Advertisement

Silicone Surfactants

  • Lenin J. Petroff
  • Steven A. SnowEmail author
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

This chapter reviews the molecular structure, synthesis, interfacial activity, bulk aqueous solution behavior, and commercial applications of silicone surfactants. While providing a historical overview of the technology, the focus is on scientific and technological development in the last ten years. Particular attention is paid to carbohydrate-functional silicones. Silicone surfactants have the intriguing and commercially viable ability to reduce the surface tension of polar and non-polar liquids to values 15–20 mN/m lower than commonly achieved with organic-based surfactants. The latest developments on understanding and commercially exploiting the phenomenon of superwetting are reviewed. Silicone surfactants demonstrate a marked tendency to form aggregate structures featuring surfactant bilayers including vesicles and lamellar liquid crystals. This tendency has been recently applied in the development of silicone vesicles as nanoscale delivery “vehicles” and in the templating of lamellar metal oxide structures. The utilization of these properties is reviewed, including applications as diverse as oil and gas, performance coatings and personal care products.

Keywords

Silicone surfactants Carbohydrate-functional silicones Superwetting Surfactant bilayers Silicone vesicles Templating of lamellar metal oxide structures 

References

  1. 1.
    Hill RM (1999) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York Google Scholar
  2. 2.
    Henning J, Muller F, Peggau J (2001) Silicone surfactants—multitalented with backbone. SOFW J 127(1/2):38–43 Google Scholar
  3. 3.
    Hill R (2002) Silicone surfactants-new developments. Curr Opin Colloid Interface Sci 7(5/6):255–261 CrossRefGoogle Scholar
  4. 4.
    Ruiz MA, Hernandez A, Llacer JM, Gallardo V (2003) The development of silicone chemistry II Hydrophilic silicones. J Appl Cosmetol 21(4):147–157 Google Scholar
  5. 5.
    Fleute-Schlachter I, Feldmann-Krane G (2003) Silicone surfactants. In: Novel surfactants. Surfactant science series, vol 114. Marcel Dekker, New York, pp 585–622 Google Scholar
  6. 6.
    Long B, Wang H (2004) Synthesis and application of polysiloxane-polyether surfactant. Xiangliao Xiangjing Huazhuangpin 2:31–35 Google Scholar
  7. 7.
    Kamei M (2005) High performance trend of silicone surfactants. Fragr J 33(6):28–34 Google Scholar
  8. 8.
    Huang W (2005) Silicone surfactant with special structure (continued). Youjigui Cailiao 19(3):48–51 Google Scholar
  9. 9.
    Hill RM (2006) Other types of surfactants—silicone surfactants. In: Farn RJ (ed) Chemistry and technology of surfactants. Blackwell Publishing, Oxford Google Scholar
  10. 10.
    Huang L, Yang J, Lu B, Li G, An Q (2008) Development of amino polyether organic silicone surfactants. Riyong Huaxuepin Kexue 31(9):21–24 Google Scholar
  11. 11.
    O’Lenick AJ, O’Lenick KA (2008) Silicone amphiphiles; getting the best of all worlds. Househ Pers Care Today 2:xxiv–xxvii Google Scholar
  12. 12.
    Han F, Liu Z, Zhou Y, Xu B (2009) Special surfactants and functional surfactants (III)—preparation and properties of organic silicone surfactants. Riyong Huaxue Gongye 39(2):133–137 Google Scholar
  13. 13.
    Han F, Liu Z, Zhou Y, Xu B (2009) Special surfactants and functional surfactants (IV)—application of organic silicone surfactants. Riyong Huaxue Gongye 39(3):200–206, 212 Google Scholar
  14. 14.
    Huang L, Hao L, Yuan J, Liu Y, An Q (2010) Research progress on preparation and application of silicone surfactants for pesticide adjuvants. Youjigui Cailiao 24(1):59–64 Google Scholar
  15. 15.
    Somasundaran P, Purohit P, Gokarn N, Kulkarni R (2010) Silicone emulsions: interfacial aspects and applications. Househ Pers Care Today 3:35–39, 42 Google Scholar
  16. 16.
    Huang W (2010) Silicone nonionic surfactant. Youjigui Cailiao 24(1):65–66 Google Scholar
  17. 17.
    Rodriguez-Abreu C, Esquena J (2011) Preparation of mesoporous materials with nonhydrocarbon surfactants. In: Tadros TF (ed) Self-organized surfactant structures. Wiley, Weinheim, pp 213–238 Google Scholar
  18. 18.
    Snow S, Stevens R (1999) The science of silicone surfactant application in the formation of polyurethane foam. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 5 Google Scholar
  19. 19.
    Bassindale AR, Gentle TE, Taylor PG, Watt A (1996) Octopus molecules based on silsesquioxane cores Tailor-made silicon-oxygen compd. In: Corriu R, Jutzi P (eds) Lect workshop, meeting date 1995. Vieweg, Wiesbaden, pp 171–176 Google Scholar
  20. 20.
    Gentle TE, private communication Google Scholar
  21. 21.
    Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air-water interface. J Am Chem Soc 124(51):15194–15195 CrossRefGoogle Scholar
  22. 22.
    Snow SA, Pernisz UC, Nugent BM, Stevens RE, Braun RJ, Naire S (2001) Modeling the stabilizing behaviour of silicone surfactants during the processing of polyurethane foam: the use of thin liquid films. In: Klempner D, Frisch KC (eds) Advances in urethane science and technology. In this document the material of interest is referred to as the Trimethylsilyl Capped Polysilicate (TCP), Chap 5 Google Scholar
  23. 23.
    Hill RM (1999) Siloxane surfactants. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 1 Google Scholar
  24. 24.
    Omotowa BA, Shreeve JM (2003) Preparation, characterization, and thermal and surfactant studies of polyfluorinated amphiphilic carbosilane dendrimers. Macromolecules 36(22):8336–8345 CrossRefGoogle Scholar
  25. 25.
    Krska SW, Seyferth D (1998) Synthesis of water-soluble carbosilane dendrimers. J Am Chem Soc 120(15):3604–3612 CrossRefGoogle Scholar
  26. 26.
    Kim C (2009) Silyl ether containing dendrimers with cyclic siloxane cores. In: Dvornic PR, Owen MJ (eds) Silicon-containing dendritic polymers. Springer, Berlin, Chap 6 Google Scholar
  27. 27.
    Jonas G, Stadler R (1991) Polysiloxanes with statistically distributed glucose and galactose units. I. Synthesis and thermal characterization. Makromol Chem, Rapid Commun 12(11):625–632 CrossRefGoogle Scholar
  28. 28.
    Jonas G, Stadler R (1994) Carbohyrate modified polysiloxanes. II. Synthesis via hydrosilylation of mono-, di- and oligosaccharide allylglycosides. Acta Polym 45(1):14–20 CrossRefGoogle Scholar
  29. 29.
    Akimoto T, Kawahara K, Nagase Y, Aoyagi T (2000) Preparation of oligodimethylsiloxanes with sugar moiety at a terminal group as a transdermal penetration enhancer. Macromol Chem Phys 201:2729–2734 CrossRefGoogle Scholar
  30. 30.
    Loos K, Jonas G, Stadler R (2001) Carbohydrate modified polysiloxanes, 3 solution properties of carbohydrate-polysiloxane conjugates in toluene. Macromol Chem Phys 202(16):3210–3218 CrossRefGoogle Scholar
  31. 31.
    Boysen MMK, Lindhorst TK (2003) Sugaring’ carbosilane dendrimers via hydrosilylation. Tetrahedron 59(22):3895–3898 CrossRefGoogle Scholar
  32. 32.
    Ogawa T (2003) Simplified synthesis of carbohydrate-functional siloxanes via transacetalation. I. Glucose-functional siloxanes. J Polym Sci A Polym Chem 41(21):3336–3345 CrossRefGoogle Scholar
  33. 33.
    Ogawa T (2003) Simplified synthesis of amphiphilic siloxanes with methyl gluconyl glycinate functionalities via transacetalation. Macromolecules 36(22):8330–8335 CrossRefGoogle Scholar
  34. 34.
    Brandstadt KF, Gross RA, Lane TH (2004) New organosilicon carbohydrate compound for use in forming gels, fibers, films, or coatings. US Patent 7,078,519 Google Scholar
  35. 35.
    Gross RA, Kalra B, Kumar A (2004) Enzymatic condensation polymerization used to prepare polyester-containing polymers, comprises combining enzyme, compound consisting of diols and polyols, and diacid in reaction vessel, and heating vessel to preselected temperature. US Patent 6,972,315 Google Scholar
  36. 36.
    Henkensmeier D, Abele BC, Candussio A, Thiem J (2004) Synthesis and characterization of terminal carbohydrate modified poly(dimethylsiloxane)s. Macromol Chem Phys 205(14):1851–1857 CrossRefGoogle Scholar
  37. 37.
    Sahoo B, Brandstadt KF, Lane TH, Gross RA (2005) Sweet silicones: biocatalytic reactions to form organosilicon carbohydrate macromers. Organic Lett 7(18):3857–3860 CrossRefGoogle Scholar
  38. 38.
    Henkensmeier D, Abele BC, Candussio A, Thiem J (2005) Synthesis of carbohydrate-segmented polydimethylsiloxanes by hydrosilylation. J Polym Sci A Polym Chem 43(17):3814–3822 CrossRefGoogle Scholar
  39. 39.
    Racles C, Hamaide T (2005) Synthesis and characterization of water-soluble saccharide functionalized polysiloxanes and their use as polymer surfactants for the stabilization of polycaprolactone nanoparticles. Macromol Chem Phys 206:1757–1768 CrossRefGoogle Scholar
  40. 40.
    Carillo FV, Costello M, Creutz SFA, Deklippel L, Henault B, Joffre EJ, McAuliffe JC, O’Neil VK, Simon C (2006) Surface treatment composition use as fabric treatment composition, comprises saccharide-siloxane copolymer(s), which is reaction product of functionalized organosiloxane polymer and hydroxyfunctional saccharide(s). Patent applications WO2006127882, US0683589, US0915007 Google Scholar
  41. 41.
    Joffre EJ, Johnson BK, Starch MS, Swanton BJ (2006) Personal care composition for personal care product for hair, and skin, i.e. antiperspirant, comprises saccharide-siloxane copolymer(s) having a saccharide component and an organosiloxane component and linked by linking group. Patent applications WO2006127883, US0683590, US0915051 Google Scholar
  42. 42.
    Joffre EJ, McAuliffe JC (2006) New ionically-modified saccharide siloxane copolymer useful in e.g. personal care product comprises saccharide and organosiloxane component, and is prepared by reaction of saccharide siloxane copolymer with ionic monomer/oligomer. Patent applications WO2006127924, US0683718 US0915077 Google Scholar
  43. 43.
    Joffre EJ, Kollar C, McAuliffe JC (2006) Cross-linkable composition for use as adhesive release coatings on paper, as wood water repellents or as wound dressings, comprises saccharide-siloxane copolymer, cross-linking agent and optionally solvent. Patent applications WO2006071772, US0638871, US0793067 Google Scholar
  44. 44.
    McAuliffe JC, Smith WC, Starch MS (2006) Saccharide compound for cosmetic and personal care formulations comprises ester derivative of ascorbic acid or 2-keto acid saccharide, where ester has been introduced by ester bond formation between ascorbic acid or 2-keto acid saccharide. Patent applications WO2006066227, US0636567, US0636567, US0792460 Google Scholar
  45. 45.
    Canfield L, Debdi N, Lavaux V, Starch MS, Van Reeth I (2006) Cosmetic, veterinary, pharmaceutical or therapeutic composition comprises ionic cross-linked polymer as thickening agent, water-in-oil emulsifying agent, silicone material, active agent, water and silicone-based emulsifying agent. Patent GB2422605 Google Scholar
  46. 46.
    Racles C, Hamaide T, Ioanid A (2006) Siloxane surfactants in polymer nanoparticles formulation. Appl Organomet Chem 20:235–245 CrossRefGoogle Scholar
  47. 47.
    Wang GY, Du ZP, Li QX, Zhang W (2010) Carbohydrate modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J Phys Chem B 114:6872–6876 CrossRefGoogle Scholar
  48. 48.
    Han F, Zhang G (2003) New family of siloxane surfactants having glucosamide. Tenside Surfactants Deterg 40(6):332–337 Google Scholar
  49. 49.
    Haupt M, Knaus S, Rohr T, Gruber H (2000) Carbohydrate modified polydimethylsiloxanes. Part 1. Synthesis and characterization of carbohydrate silane and siloxane building blocks. J Macromol Sci, Part A, Pure Appl Chem A37(4):323–341 CrossRefGoogle Scholar
  50. 50.
    Schmaucks G (1999) Novel siloxane surfactant structures. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 3 Google Scholar
  51. 51.
    Maki H, Horiguchi Y, Suga T, Komori S (1970) Syntheses and properties of surfactants containing organometallic compounds. VI. Syntheses and properties of surfactants with three-chained hydrophobic groups containing organotin and organosilicon compounds. Yukagaku 19(4):245 Google Scholar
  52. 52.
    Maki H, Horiguchi Y, Suga T, Komori S (1970) Syntheses and properties of organometallic surfactants. VII. Cationic surfactants containing polydimethylsiloxane. Yukagaku 19(11):1029 Google Scholar
  53. 53.
    Azechi S, Meguriya N, Tanaka M (1989) Cationic silicone surfactant and method of its manufacture. US Patent 5,124,466 Google Scholar
  54. 54.
    Schmaucks G, Sonnek G, Wuestneck R, Herbst M, Ramm M (1992) Effect of siloxanyl groups on the interfacial behavior of quaternary ammonium compounds. Langmuir 8(7):1724 CrossRefGoogle Scholar
  55. 55.
    Snow SA (1993) Synthesis and characterization of cationic siloxane surfactants (Me3SiO)2Si(Me)-(CH2)3NMe2(CH2)2OR+ X. Langmuir 9(2):424 CrossRefGoogle Scholar
  56. 56.
    Hill RM, Snow SA (1993) Cationic diquaternary ammonium salt functional silicones. US Patent 5,235,082 Google Scholar
  57. 57.
    Wagner R, Sonnek G (1994) Dicyclopentadienyl units containing silicone surfactants. In: Auner N, Weis J (eds) Organosilicon chem. VCH, Weinheim, pp 267–268 Google Scholar
  58. 58.
    Kuo P-L, Hou S-S, Teng C-K, Liang W-J (2001) Function and performance of silicone copolymer (VI). Synthesis and novel solution behavior of water-soluble polysiloxanes with different hydrophiles. Colloid Polym Sci 279(3):286–291 CrossRefGoogle Scholar
  59. 59.
    Cheng J, Wang X, Wu Q, Gan G (2002) Synthesis of polyether-modified silicone quaternary ammonium salt and its properties. Youjigui Cailiao 16(2):10–13 Google Scholar
  60. 60.
    Coo-Ranger JJ, Zelisko PM, Brook MA (2004) Ionic silicone surfactants in water-in-silicone oil emulsions containing proteins. Papers Present Meet - Am Chem Soc, Div Polym Chem 45(1):674–675 Google Scholar
  61. 61.
    Klein KD, Schaefer D, Lersch P (1994) Anionic silicone surfactants. Tenside Surfactants Deterg 31(2):115–119 Google Scholar
  62. 62.
    Renauld F, Colas AR (1988) Organosilicon sulfosuccinate(s) preparation by reaction of organosilicon compounds with base and sodium bisulfite, useful as surfactants. US Patent 4,777,277 Google Scholar
  63. 63.
    Renauld F, Colas AR, Sawick GC (1988) Surface active silicon compound. GB Patent 2,203,152 Google Scholar
  64. 64.
    Renauld F, Colas AR (1988) Preparation of organo-silicon compounds having sulphoxide-containingt hydrocarbon groups from sodium periodate and silane or organo-siloxane, used for textile softeners and antistatic treatments. GB Patent 2,223,232 Google Scholar
  65. 65.
    Azechi S, Meguriya N, Tanaka M (1989) Anionic silicone surfactant and method of its manufacture. US Patent 5,068.380 Google Scholar
  66. 66.
    Huang W (2005) Silicone surfactant with special structure. Youjigui Cailiao 19(3):48–51 Google Scholar
  67. 67.
    Snow SA, Fenton WN, Owen MJ (1991) Zwitterionic organofunctional siloxanes as aqueous surfactants: synthesis and characterization of betaine functional siloxanes. Langmuir 7(5):868 CrossRefGoogle Scholar
  68. 68.
    Snow SA, Fenton WN, Owen MJ (1990) Synthesis and characterization of zwitterionic silicone sulfobetaine surfactants. Langmuir 6(2):385 CrossRefGoogle Scholar
  69. 69.
    Eaborn C (1960) Organosilicon compounds. Butterworth Publications. The authors were able to obtain a copy form the service. “Out of Print Books on Demand” from University Microfilms International Google Scholar
  70. 70.
    Noll W (1968) Chemistry and technology of silicones Google Scholar
  71. 71.
    Brook MA (2000) Silicon in organic, organometallic and polymer chemistry Google Scholar
  72. 72.
    Snow SA, Fenton WN, Owen MJ (1990) Synthesis and characterization of zwitterionic silicone sulfobetaine surfactants. Langmuir 6(2):385 CrossRefGoogle Scholar
  73. 73.
    Pricop L, Hamciuc V, Marcu M (2002) Siloxane surfactants. Mater Plast 39(4):213–216 Google Scholar
  74. 74.
    LeGrow GE, Petroff LJ (1999) Silicone polyether copolymers: synthetic methods and chemical compositions. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 2 Google Scholar
  75. 75.
    The silicones environmental, health and safety council of north America, materials handling guide: hydrogen-bonded silicon compounds (http://www.sehsc.com/PDFs/SiHManual Revised 01 Aug 07.pdf)
  76. 76.
    Maki H, Horiguchi Y, Suga T, Komori S (1970) Syntheses and properties of surfactants containing organometallic compounds. VI. Syntheses and properties of surfactants with three-chained hydrophobic groups containing organotin and organosilicon compounds. Yukagaku 19(4):245 Google Scholar
  77. 77.
    Maki H, Horiguchi Y, Suga T, Komori S (1970) Syntheses and properties of organometallic surfactants VII. Cationic surfactants containing polydimethylsiloxane. Yukagaku 19(11):1029 Google Scholar
  78. 78.
    Snow SA, Fenton WN, Owen MJ (1990) Synthesis and characterization of zwitterionic silicone sulfobetaine surfactants. Langmuir 6(2):385 CrossRefGoogle Scholar
  79. 79.
    Snow SA, Fenton WN, Owen MJ (1991) Zwitterionic organofunctional siloxanes as aqueous surfactants: synthesis and characterization of betaine functional siloxanes. Langmuir 7(5):868 CrossRefGoogle Scholar
  80. 80.
    Schmaucks G, Sonnek G, Wuestneck R, Herbst M, Ramm M (1992) Effect of siloxanyl groups on the interfacial behavior of quaternary ammonium compounds. Langmuir 8(7):1724 CrossRefGoogle Scholar
  81. 81.
    Snow SA (1993) Synthesis, characterization of cationic siloxane surfactants (Me3SiO)2Si(Me)-(CH2)3NMe2(CH2)2OR+ X. Langmuir 9(2):424 CrossRefGoogle Scholar
  82. 82.
    Schmaucks G (1999) Novel siloxane surfactant structures. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 3 Google Scholar
  83. 83.
    Cheng J, Wang X, Wu Q, Gan G (2002) Synthesis of polyether-modified silicone quaternary ammonium salt and its properties. Youjigui Cailiao 16(2):10–13 Google Scholar
  84. 84.
    Snow SA (1993) Synthesis, characterization of cationic siloxane surfactants (Me3SiO)2Si(Me)-(CH2)3NMe2(CH2)2OR+ X. Langmuir 9(2):424 CrossRefGoogle Scholar
  85. 85.
    Colas AR, Renauld FA (1988) Organosilicon sulfosuccinate(s) preparation by reaction of organosilicon compounds with base and sodium bisulfite, useful as surfactants. US Patent 4,777,277 Google Scholar
  86. 86.
    Hoffmann H, Ulbricht W (1999) Surface activity and aggregation behavior of siloxane surfactants. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 4 Google Scholar
  87. 87.
    Kuo P-L, Hou S-S, Teng C-K, Liang W-J (2001) Function and performance of silicone copolymer (VI). Synthesis and novel solution behavior of water-soluble polysiloxanes with different hydrophiles. Colloid Polym Sci 279(3):286–291 CrossRefGoogle Scholar
  88. 88.
    Wang G, Qu W, Du Z, Cao Q, Li Q (2011) Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety. J Phys Chem B 115(14):3811–3818 CrossRefGoogle Scholar
  89. 89.
    Wang GY, Du ZP, Li QX, Zhang W (2010) Carbohydrate modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J Phys Chem B 114:6872–6876 CrossRefGoogle Scholar
  90. 90.
    Kim D, Lim C, Choi J, Noh S (2004) Surface active properties and LCST behavior of oligo(propylene oxide-blockethylene oxide) allyl ether siloxane surfactants in aqueous solution. Bull Korean Chem Soc 25(8):1182–1188 CrossRefGoogle Scholar
  91. 91.
    Kim D, Noh S, Jo B (2006) Effect of salt and pH on surface active properties of comb rake-type polysiloxane surfactants. Colloids Surf A 287(1–3):106–116 CrossRefGoogle Scholar
  92. 92.
    Wang W, Lu Y, Cai Z (2010) Surface characters of methylsiloxane-oxyalkylene copolymers. Jingxi Huagong 27(3):229–233 Google Scholar
  93. 93.
    Owen MJ (1980) The surface activity of silicones: a short review. Ind Eng Chem Prod Res Dev 19:97 CrossRefGoogle Scholar
  94. 94.
    Owen MJ (1980) The surface activity of silicones: a short review. Ind Eng Chem Prod Res Dev 19:97 CrossRefGoogle Scholar
  95. 95.
    Hoffmann H, Ulbricht W (1999) Surface activity and aggregation behavior of siloxane surfactants. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 4 Google Scholar
  96. 96.
    Snow SA, Stevens RE (1999) The science of silicone surfactant application in the formation of polyurethane foam. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 5 Google Scholar
  97. 97.
    Snow SA, Pernisz UC, Braun RJ (2006) Tying up loose ends silicone surfactants as stabilizing agents for flexible polyurethane foam. Silicon Chem 3(1/2):1–10 CrossRefGoogle Scholar
  98. 98.
    Fawcett AS, So HY, Brook MA (2010) Silicone foams stabilized by surfactants generated in situ from allyl-functionalized PEG. Soft Matter 6:1229–1237 CrossRefGoogle Scholar
  99. 99.
    Hoffmann H, Ulbricht W (1999) Surface activity and aggregation behavior of siloxane surfactants. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 4 Google Scholar
  100. 100.
    Gentle TE, Snow SA (1995) Adsorption of small silicone polyether surfactants at the air/water interface. Langmuir 11:2905–2910 CrossRefGoogle Scholar
  101. 101.
    Wang G, Qu W, Du Z, Cao Q, Li Q (2011) Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety. J Phys Chem B 115(14):3811–3818 CrossRefGoogle Scholar
  102. 102.
    Wang GY, Du ZP, Li QX, Zhang W (2010) Carbohydrate modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J Phys Chem B 114:6872–6876 CrossRefGoogle Scholar
  103. 103.
    Kuo P-L, Hou S-S, Teng C-K, Liang W-J (2001) Function and performance of silicone copolymer (VI). Synthesis and novel solution behavior of water-soluble polysiloxanes with different hydrophiles. Colloid Polym Sci 279(3):286–291 CrossRefGoogle Scholar
  104. 104.
    Deng J, Polidan JT Hottle JR, Farmer-Creely CE, Viers BD, AR Esker (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water. Interface (J Am Chem Soc) 124(51):15194–15195 Google Scholar
  105. 105.
    Snow SA, Pernisz UC, Nugent BM, Stevens RE, Braun RJ, Naire S (2001) Modeling the stabilizing behaviour of silicone surfactants during the processing of polyurethane foam: the use of thin liquid films. In: Klempner D, Frisch KC (eds) Advances in urethane science and technology. In this document the material of interest is referred to as the trimethylsilyl capped polysilicate (TCP). Chap 5 Google Scholar
  106. 106.
    Snow SA, Pernisz UC, Nugent BM, Stevens RE, Braun RJ, Naire S (2001) Modeling the stabilizing behaviour of silicone surfactants during the processing of polyurethane foam: the use of thin liquid films. In: Klempner D, Frisch KC (eds) Advances in urethane science and technology. Chap 5 Google Scholar
  107. 107.
    Snow SA, Pernisz UC, Braun RJ (2006) Tying up loose ends silicone surfactants as stabilizing agents for flexible polyurethane foam. Silicon Chem 3(1/2):1–10 CrossRefGoogle Scholar
  108. 108.
    Snow SA, Pernisz UC, Stevens RE (1998) Thin liquid model polyurethane films. In: Polyurethanes world congress, pp 1–10 Google Scholar
  109. 109.
    Braun RJ, Snow SA, Naire S (2002) Models for gravitationally-driven free-film drainage. J Eng Math 43:281–314 CrossRefGoogle Scholar
  110. 110.
    Mysels KJ, Shinoda K, Frankel S (1959) Soap films and studies of their thinning. Pergamon, Elmsford Google Scholar
  111. 111.
    Anseth JW, Bialek A, Hill RM, Fuller GG (2003) Interfacial rheology of graft-type polymeric siloxane surfactants. Langmuir 19(16):6349–6356 CrossRefGoogle Scholar
  112. 112.
    Mehta SC, Somasundaran P (2007) Modification in rheological properties due to charged network of ionic silicone surfactants at water-oil interface. Abstracts of papers. In: 233rd ACS national meeting, Chicago, IL, United States Google Scholar
  113. 113.
    Fawcett AS, So HY, Brook MA (2010) Silicone foams stabilized by surfactants generated in situ from allyl-functionalized PEG. Soft Matter 6(6):1229–1237 CrossRefGoogle Scholar
  114. 114.
    Wang A, Jiang L, Mao G, Liu Y (2001) Direct force measurement of comb silicone surfactants in alcoholic media by atomic force microscopy. J Colloid Interface Sci 242(2):337–345 CrossRefGoogle Scholar
  115. 115.
    Wang A, Jiang L, Mao G, Liu Y (2002) Direct force measurement of silicone and hydrocarbon-based ABA triblock surfactants in alcoholic media by atomic force microscopy. J Colloid Interface Sci 256(2):331–340 CrossRefGoogle Scholar
  116. 116.
    Suitthimeathegorn O, Jaitely V, Florence T (2005) Novel anhydrous emulsions: formulation as controlled release vehicles. Int J Pharm 298(2):367–371 CrossRefGoogle Scholar
  117. 117.
    Liu X, Song J, Wu D, Genzer J, Theyson T, Rojas OJ (2010) Surface and friction behavior of a silicone surfactant adsorbed on model textiles substrates. Ind Eng Chem Res 49(18):8550–8557 CrossRefGoogle Scholar
  118. 118.
    Snow SA, Pernisz UC, Nugent BM, Stevens RE, Braun RJ, Naire S (2001) Modeling the stabilizing behaviour of silicone surfactants during the processing of polyurethane foam: the use of thin liquid film. In: Klempner D, Frisch KC (eds) Advances in urethane science and technology. Chap 5 Google Scholar
  119. 119.
    Kuo P-L, Hou S-S, Teng C-K, Liang W-J (2001) Function and performance of silicone copolymer (VI). Synthesis and novel solution behavior of water-soluble polysiloxanes with different hydrophiles. Colloid Polym Sci 279(3):286–291 CrossRefGoogle Scholar
  120. 120.
    Stoebe T, Hill RM, Ward MD, Scriven LE, Davis HT (1999) Surfactant-enhanced spreading. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 11 Google Scholar
  121. 121.
    De Ruijter MJ (2000) The role of surfactants in dynamic wetting. Annu Surfactants Rev 3(Surface Active Behaviour of Performance Surfactants):169–188 Google Scholar
  122. 122.
    Wagner R, Wu Y, Czichocki G, Berlepsch HV, Weiland B, Rexin F, Perepelittchenko L (1999) Silicon-modified surfactants and wetting: I. Synthesis of the single components of Silwet L77 and their spreading performance on a low-energy solid surface. Appl Organomet Chem 13(9):611–620 CrossRefGoogle Scholar
  123. 123.
    Unpublished data of the Dow Corning Corporation Google Scholar
  124. 124.
    Venzmer J, Wilkowski SP (2000) Trisiloxane surfactants-mechanisms of wetting and spreading. In: Auner N, Weis J (eds) Organosilicon chem IV lect poster contrib muenchner silicontage meeting 1998. Wiley-VCH, Weinheim, pp 690–698 Google Scholar
  125. 125.
    Nikolov AD, Wasan DT, Chengara A, Koczo K, Policello GA, Kolossvary I (2002) Superspreading driven by Marangoni flow. Adv Colloid Interface Sci 96(1-3):325–338 CrossRefGoogle Scholar
  126. 126.
    Wagner R, Wu Y, Berlepsch HV, Rexin F, Rexin T, Perepelittchenko L (1999) Silicon-modified surfactants and wetting: III. The spreading behavior of equimolar mixtures of nonionic trisiloxane surfactants on a low-energy solid surface. Appl Organomet Chem 13(9):621–630 CrossRefGoogle Scholar
  127. 127.
    Peng Z, Lu C, Xu M (2010) Influence of substructures on the spreading ability and hydrolysis resistance of double-tail trisiloxane surfactants. J Surfactants Deterg 11(1):75–81 CrossRefGoogle Scholar
  128. 128.
    Nikolov AD, Wasan DT, Chengara A, Koczo K, Policello GA, Kolossvary I (2002) Superspreading driven by Marangoni flow. Adv Colloid Interface Sci 96(1-3):325–338 CrossRefGoogle Scholar
  129. 129.
    Peng Z, Lu C, Xu M (2010) Influence of substructures on the spreading ability and hydrolysis resistance of double-tail trisiloxane surfactants. J Surfactants Deterg 13(1):75–81 CrossRefGoogle Scholar
  130. 130.
    Policello GA, Leatherman MD, Peng W, Rajaraman SK, Xia Z (2007) Hydrolysis-resistant organo modified trisiloxane surfactants and aqueous emulsion incorporating surfactants. US Patent Application, Publ 17 pp Google Scholar
  131. 131.
    Lin L, Chen K (2006) Surface activity and water repellency properties of cleavable-modified silicone surfactants. Colloids Surf A 275(1–3):99–106 CrossRefGoogle Scholar
  132. 132.
    Lin L, Wang C, Chen K (2006) Water-repellency and antibacterial activities of plasma-treated cleavable silicone surfactants on nylon fabrics. Surf Coat Technol 201(3–4):674–678 CrossRefGoogle Scholar
  133. 133.
    Lin L, Wang C, Chen C, Chen K (2006) Water-repellency and antibacterial activities of plasma-treated cleavable silicone surfactants on nylon fabrics. Surf Coat Technol 201(3–4):674–678 CrossRefGoogle Scholar
  134. 134.
    Tanford C (1980) The hydrophobic effect. Wiley, New York Google Scholar
  135. 135.
    Soni SS, Sastry NV, Aswal VK, Goyal PS (2002) Micellar structure of silicone surfactants in water from surface activity, SANS and viscosity studies. J Phys Chem B 106(10):2606–2617 CrossRefGoogle Scholar
  136. 136.
    Soni SS, Sastry NV, Joshi JV, Seth E, Goyal PS (2003) Study on the effects of nonelectrolyte additives on the phase, thermodynamics, and structural changes in micelles of silicone surfactants in aqueous solutions from surface activity, small angle neutron scattering, and viscosity measurements. Langmuir 19(17):6668–6677 CrossRefGoogle Scholar
  137. 137.
    Soni SS, Sastry NV, George J, Bohidar HB (2003) Dynamic light scattering and viscosity studies on the association behavior of silicone surfactants in aqueous solutions. J Phys Chem B 107(22):5382–5390 CrossRefGoogle Scholar
  138. 138.
    Lin Y, Alexandridis P (2003) Association of siloxane polymeric surfactants in aqueous solution. In: Synthesis and properties of silicones and silicone-modified materials. ACS symposium series, vol 838, pp 222–234 CrossRefGoogle Scholar
  139. 139.
    Ahn S, Alexandridis P (2001) Phase behavior and structural characterization of trisiloxane surfactant—water-silicone oil systems. Papers Present Meet - Am Chem Soc, Div Polym Chem 42(1):169–170 Google Scholar
  140. 140.
    Lin Z, He M, Scriven LE, Davis HT, Snow SA (1993) Vesicle formation in electrolyte solutions of a new cationic siloxane surfactant. J Phys Chem 97:3571 CrossRefGoogle Scholar
  141. 141.
    Hill RM, Lin Z, He M, Scriven LE, Davis HT (1993) Lyotropic liquid crystal phase behavior of polymeric siloxane surfactants. Langmuir 9(11):2789–2798 CrossRefGoogle Scholar
  142. 142.
    Lin Z, He M, Scriven LE, Davis HT, Snow SA (1994) Aggregation behavior and microstructures of cationic trisiloxane surfactants in aqueous solutions. J Phys Chem 98:6148 CrossRefGoogle Scholar
  143. 143.
    Hoffmann H, Munkert U, Thunig C, Valiente M (1994) Altering the rheological properties of silicone surfactant vesicles. J Colloid Interface Sci 163:217 CrossRefGoogle Scholar
  144. 144.
    Hill RM, Lin Z, He M, Scriven LE, Davis HT, Talmon Y (1994) Cryo transmission electron microscopy study of vesicles and micelles in siloxane surfactant aqueous solutions. Langmuir 10(4):1008–1011 CrossRefGoogle Scholar
  145. 145.
    Hill RM, Lin Z, He M, Scriven LE, Davis HT (1994) Comparison of the liquid crystal phase behavior of four trisiloxane superwetter surfactants. Langmuir 10(6):1724–1734 CrossRefGoogle Scholar
  146. 146.
    Hill RM, Snow SA (1994) Silicone vesicles and entrapment. US Patent 5,364,633 Google Scholar
  147. 147.
    Hill RM, Snow SA (1995) Silicone vesicles and entrapment. US Patent 5,411,744 Google Scholar
  148. 148.
    Kickelbick G, Bauer J, Huesing N, Andersson M, Holmberg K (2003) Aggregation behavior of short-chain PDMS-b-PEO diblock copolymers in aqueous solutions. Langmuir 19:10073–10076 CrossRefGoogle Scholar
  149. 149.
    Kickelbick G, Bauer J, Husing N, Andersson M, Palmqvist A (2003) Spontaneous vesicle formation of short-chain amphiphilic polysiloxane-b-poly(ethylene oxide) block copolymers. Langmuir 19:3198–3201 CrossRefGoogle Scholar
  150. 150.
    Yao D, Bender T, Gerroir PJ, Sundararajan PR (2005) Self-assembled vesicular nanostructures of perylene end-capped poly(dimethylsiloxane). Macromolecules 38(16):6972–6978 CrossRefGoogle Scholar
  151. 151.
    Yan Y, Hoffmann H, Drechsler M, Talmon Y, Makarsky E (2006) Influence of a hydrocarbon surfactant on the aggregation behavior of a silicone surfactant: observation of intermediate structures in the vesicle-micelle transition. J Phys Chem B 110(11):5621–5626 CrossRefGoogle Scholar
  152. 152.
    Wang GY, Du ZP, Li QX, Zhang W (2010) Carbohydrate modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J Phys Chem B 114:6872–6876 CrossRefGoogle Scholar
  153. 153.
    Wang G, Qu W, Du Z, Cao Q, Li Q (2011) Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety. J Phys Chem B 115(14):3811–3818 CrossRefGoogle Scholar
  154. 154.
    Postiaux S, Lin S (2005) Preparation of vesicle composition comprises combining organopolysiloxane, water miscible volatile solvent, optionally silicone or organic oil and personal care or health care active with water and mixing the obtained aqueous dispersion. World Patent Filing # WO2005102248 Google Scholar
  155. 155.
    Lin S (2005) Preparing vesicle composition useful for personal and health care product involves mixing organopolysiloxane, water miscible volatile solvent and water to form vesicles, and optionally removing the solvent from the vesicles. World Patent Filing # WO2005103157 Google Scholar
  156. 156.
    Lin S, Nguyen K (2005) Aqueous composition for use in making personal, household, and health care composition used in, e.g. antiperspirants, deodorants, comprises dispersed particles with block silicon polyether copolymer. World Patent Filing WO2005103118 Google Scholar
  157. 157.
    Lin S, Leaym T (2006) Polyoxyalkylene-alkyl functional siloxane resin for manufacturing aqueous dispersion, vesicle composition, and aqueous composition for entrapment and delivery of personal, household, and healthcare composition, comprises siloxy units. World Patent Filing WO2006091295 Google Scholar
  158. 158.
    Lin S, Newton J, Postiaux S, Thompson J (2007) Preparation of vesicle composition useful in personal care product e.g. deodorant involves mixing dispersions of organopolysiloxane having hydrophilic substituent with hydrophilic active and hydrophobic active component and mixing water. World Patent Filing WO2007053424 Google Scholar
  159. 159.
    Kickelbick G, Bauer J, Huesing N, Andersson M, Holmberg K (2003) Aggregation behavior of short-chain PDMS-b-PEO diblock copolymers in aqueous solutions. Langmuir 19:10073–10076 CrossRefGoogle Scholar
  160. 160.
    Kickelbick G, Bauer J, Husing N, Andersson M, Palmqvist A (2003) Spontaneous vesicle formation of short-chain amphiphilic polysiloxane-b-poly(ethylene oxide) block copolymers. Langmuir 19:3198–3201 CrossRefGoogle Scholar
  161. 161.
    Kumar A, Uddin MH, Kunieda H, Furukawa H, Harashima A (2001) Solubilization enhancing effect of A-B-type silicone surfactants in microemulsions. J Disp Sci Tech 22(2&3):245–253 CrossRefGoogle Scholar
  162. 162.
    Xu A, Yu JC, Zhang H, Zhang L, Kuang D, Fang Y (2003) Continuous formation of supported unusual mesostructured silica films by sol–gel dip coating. Langmuir 18(24):9570–9573 CrossRefGoogle Scholar
  163. 163.
    Xu A (2002) Novel surfactants for the synthesis of unusual highly ordered lamellar oxides. J Phys Chem B 106(45):11713–11715 CrossRefGoogle Scholar
  164. 164.
    Xu A (2002) Synthesis of highly ordered long-range lamellar silica composites. Chem Lett 9:878–879 CrossRefGoogle Scholar
  165. 165.
    Xu A, Cai Y, Zhang H, Zhang L, Yu JC (2002) Hierarchically ordered silica mesophases using mixed surfactant systems as templates. Angew Chem, Int Ed Engl 41(20):3844–3848 CrossRefGoogle Scholar
  166. 166.
    Xu A (2002) Synthesis of mesostructured silica using nonionic copolymers as the templates. Chem Lett 10:982–983 CrossRefGoogle Scholar
  167. 167.
    Xu A, Yu JC, Cai Y, Zhang H, Zhang L (2002) The preparation of a highly ordered long-range lamellar silica structure with large interlayer spacings. Chem Commun 15:1614–1615 CrossRefGoogle Scholar
  168. 168.
    Xu A (2002) Highly ordered lamellar silica/surfactant composites templated from nonionic amphiphilic copolymer. Chem Mater 14(9):3625–3627 CrossRefGoogle Scholar
  169. 169.
    Xu A, Yu JC, Zhang H, Zhang L, Kuang D, Fang Y (2003) Continuous formation of supported unusual mesostructured silica films by sol–gel dip coating. Langmuir 18(24):9570–9573 CrossRefGoogle Scholar
  170. 170.
    Gradzielski M, Hoffmann H, Robisch P, Ulbricht W, Gruning B (1990) The aggregation behaviour of silicone surfactants in aqueous solutions. Tenside Surfactants Deterg 27:366–379 Google Scholar
  171. 171.
    Schmaucks G, Sonnek G, Wfistneck R, Herbst M, Ramm M (1992) Effect of siloxanyl groups on the interfacial behavior of quaternary ammonium compounds. Langmuir 8:1724–1730 CrossRefGoogle Scholar
  172. 172.
    Hill RM, He M, Lin Z, Davis HT, Scriven LE (1993) Lyotropic liquid crystal phase behavior of polymeric siloxane surfactants. Langmuir 9:2789–2798 CrossRefGoogle Scholar
  173. 173.
    Iwanaga T, Kunieda H (2000) Effect of added salts or polyols on the cloud point and the liquid-crystalline structures of polyoxyethylene-modified silicone. J Colloid Interface Sci 227(2):349–355 CrossRefGoogle Scholar
  174. 174.
    Kunieda H, Uddin MH, Horii M, Furukawa H, Harashima A (2001) Effect of hydrophilic- and hydrophobic chain lengths on the phase behavior of A–B-type silicone surfactants in water. J Phys Chem B 105(23):5419–5426 CrossRefGoogle Scholar
  175. 175.
    Floyd DT (1999) Silicone surfactants: Applications in the personal care Industry. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 7 Google Scholar
  176. 176.
    O’Lenick AJ, O’Lenick K (2010) Formulating with surfactant silicones. Cosmet Toilet 125(1):44–49 Google Scholar
  177. 177.
    O’Lenick AJ (2001) PEG/PPG dimethicone: a new name for an old friend. Cosmet Toilet 116(7):49–52 Google Scholar
  178. 178.
    Keil JW (1979) US Patent 4,265,878 and 4,268,499 antiperspirant stick compositions and antiperspirant emulsion compositions Google Scholar
  179. 179.
    Starch MS (1979) US Patent 4,311,695, Personal care emulsions comprising a siloxane-oxyalkylene copolymer, December Google Scholar
  180. 180.
    Gruning B, Bungard A (1999) Silicone surfactants: Emulsification. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 8 Google Scholar
  181. 181.
    O’Lenick AJ (1979) Applying the three dimensional HLB system. Cosmet Toilet 112(11):59–60, 65 Google Scholar
  182. 182.
    Zombeck A, Dahms G (1996) Novel formulations based on non-aqueous emulsions of polyols in silicones. In: 19th IFSCC Congress, Sydney Google Scholar
  183. 183.
    Dahms G, Zombeck A (1995) New formulation possibilities offered by silicone co-polyols. Cosmet Toilet 110(3):91–100 Google Scholar
  184. 184.
    Keil J (1985) US Patent 4,532,132 Google Scholar
  185. 185.
    Araki et al. (2009) In: 9th ASCS conference, Oral Presentation #148 Google Scholar
  186. 186.
    Koini T, Dahms G (2003) O/W Emulsions US Patent Pub No 2003/0202948 A1 Google Scholar
  187. 187.
    Dimitrova T, Saulnier L, Verhelst V, Van Reeth I (2011) Silicone polyethers as stabilizers of water-in-oil emulsions. In: Morgan S, Lochhead R (eds) Polymeric delivery of therapeutics. ACS symposium series, vol 1053. Am Chem Soc, Washington Google Scholar
  188. 188.
    Dimitrova T, Saulnier L, Van Reeth I, Verhelst V (2008) Stabilization of cosmetic formulations by silicone polyethers. In: 25th ISSCC congress, Barcelona, October 2008 Google Scholar
  189. 189.
    Van Reeth I, Bao X, Durand B, Vervier I, Yasuhiro K, Devalle C (2010) Silicone emulsifiers: new developments and formulation concepts. In: 26th IFSCC congress, Buenos Aires, poster 0050 Google Scholar
  190. 190.
    Van Reeth I, Van Oycke S, Kondo H (2006) New developments in water-in-silicone and water-in-oil silicone based emulsifiers. In: 24th IFSCC congress, Osaka, PC-070 Google Scholar
  191. 191.
    Yahagi K (1992) Silicones as conditioning agents in shampoos. J Soc Cosmet Chem 43(5):275–284 Google Scholar
  192. 192.
    Ostergaard T, Gomes A, Quackenbush K, Johnson B (2004) Silicone quaternary microemulsions: a multifunctional product for hair care. Cosmet Toilet 119(11):45–48, 50, 52 Google Scholar
  193. 193.
    Philip A (1988) Formulating for a close shave. Cosmet Toilet 59(10):53–59 Google Scholar
  194. 194.
    Easton T, Stephens D (1995) Silicone surfactants as performance enhancers in waterborne coatings. Polym Paint Colours J 185(4371):26, 28–30 Google Scholar
  195. 195.
    Perry D (2001) Glorious speed. Polym Paint Colours J September:16–19 Google Scholar
  196. 196.
    Ferritto M, Fornier F, Stanga M, Verineau P, Whitmarsh R, Witucki G (2007) WO patent 2007075927 Google Scholar
  197. 197.
    Semmler H, Heilen W (2000) Silicones fight foam formation. Polym Paint Colours J 190(4431):16–18 Google Scholar
  198. 198.
    Van Dam P (2001) Ending bubble trouble. Polym Paint Colours J 191(4441):30–33 Google Scholar
  199. 199.
    O’Neil V, Zeng J Perry D (2003) New silicone foam control agents for waterborne coatings. Paint and Coatings Industry, BNP Media, October Google Scholar
  200. 200.
    Fey R, Hill RM (1999) Silicone polymers for foam control and demulsification. In: Hill RM (ed) Silicone surfactants, surfactant science series, vol 86. Marcel Dekker, New York, Chap 6 Google Scholar
  201. 201.
    McGee J, Petroff L, Aizawa K, Shoji H (1995) Silicone foam control compositions. US patent 5,380,464 Google Scholar
  202. 202.
    McGee J, Petroff L, Brecht D, Ollinger W (1996) Silicone foam control compositions, US patent 5,543,082 Google Scholar
  203. 203.
    Tonge L, Kidera H, Okada R, Noro T, Harkness B (2003) US patent application 20030013808 A1 Google Scholar
  204. 204.
    Elms R, Lin F, Severance M (2004) Silicone based foam control compositions stable in detergents EP 1 167 502 A1 Google Scholar
  205. 205.
    Henning J, Muller F, Peggau J (1999) Novel applications of silicone surfactants in cleansers and polishes. Commun J Comm Esp Deterg 29:235–246 Google Scholar
  206. 206.
    Panandiker RJ, Rajan K, Vetter K, Barnabas F, Delplancke P (2009) Fabric care compositions and systems comprising organosilicone microemulsions and methods employing same. US patent 7,608,575 B2 Google Scholar
  207. 207.
    Panandiker R, Vetter K, Combs M, Gladney D, Sheets C (2010) Fabric care composition comprising organosilicone microemulsion and anionic/nitrogen containing surfactant system. US patent 7,678,752 B2 Google Scholar
  208. 208.
    Achwal W (2002) Hydrophilic silicone based softeners. Colourage 49(6):58–59 Google Scholar
  209. 209.
    Czech A (2002) Block, non-(AB)n silicone polyalkyleneoxide copolymers with tertiary amino links. US patent 6,475,568 Google Scholar
  210. 210.
    Schwab P, Favresse P, Maurer T, Pascaly M (2010) Silicone containing graft copolymers of blockwise structure. US patent 7,838,603 B2 Google Scholar
  211. 211.
    Kennan J, Lewis K, Vazquez F (2010) Silicone polyether block copolymers having organofunctional endblocking groups. US patent publication US 2010.0048795 A1 Google Scholar
  212. 212.
    Sabia A, Metzler R (1983) The role of silicones in nonwoven fabric applications. Nonwovens Ind 14(9):16–22 Google Scholar
  213. 213.
    Casado-Dominguez A, Goossens E, Hubesch B (2003) Process for preparing an organomodified-silicone by hydrosilylation reaction. US patent application 20030232947 A1 Google Scholar
  214. 214.
    Robinson P, Dolbear G (2006) Hydrotreating and hydrocracking: fundamentals. In: Hsu C, Robinson P (eds) Practical advances in petroleum processing, vol 1. Springer, Berlin, pp 177–217, Chap 7 CrossRefGoogle Scholar
  215. 215.
    Hill RM, Fey KC (1999) Silicone polymers for foam control and demulsification. In: Hill RM (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 6 Google Scholar
  216. 216.
    Callagahan I, Gould C, Grabowski W (1987) Method for the separation of gas from oil. US patent 4,711,714 Google Scholar
  217. 217.
    Dalmazzone Noik C (2005) Mechanism of crude-oil/water interface destabilization by silicone demulsifiers. SPE J March:44–53 Google Scholar
  218. 218.
    Owen MJ (1972) Siloxane surfactants as demulsifiers. In: Proc VI int cong surf act, Switzerland, pp 623–630 Google Scholar
  219. 219.
    Theile H, Hoffman H, Rossmy G, Koerner G, Zaske P (1980) Use of demulsifying mixtures for breaking petroleum emulsions. US Patent 4,183,820 Google Scholar
  220. 220.
    Fink H, Koerner G, Rossmy G (1977) De-emulsifier for breaking petroleum emulsions. US Patent 4,029,596 Google Scholar
  221. 221.
    Graham D, Lidy W, McGrath P, Thompson R (1986) Demulsification process. US patent 4,596,653 Google Scholar
  222. 222.
    David D, Le Folletec A, Pezreon I, Dalmazzone C, Noik C, Barre L, Komunjer L (2008) Destabilization of water in crude oil emulsions by silicone copolymer demulsifiers. Oil Gas Sci Technol Rev IFP 63(1):165–173 CrossRefGoogle Scholar
  223. 223.
    Phukan M, Koczo K, Falk B, Palumbo A (2010) New silicon copolymers for efficient demulsification. SPE paper 128553, SPE oil and gas conference, Mumbai, India Google Scholar
  224. 224.
    Alen R (2000) Basic chemistry of wood delignification. In: Gullichsen J, Paulapuro H, Stenium P (eds) Forest products chemistry. Papermaking science and technology, vol. 3, pp 59–103. Tappi Fapet Oy, Chap 2 Google Scholar
  225. 225.
    Burger W, Beubig O, Lappalainen K, Wahlberg H (2003) Chemical digestion process using organosilicone compounds. US Patent 6,521,084 Google Scholar
  226. 226.
    Habermehl J (2005) Silicone processing. Pulp paper technol, summer:59–62 Google Scholar
  227. 227.
    Wilson D (2005) Silicone’s applications. Pulp paper technol, summer:37–40 Google Scholar
  228. 228.
    Ikeda T, Takewaki K (2006) Defoaming composition. Japan patent 2006320837 Google Scholar
  229. 229.
    Pease J, McKendree G (2009) Felt and equipment surface conditioner. US patent 7,534,324 Google Scholar
  230. 230.
    Nellesen B, Northfleet C (2006) Method of deinking. US patent publication 2006/0102298 Google Scholar
  231. 231.
    Nellesen B (2006) Practical experience with the use of silicone derivatives for the detachment and removal of ink. In: Proceedings of 12th PTS/CTP deinking symposium, Leipzig, 25–17 April 2006 Google Scholar
  232. 232.
    Battice D, Fey K, Petroff L, Stanga M (1998) Silicone foam control agents for hydrocarbon liquids—displays consistent compatibility and miscibility with other frequently present fuel additives, especially in diesel or jet fuels. US patent 5,767,192 Google Scholar
  233. 233.
    Fey KC, Combs CS (1995) Middle distillate hydrocarbon foam control agents from cross-linked organopolysiloxane-polyoxyalkylenes. US patent 5,397,367 Google Scholar
  234. 234.
    Penner D, Burow R, Roggenbuck F (1999) Use of organosilicone surfactants as agricultural adjuvants. In: Hill R (ed) Silicone surfactants. Surfactant science series, vol 86. Marcel Dekker, New York, Chap 9 Google Scholar
  235. 235.
    Leatherman M, Policello G, Peng W, Zheng L, Wagner R, Rajaraman S, Xi Z (2009) Hydrolysis resistant organomodified disiloxane ionic surfactant. US patent publication 2009/0173913 Google Scholar
  236. 236.
    Leatherman M, Policello G, Peng W, Zheng L, Wagner R, Rajaraman S, Xia Z (2009) Mixtures of hydrolysis resistant organomodified trisiloxane ionic surfactants. US Patent Publication 2009/0173912 Google Scholar
  237. 237.
    Klein K, Wilkowski S, Selby J (1995) Silane surfactants, novel adjuvants for agricultural applications. In: Gaskin R (ed) 4th international symposium on adjuvants for agrichemicals, Oct 3–6, Melbourne, Aus. NZ Forest Research Institute Bulletin, vol 193, pp 27–31 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dow Corning CorporationMidlandUSA

Personalised recommendations