Wilson SD (2006) Is management of an invasive grass Agropyron cristatum contingent on environmental variation? J Appl Ecol 43:269–280

    Google Scholar 

  • Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biol 13:2341–2348

    Google Scholar 

  • He J-S, Wang L, Flynn DFB, Wang X et al (2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    PubMed  Google Scholar 

  • Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biol 15:2894–2904

    Google Scholar 

  • Herzschuh U, Tarasov PE, Wünnemann B, Hartmann K (2004) Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 211:1–17

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hilbig W (1995) The vegetation of Mongolia. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Hilbig W, Helmecke K, Schamsran Z (1993) Untersuchungen zur oberirdischen Pflanzenbiomasse von Rasengesellschaften in Gebirgen der Mongolei. Phytocoenologia 23:201–226

    Google Scholar 

  • Hilbig W, Bastian O, Jäger E, Bujan-Orsich C (1999) Die Vegetation des Uvs Nuur Beckens (Uvs Aimak, Nordwest-Mongolei). Fed Repert 110:569–625

    Google Scholar 

  • Hilbig W, Jäger E, Knapp HD (2004) Die Vegetation des Bogd-uul bei Ulaanbaatar (Mongolei) – Standortsbindung und pflanzengeographische Stellung. Fed Repert 115:265–342

    Google Scholar 

  • Ho P (2001) Rangeland degradation in north China revisited? A preliminary statistical analysis to validate non-equilibrium range ecology. J Dev Stud 37:99–133

    Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Google Scholar 

  • Holst J, Liu C, Yao Z, Brüggemann N et al (2007) Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant Soil 296:209–226

    CAS  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Huang J-Y, Zhu X-G, Yuan Z-Y, Song S-H et al (2008) Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant Soil 306:149–158

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. IPCC [Core Writing Team, Pachauri RK, Reisinger A (eds)], Cambridge University Press, Geneva

    Google Scholar 

  • James JJ, Tiller RL, Richards JH (2005) Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol 93:113–126

    CAS  Google Scholar 

  • Janzen J (2005) Mobile livestock-keeping in Mongolia: present problems, spatial organization, interaction between mobile and sedentary population groups and perspectives for pastoral development. Senri Ethnol Stud 69:69–97

    Google Scholar 

  • Jigjidsuren S, Johnson DA (2003) Forage plants in Mongolia. Admon Publishing, Ulaanbaatar

    Google Scholar 

  • Kinugasa T, Shinoda M, Tsunekawa A (2008) Increasing nitrogen distribution and grassland productivity in Mongolia. In: Organizing Committee of IGC/IRC Congress (ed) Multifunctional grasslands in a changing world. Guangdongs People’s Publishing House, Guangzhou, p 614

    Google Scholar 

  • Klein J, Harte J, Zhao X (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179

    Google Scholar 

  • Klein Tank AMG, Peterson TC, Quadir DA, Dorji S et al (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105

    Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen A et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821

    Google Scholar 

  • Komonen M, Komonen A, Otgonsuren A (2003) Daurian pikas (Ochotona daurica) and grassland condition in eastern Mongolia. J Zool 259:281–288

    Google Scholar 

  • Kutschera L, Sobotik M, Lichtenegger E (1997) Bewurzelung von Pflanzen in verschiedenen Lebensräumen. 5. Band der Wurzelatlas-Reihe. Stapfia 49, Linz

    Google Scholar 

  • Lai CH, Smith AT (2003) Keystone status of plateau pikas (Ochotona curzoniae): effect of control on biodiversity of native birds. Biodivers Conserv 12:1901–1912

    Google Scholar 

  • Lauenroth WK (2008) Vegetation of the shortgrass steppe. In: Lauenroth WK, Burke IC (eds) Ecology of the shortgrass steppe. Oxford University Press, Oxford/New York, pp 55–83

    Google Scholar 

  • Lauenroth WK, Burke IC (eds) (2008) Ecology of the shortgrass steppe. Oxford University Press, Oxford

    Google Scholar 

  • Lauenroth WK, Milchunas DG (1992) Short-grass Steppe. In: Coupland RT (ed) Natural grasslands. Ecosystems of the world 8A. Elsevier, Amsterdam/London, pp 183–226

    Google Scholar 

  • Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (ed) Natural grasslands. Ecosystems of the world 8b. Elsevier, Amsterdam/Tokyo, pp 3–59

    Google Scholar 

  • Lavrenko EM, Yunatov AA et al (1979) Karta rastitelnosti Mongolskoy Narodnoy Respubliki, Moskva

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    PubMed  Google Scholar 

  • Li S-L (2010) Woody plants in dry sands: life history traits and population dynamics. University of Utrecht, Utrecht, p 114

    Google Scholar 

  • Li F-R, Kang L-F, Zhang H, Zhao L-Y et al (2005) Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China. J Arid Environ 62:567–585

    Google Scholar 

  • Li J, Lin S, Taube F, Pan Q, Dittert K (2011a) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 340:253–264

    CAS  Google Scholar 

  • Li LJ, Zeng DH, Yu ZY, Fan ZP et al (2011b) Foliar N/P ratio and nutrient limitation to vegetation growth on Keerqin sandy grassland of North-east China. Grass and Forage Sci 66:237–242

    CAS  Google Scholar 

  • Li C, Li Y, Ma, J (2011c) Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecol Res 26:385–394

    CAS  Google Scholar 

  • Liang C, Michalk DL, Millar GD (2002) The ecology and growth patterns of Cleistogenes species in degraded grasslands of eastern Inner Mongolia, China. J Appl Ecol 39:589–594

    Google Scholar 

  • Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308

    Google Scholar 

  • Liu MZ, Jiang GM, Li YG, Niu SL et al (2003) Leaf osmotic potentials of 104 plant species in relation to habitats and plant functional types in Hunshandak Sandland, Inner Mongolia, China. Trees 17:554–560

    Google Scholar 

  • Liu P, Sun OJ, Huang J, Li L, Han X (2007) Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biol Fert Soils 44:211–216

    Google Scholar 

  • Long R, Ding L, Shang Z, Guo XH (2008) The yak grazing system on the Qinghai-Tibetan plateau and its status. Rangeland J 30:241–246

    Google Scholar 

  • Ma W, He J-S, Yang Y, Wang X et al (2010) Environmental factors covary with plant diversity–productivity relationships among Chinese grassland sites. Global Ecol Biogeogr 19:233–243

    Google Scholar 

  • Malyshev LI (2000) Floristic division on the quantitative basis: Baikalian Siberia, Tuva and Outer Mongolia. Flora 195:330–338

    Google Scholar 

  • Manthey M, Peper J (2010) Estimation of grazing intensity along grazing gradients – the bias of nonlinearity. J Arid Environ 74:1351–1354

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • May W (2004) Simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for present and future times in a global time-slice experiment. Climate Dyn 18:183–204

    Google Scholar 

  • Meusel H, Jäger E (1992) Vergleichende Chorologie der zentraleuropäischen Flora. Bd. III Text und Kartenband. G. Fischer, Jena, Stuttgart

    Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Jianquan L, Zhao X (2008) Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio 37:272–279

    PubMed  Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Reudenbach C et al (2009) How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol 276:130–147

    Google Scholar 

  • Miehe G, Miehe S, Bach K, Nölling J et al (2011) Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone. J Arid Environ 75:711–723

    Google Scholar 

  • Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366

    Google Scholar 

  • Milchunas DG, Lauenroth WK, Burke IC, Detling JK (2008) Effects of grazing on vegetation. In: Lauenroth WK, Burke IC (eds) Ecology of the shortgrass steppe. Oxford University Press, Oxford/New York, pp 389–446

    Google Scholar 

  • Munkhtsetseg E, Kimura R, Wang J, Shinoda M (2007) Pasture yield response to precipitation and high temperature in Mongolia. J Arid Environ 70:94–110

    Google Scholar 

  • Nadrowski K (2006) Life history strategy and ecosystem impact of a small mammal herbivore in a mountain steppe. In: Fac. of Geography. Philipps University, Marburg. Available at: http://archiv.ub.uni-marburg.de/diss/z2006/0142/

  • Ni J (2001) Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Clim Change 49:339–358

    CAS  Google Scholar 

  • Ni J (2004) Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol 174:217–234

    Google Scholar 

  • Niu S, Wu M, Han Y et al (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–219

    PubMed  CAS  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–41

    Google Scholar 

  • Olson DM, Dinerstein E, Wikranamayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Google Scholar 

  • Pan Q-M, Bai Y-F, Han X-G, Yang J-C (2005) Effects of nitrogen additions on a Leymus chinensis population in a typical steppe of China. Acta Phytoecol Sin 29:311–317

    CAS  Google Scholar 

  • Peart B (ed) (2008) Life in a working landscape: towards a conservation strategy for the world’s temperate grasslands – compendium of regional templates on the status of temperate grasslands. Conservation and Protection. IUCN/WCPA. Temperate Grasslands Conservation Initiative, Vancouver. www.srce.com/files/App_2_Comp_of_Regional_Grassland_Templates.pdf

  • Pech RP et al (2007) Population dynamics and responses to management of plateau pikas Ochotona curzoniae. J Appl Ecol 44:615–624

    Google Scholar 

  • Pei S, Fu H, Wan C et al (2006) Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe, Inner Mongolia. Arid Land Res Manag 20:161–175

    CAS  Google Scholar 

  • Peng S, Piao S, Ciais P, Fang J, Wang X (2010) Change in winter snow depth and its impacts on vegetation in China. Global Change Biol 16:3004–3013

    Google Scholar 

  • Peterson J (1994) Der Einfluß der Steppenwühlmaus Microtus brandtii (Radde 1891) auf Struktur und Dynamik der Steppenvegetation in der Mongolei. Unpublished PhD thesis, Fac. of Biology, Martin Luther Universität, Halle, p 131

    Google Scholar 

  • Piao S, Fang J, Ji W, Guo Q et al (2004) Variation of a satellite-based vegetation index in relation to climate in China. J Veg Sci 15:219–226

    Google Scholar 

  • Ptackova J (2011) Sedentarisation of Tibetan nomads in China: implementation of the Nomadic settlement project in the Tibetan Amdo area; Qinghai and Sichuan Provinces. Pastoral Res Policy Pract 1:1–4

    Google Scholar 

  • Reading RP, Bedunah D, Amgalanbaatar S (2006) Conserving biodiversity on Mongolian rangelands: implications for protected area development and pastoral uses. USDA For Serv Proc RMRS-P 9:1–17

    Google Scholar 

  • Retzer V (2007) Forage competition between livestock and Mongolian Pika (Ochotona pallasi) in southern Mongolian mountain steppes. Basic Appl Ecol 8:147–157

    Google Scholar 

  • Retzer V, Reudenbach C (2005) Modelling the carrying capacity and coexistence of pika and livestock in the mountain steppe of the South Gobi, Mongolia. Ecol Model 189:89–104

    Google Scholar 

  • Rhode DE, Madsen DB, Brantingham PJ, Dargye T (2007) Yaks, yak dung and prehistoric human habitation of the Tibetan plateau. Dev Quaternary Sci 9:205–226

    Google Scholar 

  • Ronnenberg K, Wesche K (2011) Effects of fertilization and irrigation on Stipa steppes in dry southern Mongolia. Plant Soil 340:239–251

    CAS  Google Scholar 

  • Ronnenberg K, Wesche K, Hensen I (2008) Germination ecology of Central Asian Stipa spp: differences among species, seed provenances, and the importance of field studies. Plant Ecol 196:269–280

    Google Scholar 

  • Runnström MC (2000) Is northern China winning the battle against desertification. Ambio 29:468–476

    Google Scholar 

  • Samjaa R, Zöphel U, Peterson J (2000) The impact of the vole Microtus brandtii on Mongolian steppe ecosystems. Marb Geogr Schr 135:346–360

    Google Scholar 

  • Sasaki T, Okayasu T, Jamsran U, Takeuchi K (2008) Threshold changes in vegetation along a grazing gradient in Mongolian rangelands. J Ecol 96:145–154

    Google Scholar 

  • Sasaki T, Okubo S, Okayasu T et al (2009) Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems. Ecol Appl 19:423–432

    PubMed  Google Scholar 

  • Schaller GB (1998) Wildlife of the Tibetan steppe. Chicago Press, Chicago

    Google Scholar 

  • Shi D, Wan X, Davis S et al (2002) Simulation of lethal control and fertility control in a demographic model for Brandt’s vole Microtus brandtii. J Appl Ecol 39:337–348

    Google Scholar 

  • Shi Y, Shen Y, Kang E et al (2007) Recent and future climatic change in northwest China. Clim Change 80:379–393

    CAS  Google Scholar 

  • Slemnev NN, Sanjid D, Khongor T, Tsooj S (2004) The features of desertified steppes development in Mongolia at the gradient of ecotopes’ moistoning. Arid Ecosyst 10:172–182

    Google Scholar 

  • Smith AT, Foggin JM (1999) The plateau pika (Ochotona curziae) is a keystone species for biodiversity on the Tibetan plateau. Anim Conserv 2:235–240

    Google Scholar 

  • Sneath D (1998) State policy and pasture degradation in Inner Asia. Science 281:1147–1148

    CAS  Google Scholar 

  • Soussana JF, Luscher A (2007) Temperate grasslands and global atmospheric change: a review. Grass Forage Sci 62:127–134

    CAS  Google Scholar 

  • Sternberg T, Tsolmon R, Middleton N, Thomas D (2011) Tracking desertification on the Mongolian steppe through NDVI and field survey data. Intern J Digital Earth 4:50–64

    Google Scholar 

  • Stumpp M, Wesche K, Retzer V, Miehe G (2005) Impact of grazing livestock and distance from water points on soil fertility in southern Mongolia. Mount Res Dev 25:244–251

    Google Scholar 

  • Su Y-Z, Li Y-L, Zhao W-Z, Cui J-Y (2005) Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59:267–278

    Google Scholar 

  • Sullivan S, Rohde R (2002) On non-equilibrium in arid and semi-arid grazing systems. J Biogeogr 29:1595–1618

    Google Scholar 

  • Tachiiri K, Shinoda M, Klinkenberg B, Morinaga Y (2008) Assessing Mongolian snow disaster risk using livestock and satellite data. J Arid Environ 72:2251–2263

    Google Scholar 

  • Theodose TA, Bowman WD (1997) Nutrient availability, plant abundance, and species diversity in two Alpine tundra communities. Ecology 78:1861–1872

    Google Scholar 

  • Tsagaan Sankey T, Montagne C, Graumlich L et al (2006) Lower forest-grassland ecotones and 20th century livestock herbivory effects in northern China. Forest Ecol Manag 233:36–44

    Google Scholar 

  • van Staalduinen MA, Werger MJA (2006a) Vegetation ecological features of dry Inner and Outer Mongolia. Berichte der Reinhold Tüxen Gesellschaft 18:117–128

    Google Scholar 

  • van Staalduinen MA, Werger MJA (2006b) Marmot disturbances in a Mongolian steppe vegetation. J Arid Environ 69:344–351

    Google Scholar 

  • van Staalduinen MA, During HJ, Werger MJA (2007) Impact of grazing regime on a Mongolian forest steppe. Appl Veg Sci 10:299–306

    Google Scholar 

  • Vetter S (2005) Rangelands at equilibrium and non-equilibrium: recent developments in the debate. J Arid Environ 62:321–341

    Google Scholar 

  • von Wehrden H, Wesche K (2007) Relationships between climate, productivity and vegetation in southern Mongolian drylands. Basic Appl Dryland Res 1:100–120

    Google Scholar 

  • von Wehrden H, Hanspach J, Ronnenberg K, Wesche K (2010) The inter-annual climatic variability in Central Asia – a contribution to the discussion on the importance of environmental stochasticity in drylands. J Arid Environ 74:1212–1215

    Google Scholar 

  • Vostokova EA, Gunin PD (eds) (2005) Ecosystems of Mongolia – Atlas (general scientific edition). Russian Academy of Sciences, Moscow

    Google Scholar 

  • Walter H (1974) Die Vegetation Osteuropas, Nord- und Zentralasiens. G. Fischer, Stuttgart

    Google Scholar 

  • Wang RZ (2004) Responses of Leymus chinensis (Poaceae) to long-term grazing disturbance in the Songnen grasslands of north-eastern China. Grass Forage Sci 59:191–195

    Google Scholar 

  • Wang G, Wang Z, Zhou Q, Zhou W (1999) Relationship between species richness of small mammals and primary productivity of arid and semi-arid grasslands in north China. J Arid Environ 43:467–475

    Google Scholar 

  • Wang W, Wang Q, Wang H (2006) The effect of land management on plant community compositions, species diversity and productivity of alpine Kobersia (sic) steppe meadow. Ecol Res 21:181–187

    CAS  Google Scholar 

  • Wang TC, Xiong YC, Ge JP et al (2008) Four-year dynamic of vegetation on mounds created by zokors (Myospalax baileyi) in a subalpine meadow of the Qinghai-Tibet Plateau. J Arid Environ 72:84–96

    Google Scholar 

  • Wang G, Li H, An M et al (2011) A regional-scale consideration of the effects of species richness on above-ground biomass in temperate natural grasslands of China. J Veg Sci 22:414–424

    Google Scholar 

  • Wei W, Zhou H, Shi Y et al (2005) Climatic and environmental change in the source areas of dust storms in Xinjiang, China, during the last 50 years. Water Air Soil Pollut 5:207–216

    Google Scholar 

  • Weischet W, Endlicher W (2000) Regionale Klimatologie. Teil 2. Die Alte Welt. Teubner, Stuttgart, Leipzig

    Google Scholar 

  • Wesche K, Retzer V (2005) Is degradation a major problem in semi-desert environments of the Gobi region in southern Mongolia? In: Retzer V et al (eds) Erforschung Biologischer Ressourcen der Mongolei. Martin-Luther-University Halle-Wittenberg, Halle, pp 133–146

    Google Scholar 

  • Wesche K, Ronnenberg K (2010) Effects of NPK-fertilisation in arid southern Mongolian desert steppes. Plant Ecol 207:93–105

    Google Scholar 

  • Wesche K, Miehe S, Miehe G (2005) Plant communities of the Gobi Gurvan Sayhan National Park (South Gobi Aimag, Mongolia). Candollea 60:149–205

    Google Scholar 

  • Wesche K, Nadrowski K, Retzer V (2007) Habitat engineering under dry conditions: the impact of pikas (Ochotona pallasi) on southern Mongolian mountain steppes. J Veg Sci 18:665–674

    Google Scholar 

  • Wesche K, Ronnenberg K, Retzer V, Miehe G (2010) Effects of herbivore exclusion in southern Mongolian desert steppes. Acta Oecol 36:234–241

    Google Scholar 

  • Wesche K, Walther D, von Wehrden H, Hensen I (2011) Trees in the desert: reproduction and genetic structure of fragmented Ulmus pumila forests in Mongolian drylands. Flora 206:91–99

    Google Scholar 

  • White RP, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems. Grassland ecosystems. World Resource Institute, Washington, DC

    Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    PubMed  CAS  Google Scholar 

  • Xiao X, Shu J, Yifeng W et al (1996) Temporal variation in aboveground biomass of Leymus chinense steppe from the species to community levels in the Xilin River Basin, Inner Mongolia, China. Vegetatio 123:1–12

    Google Scholar 

  • Xie Y, MacKinnon J, Li D (2004) Study on biogeographic divisions of China. Biodivers Conserv 13:1391–1417

    Google Scholar 

  • Xie Z, Zhu J, Liu G et al (2007) Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biol 13:1989–2007

    Google Scholar 

  • Xu Y, Li L, Wang Q et al (2007) The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe. Plant Soil 300:289–300

    CAS  Google Scholar 

  • Yang Y, Fang J, Ji C, Han W (2009a) Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci 20:177–184

    Google Scholar 

  • Yang Y, Fang J, Smith P et al (2009b) Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biol 15:2723–2729

    Google Scholar 

  • Yang Y, Fang J, Fay PA et al (2010a) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys Res Lett 37:L15072. doi:15010.15129/12010GLO043920

    Google Scholar 

  • Yang Y, Fang J, Ma W et al (2010b) Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biol 16:3036–3047

    Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Proceedings of the National Academy of Sciences of the United States of America 107:22151–22156

    Google Scholar 

  • Yuan W, Zhou G, Wang Y et al (2007) Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol Res 22:784–791

    Google Scholar 

  • Zemmrich A (2007) Equilibrium or non-equilibrium ecosystems? Scaling effects in rangeland ecosystems of western Mongolia. Erdkunde 61:335–343

    Google Scholar 

  • Zemmrich A, Manthey M, Zerbe S, Oyunchimeg D (2010) Driving environmental factors and the role of grazing in grassland communities: a comparative study along an altitudinal gradient in Western Mongolia. J Arid Environ 74:1271–1280

    Google Scholar 

  • Zhang Y, Zhang Z, Liu J (2003a) Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan plateau. Mammal Rev 33:284–294

    Google Scholar 

  • Zhang Z, Pech R, Davis S et al (2003b) Extrinsic and intrinsic factors determine the eruptive dynamics of Brandt’s voles Microtus brandtii in Inner Mongolia, China. Oikos 100:299–310

    Google Scholar 

  • Zhang G, Han X, Elser J (2011) Rapid top–down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem. Oecologia 166:253–264

    PubMed  Google Scholar 

  • Zhou R, Yang Y, Fang J (2007) Responses of vegetation activity to precipitation variation on the Tibetan Plateau. Acta Sci Nat Univ Pekin 43:771–775

    CAS  Google Scholar 

  • Zhu T-C (1993) Grasslands of China. In: Coupland RT (ed) Natural grasslands, Ecosystems of the world 8b. Elsevier, Amsterdam/London/New York/Tokyo, pp 61–82

    Google Scholar 

  • Zickfeld K, Knopf B, Petoukhov V, Schellnhuber HJ (2005) Is the Indian summer monsoon stable against global change? Geophys Res Lett 32. doi:10.1029/2005GL022771: L15707. doi: 15710.11029/12005GL022771

    Google Scholar 

  • Zielinski J (1982) The effect of the Brandt vole (Microtus brandtii Radde, 1861) colonies upon vegetation in the Caragana steppe of central Asia. Pol Ecol Stud 8:41–56

    Google Scholar 

  • Zou T, Li Y, Xu H, Xu G-Q (2010) Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils. Ecol Res 25:185–194

    Google Scholar 

Download references

Acknowledgements

We heartily thank M.A. van Staalduinen and M.J.A. Werger for their patience with our manuscript, which came far later than promised. Marinus Werger is also thanked for giving helpful suggestions on the text. We are well aware that reviews like the present one depend on published data by a huge number of people that moved to the field, and we are grateful for all their efforts. Our own fieldwork in Mongolia and China was directly supported by a number of colleagues that cannot be listed here (see acknowledgements in the quoted papers). Special thanks to E. Seeber for her photo from the grazing exlcosures in Qinghai and unpublished fertilization data from Tibet, and to H. von Wehrden for providing unpublished chorological data from Mongolia. Over the years, funding for our different projects came from the German Science Foundation, the German Academic Exchange Service, the German Ministry for Education and Science, the giz (formerly gtz), the Austrian Science Fund and the Schimper Foundation. Daniel McCluskey kindly checked the style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Wesche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wesche, K., Treiber, J. (2012). Abiotic and Biotic Determinants of Steppe Productivity and Performance – A View from Central Asia. In: Werger, M., van Staalduinen, M. (eds) Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Plant and Vegetation, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3886-7_1

Download citation

Publish with us

Policies and ethics