Skip to main content

On the Interactions of Proteins with Silicon-Based Materials

  • Chapter
  • 3259 Accesses

Part of the book series: Advances in Silicon Science ((ADSS,volume 4))

Abstract

In this chapter we describe silica precipitation using unmodified synthetic R5 polypeptide—a nineteen amino acid sequence corresponding to the homologous repeating sequence in silaffin-1A protein extracted from diatom C. fusiformis. The particle formation was investigated using modern materials characterization methods, namely AFM, SEM and EDS. It was found that silica particles of sizes ∼150–200 nm were produced and that they formed aggregates. Furthermore, we propose that the R5 polypeptide self-organizes in solution and catalyzes and scaffolds the silica formation in vitro. We believe that silaffin proteins and other proteins facilitating silica formation in vivo behave in a similar fashion and this may provide insights into the role of proteins in biosilicification.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-3876-8_14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brash JL (2000) Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials. J Biomater Sci Polym Ed 11(11):1135–1146

    Article  CAS  Google Scholar 

  2. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  Google Scholar 

  3. Round FE, Crawford RM, Mann DG (1990) The diatoms, biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  4. Simpson TL, Volcani BE (1981) Silicon and siliceous structures in biological systems. Springer, New York

    Book  Google Scholar 

  5. Harrison CC (1996) Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry 41(1):37–42 (formerly Perry)

    Article  CAS  Google Scholar 

  6. Shimizu K, Cha JN, Stucky GD, DE Morse (1998) Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  Google Scholar 

  7. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, DE Morse (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  CAS  Google Scholar 

  8. Kröger N, Bergsdorf C, Sumper M (1994) A new calcium-binding glycoprotein family constitutes a major diatom cell-wall component. EMBO J 13:4676–4683

    Google Scholar 

  9. Kröger N, Lehmann G, Rachel R, Sumper M (1997) Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur J Biochem 250:99–105

    Article  Google Scholar 

  10. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  Google Scholar 

  11. Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  Google Scholar 

  12. Brott LL, Pikas DJ, Naik RR, Kirkpatrick SM, Tomlin DW, Whitlock PW, Clarson SJ, Stone MO (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413:291–293

    Article  CAS  Google Scholar 

  13. Clarson SJ, Whitlock PW, Patwardhan SV, Brott LL, Naik RR, Stone MO (2002) Synthesis of silica nanostructures at neutral pH using catalytic polypeptides. Polym Mater Sci Eng 86:81

    CAS  Google Scholar 

  14. Patwardhan SV, Clarson SJ (2002) Silicification and biosilicification part 4. Effect of template size on the formation of silica. J Inorg Organomet Polym 12(3–4):109–116

    Article  CAS  Google Scholar 

  15. Patwardhan SV, Mukherjee N, Clarson SJ (2002) Effect of process parameters on the polymer mediated synthesis of silica at neutral pH. Silicon Chem 1(1):47–55

    Article  CAS  Google Scholar 

  16. Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550

    Article  CAS  Google Scholar 

  17. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York, Chap 3

    Google Scholar 

  18. Coradin T, Livage J (2001) Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf B, Biointerfaces 21:329–336

    Article  CAS  Google Scholar 

  19. Coradin T, Durupthy O, Livage J (2002) Interactions of amino-containing peptides with sodium silicate and colloidal silica: a biomimetic approach of silicification. Langmuir 18(6):2331–2336

    Article  CAS  Google Scholar 

  20. Tacke R (1999) Milestones in the biochemistry of silicon: from basic research to biotechnological applications. Angew Chem, Int Ed Engl 38(20):3015–3018

    Article  CAS  Google Scholar 

  21. Sullivan BE (1986) In: Silicon biochemistry. Wiley, Chichester, Chap 5

    Google Scholar 

  22. Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385(6618):688–689

    Article  CAS  Google Scholar 

  23. Mizutani T, Nagase H, Fujuwara N, Ogoshi H (1998) Silicic acid polymerization catalyzed by amines and polyamines. Bull Chem Soc Jpn 71:2017–2022

    Article  CAS  Google Scholar 

  24. Patwardhan SV, Clarson SJ (2002) Silicification and biosilicification: Part 1. Formation of silica structures utilizing a cationically charged synthetic polymer at neutral ph and under ambient conditions. Polym Bull 48:367–371

    Article  CAS  Google Scholar 

  25. Patwardhan SV, Durstock MF, Clarson SJ (2002) Silicification and biosilicification: Part 2. Silicification at pH 7 in the presence of a cationically charged polymer in solution and immobilized on substrates. In: Synthesis and Properties of Silicones and Silicone-Modified Materials. ACS Symposium Series, Vol 838, pp 366–374

    Chapter  Google Scholar 

  26. Patwardhan SV, Clarson SJ (2002) Silicification and biosilicification: Part 3. The role of synthetic polymers and polypeptides at neutral pH. Silicon Chem 1(3):207–214

    Article  CAS  Google Scholar 

  27. Patwardhan SV, Clarson SJ (2003) Silicification and biosilicification: Part 5. An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Mater Sci Eng C 23:495–499

    Google Scholar 

  28. Patwardhan SV, Clarson SJ (2003) Silicification and biosilicification: Part 6. Poly-L-histidine mediated synthesis of silica at neutral pH. J Inorg Organomet Polym 13(1):49–53

    Article  CAS  Google Scholar 

  29. Patwardhan SV, Mukherjee N, Clarson SJ (2001) Formation of fiber-like amorphous silica structures by externally applied shear. J Inorg Organomet Polym 11(2):117–121

    Article  CAS  Google Scholar 

  30. Patwardhan SV, Mukherjee N, Clarson SJ (2001) The use of poly-L-lysine to form novel silica morphologies and the role of polypeptides in biosilicification. J Inorg Organomet Polym 11(3):193–198

    Article  CAS  Google Scholar 

  31. Patwardhan SV, Maheshwari R, Mukherjee N, Kiick KL, Clarson SJ (2006) Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: an example of a polylysine macromolecular “switch”. Biomacromolecules 7(2):491–497

    Article  CAS  Google Scholar 

  32. Clarson SJ (2012) A personal commentary on biological and bioactive silicon systems. Silicon 4(1):89–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Srinivas Subramaniam (CME, UC) for help with the SEM analysis. The financial support for the work described in this chapter was kindly provided by DAGSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Clarson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clarson, S.J., Gallardo, K., Patwardhan, S.V., Grazulis, L. (2012). On the Interactions of Proteins with Silicon-Based Materials. In: Owen, M., Dvornic, P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3876-8_8

Download citation

Publish with us

Policies and ethics