Advertisement

Langmuir Monolayers of Siloxanes and Silsesquioxanes

  • Alan R. EskerEmail author
  • Hyuk Yu
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

Langmuir film formation at the air/water (A/W) interface by silicones has attracted research interest for more than sixty years. This chapter reviews the unique features of the surface pressure-area per repeat unit (Π-A) isotherm of polydimethylsiloxane (PDMS) and discusses the changes in surface viscoelastic properties determined by surface light scattering (SLS) associated with these features. The effects molar mass, end groups and non-methyl substituents have on the isotherm are also considered. This discussion is then extended to another class of surface-active silicon-containing materials, polyhedral oligomeric silsesquioxanes (POSSs). Trisilanolisobutyl-POSS and trisilanolcyclohexyl-POSS are discussed in terms of their Π-A isotherms and surface viscoelastic character and the review ends with a discussion of systems where POSS molecules are used as nanofillers within silicone monolayers.

Keywords

Langmuir films Surface pressure/area isotherms Surface viscoelasticity Polydimethylsiloxane (PDMS) Polyhedral oligomeric silsesquioxanes (POSS) PDMS/POSS mixtures 

Notes

Acknowledgements

The authors are grateful for financial support from the National Science Foundation (CHE-0239633) and the Virginia Tech Aspires Program and to Michael Owen from Dow Corning for providing the gel permeation chromatography data.

References

  1. 1.
    Clarson SJ, Semlyen JA (eds) (1993) Siloxane polymers. PTR Prentice Hall, Englewood Cliffs Google Scholar
  2. 2.
    Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD (eds) (2000) Silicones and silicone-modified materials. ACS symposium series, vol 729. Am Chem Soc, Washington Google Scholar
  3. 3.
    Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke ME (eds) (2003) Synthesis and properties of silicones and silicone-modified materials. ACS symposium series, vol 838. Am Chem Soc, Washington Google Scholar
  4. 4.
    Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke ME (eds) (2007) Science and technology of silicones and silicone-modified materials. ACS symposium series, vol 964. Am Chem Soc, Washington Google Scholar
  5. 5.
    Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke ME (eds) (2010) Advances in silicones and silicone-modified materials. ACS symposium series, vol 1051. Am Chem Soc, Washington Google Scholar
  6. 6.
    Owen MJ (1990) Siloxane surface activity. In: Ziegler JM, Fearon FWG (eds) Silicon-based polymer science: a comprehenseive resource. Advances in chemistry series, vol 224. Am Chem Soc, Washington Google Scholar
  7. 7.
    Owen MJ (1993) Surface chemistry and applications. In: Clarson SJ, Semlyen JA (eds) Siloxane polymers. Prentice Hall, Englewood Cliffs Google Scholar
  8. 8.
    Fox HW, Taylor PW, Zisman WA (1947) Polyorganosiloxanes—surface active properties. Ind Eng Chem 39:1401–1409. doi: 10.1021/ie50455a607 CrossRefGoogle Scholar
  9. 9.
    Esker AR (1996) Molecular architecture and monolayer dynamics at the air/water interface by surface light scattering, PhD thesis, University of Wisconsin, Madison, Wisconsin Google Scholar
  10. 10.
    Mann EK, Henon S, Langevin D, Meunier J (1992) Molecular layers of a polymer at the free-water surface—microscopy at the Brewster-angle. J Phys II (France) 2:1683–1704 CrossRefGoogle Scholar
  11. 11.
    Damaschun G (1962) Rontgenographische untersuchung der Struktur von silikongummi. Kolloid-Z Z Polymere 180:65–67. doi: 10.1007/BF01499486 CrossRefGoogle Scholar
  12. 12.
    Schilling FC, Gomez MA, Tonelli AE (1991) Solid-state NMR observations of the crystalline conformation of poly(dimethylsiloxane). Macromolecules 24:6552–6553. doi: 10.1021/ma00024a032 CrossRefGoogle Scholar
  13. 13.
    Noll W, Steinbach H, Sucker C (1963) Beitrage zur grenzflachen Chemie der Organopolysiloxanen. 1. Das Verhalten der Siloxankette bei der Spreitung von α-ω-trimethylsiloxy-dimethylpolysiloxanen. Ber. Bunsenges 67:407–415 Google Scholar
  14. 14.
    Noll W, Steinbach H, Sucker C (1965) Beitrage zur Grenzflächenchemie der Organopolysiloxane. II Das Spreitungsverhalten von dimethyl- und methylhydrogenpolysiloxanen in abhängigkeit vom pH-wert. Kolloid-Z Z Polymere 204:94–101. doi: 10.1007/BF01500384 CrossRefGoogle Scholar
  15. 15.
    Noll W, Steinbach H, Sucker C (1971) Monolayers of polyorganosiloxanes on water. J Polym Sci C Polym Symp 34:123–139. doi: 10.1002/polc.5070340114 CrossRefGoogle Scholar
  16. 16.
    Granick S (1985) Surface pressure of linear and cyclic poly(dimethylsiloxane) in the transition region. Macromolecules 18:1597–1602 CrossRefGoogle Scholar
  17. 17.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University, Ithaca Google Scholar
  18. 18.
    Stephen M, McCauley J (1973) Feynman graph expansion for tricritical exponents. Phys Lett A 44:89–90. doi: 10.1016/0375-9601(73)90799-8 CrossRefGoogle Scholar
  19. 19.
    Mann EK, Langevin D (1991) Poly(dimethylsiloxane) molecular layers at the surface of water and of aqueous surfactant solutions. Langmuir 7:1112–1117. doi: 10.1021/la00054a016 CrossRefGoogle Scholar
  20. 20.
    Runge FE, Yu H (1993) Thin-films of a binary system—poly(vinyl acetate) poly(dimethylsiloxane) layers at the air-water-interface. Langmuir 9:3191–3199. doi: 10.1021/la00035a071 CrossRefGoogle Scholar
  21. 21.
    Webster HF, Wightman JP (1991) Characterization of thin-films of poly(dimethylsiloxane) formed from surface-diffusion across defined polymer substrates. Langmuir 7:3099–3109. doi: 10.1021/la00060a033 CrossRefGoogle Scholar
  22. 22.
    Kim C, Gurau MC, Cremer PS, Yu H (2008) Chain conformation of poly(dimethyl siloxane) at the air/water interface by sum frequency generation. Langmuir 24:10155–10160. doi: 10.1021/la800349q CrossRefGoogle Scholar
  23. 23.
    Bernardini C, Stoyanov SD, Stuart MAC, Arnaudov LN, Leermakers FAM (2010) Polymers at the water/air interface, surface pressure isotherms, and molecularly detailed modeling. Langmuir 26:11850–11861. doi: 10.1021/la101003c CrossRefGoogle Scholar
  24. 24.
    Bernardini C, Stoyanov SD, Stuart MAC, Arnaudov LN, Leermakers FAM (2011) PMMA highlights the layering transition of PDMS in langmuir films. Langmuir 27:2501–2508. doi: 10.1021/la104285z CrossRefGoogle Scholar
  25. 25.
    Ogarev VA (1997) Monomolecular films of poly(dimethyl siloxane) at liquid surfaces. Colloid J 59:625–634 Google Scholar
  26. 26.
    Piwowar AM, Gardella JA (2008) Reflection-absorption Fourier transform infrared spectroscopic study of transferred films of poly(dimethylsiloxane) using the Langmuir–Blodgett technique. Macromolecules 41:2616–2619. doi: 10.1021/ma702893d CrossRefGoogle Scholar
  27. 27.
    Jarvis NL (1966) Surface viscosity of polydimethylsiloxane monolayers. J Phys Chem 70:3027–3033. doi: 10.1021/j100882a001 CrossRefGoogle Scholar
  28. 28.
    Garrett WD, Zisman WA (1970) Damping of capillary waves on water by monomolecular films of linear polyorganosiloxanes. J Phys Chem 74:1796–1805. doi: 10.1021/j100703a023 CrossRefGoogle Scholar
  29. 29.
    Hård S, Neuman RD (1987) Viscoelasticity of monomolecular films: a laser light-scattering study. J Colloid Interface Sci 120:15–29. doi: 10.1016/0021-9797(87)90319-5 CrossRefGoogle Scholar
  30. 30.
    Miller ED (1994) 2-Dimensional and bulk viscoelastic properties of poly(dimethylsiloxane), PhD Thesis, University of Wisconsin–Madison, Wisconsin Google Scholar
  31. 31.
    Esker AR, Kim C, Yu H (2007) Polymer monolayer dynamics. Adv Polym Sci 209:59–110. doi: 10.1007/12_2007_113 Google Scholar
  32. 32.
    Braslau A, Pershan PS, Swislow G, Ocko BM, Als-Nielsen J (1988) Capillary waves on the surface of simple liquids measured by x-ray reflectivity. Phys Rev A 38:2457–2470. doi: 10.1103/PhysRevA.38.2457 CrossRefGoogle Scholar
  33. 33.
    Lucassen-Reynders EH, Lucassen J (1970) Properties of capillary waves. Adv Colloid Interface Sci 2:347–395. doi: 10.1016/0001-8686(70)80001-X CrossRefGoogle Scholar
  34. 34.
    Langevin D (1981) Light-scattering study of monolayer viscoelasticity. J Colloid Interface Sci 80:412–475. doi: 10.1016/0021-9797(81)90200-9 CrossRefGoogle Scholar
  35. 35.
    Esker AR, Zhang LH, Sauer BB, Lee W, Yu H (2000) Dilational viscoelastic behaviors of homopolymer monolayers: surface light scattering analysis. Colloids Surf A 171:131–148. doi: 10.1016/S0927-7757(99)00564-6 CrossRefGoogle Scholar
  36. 36.
    Thomson W (1871) The influence of wind on waves in water supposed frictionless. Philos Mag 42:368–374 Google Scholar
  37. 37.
    Stokes GG (1849) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Cambridge Philos Soc Trans 8:287–319 Google Scholar
  38. 38.
    Dorrestein RR (1951) General linearized theory of the effect of surface films on water ripples. I. Koninkl Ned Akad Wetenshap Proc B 54:260–272 Google Scholar
  39. 39.
    Dorrestein RR (1951) General linearized theory of the effect of surface films on water ripples, II. Koninkl Ned Akad Wetenshap Proc B 54:350–356 Google Scholar
  40. 40.
    Esker AR, Zhang LH, Olsen CE, No K, Yu H (1999) Static and dynamic properties of calixarene monolayers at the air/water interface. 1. pH Effects with p-dioctadecanoylcalix[4] arene. Langmuir 15:1716–1724. doi: 10.1021/la970016b CrossRefGoogle Scholar
  41. 41.
    Reynolds O (1880) On the effect of oil in destroying waves on the surface of water. Br Ass Rep 50:489–490 Google Scholar
  42. 42.
    Yin W, Xie Q, Deng J, Goff JD, Vadala TP, Riffle JS, Esker AR (2010) Viscoelastic behavior of PDMS stabilized magnetite magnetic nanoparticle complexes. In: Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke ME (eds) Advances in silicones and silicone-modified materials. ACS symposium series, vol 1051. Am Chem Soc, Washington CrossRefGoogle Scholar
  43. 43.
    Le Guillou JC, Zinn-Justin J (1977) Critical exponents for the n-vector model in three dimensions from field theory. Phys Rev Lett 39:95–98. doi: 10.1103/PhysRevLett.39.95 CrossRefGoogle Scholar
  44. 44.
    Le Guillou JC, Zinn-Justin J (1980) Critical exponents from field theory. Phys Rev B, Condens Matter 21:3976–3998. doi: 10.1103/PhysRevB.21.3976 CrossRefGoogle Scholar
  45. 45.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University, Ithaca, p. 45 Google Scholar
  46. 46.
    Duplantier B, Saleur H (1987) Exact tricritical exponents for polymers at the THETA point in two dimensions. Phys Rev Lett 59:539–542. doi: 10.1103/PhysRevLett.59.539 CrossRefGoogle Scholar
  47. 47.
    Granick S, Clarson SJ, Formoy TR, Semlyen JA (1985) Studies of cyclic and linear poly(dimethylsiloxanes): 18. Surface pressures of the monolayers in the plateau region. Polymer 26:925–929. doi: 10.1016/0032-3861(85)90139-9 CrossRefGoogle Scholar
  48. 48.
    Kawaguchi M, Sauer BB, Yu H (1989) Polymeric monolayer dynamics at the air/water interface by surface light scattering. Macromolecules 22:1735–1743. doi: 10.1021/ma00194a039 CrossRefGoogle Scholar
  49. 49.
    Lee KY, Chou T, Chung DS, Mazur E (1993) Direct measurement of the spatial damping of capillary waves at liquid-vapor interfaces. J Phys Chem 97:12876–12878. doi: 10.1021/j100151a039 CrossRefGoogle Scholar
  50. 50.
    Wang Q, Feder E, Mazur E (1994) Capillary wave damping in heterogeneous monolayers. J Phys Chem 98:12720–12726. doi: 10.1021/j100099a041 CrossRefGoogle Scholar
  51. 51.
    Newing MJ (1950) The surface properties of polar silicones. Trans Faraday Soc 46:755–762. doi: 10.1039/TF9504600755 CrossRefGoogle Scholar
  52. 52.
    Lenk TJ, Lee DHT, Koberstein JT (1994) End group effects on monolayers of functionally-terminated poly(dimethylsiloxanes) at the air–water interface. Langmuir 10:1857–1864. doi: 10.1021/la00018a040 CrossRefGoogle Scholar
  53. 53.
    Wegner G (1993) Control of molecular and supramolecular architecture of polymers, polymer systems and nanocomposites. Mol Cryst Liq Cryst 234:283–316 Google Scholar
  54. 54.
    Noll W, Steinbach H, Sucker C (1970) Beitr age zur Grenzflächenchemie der Polyorganosiloxane. III, Der Einflußvon Substituenten auf das Spreitungsverhalten kettenpolymerer Siloxane. Kolloid-Z Z Polymere 236:1–19. doi: 10.1007/BF02084508 CrossRefGoogle Scholar
  55. 55.
    Bernett MK, Zisman WA (1971) Properties of poly[methyl(n-alkyl)siloxane] and poly[methyl(3,3,3-trifluoropropyl)siloxane] monolayers adsorbed on water. Macromolecules 4:47–53. doi: 10.1021/ma60019a011 CrossRefGoogle Scholar
  56. 56.
    Miller KJ, Grebowicz J, Wesson JP, Wunderlich B (1990) Conformations of poly(diethylsiloxane) and its mesophase transitions. Macromolecules 23:849–856. doi: 10.1021/ma00205a026 CrossRefGoogle Scholar
  57. 57.
    Kalachev AA, Litvinov VM, Wegner G (1991) Polysiloxanes at the air-water-interface and after transfer onto substrates. Makromol Chem, Macromol Symp 46:365–370. doi: 10.1002/masy.19910460152 CrossRefGoogle Scholar
  58. 58.
    Baney RH, Itoh M, Skakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430. doi: 10.1021/cr00037a012 CrossRefGoogle Scholar
  59. 59.
    Hanssen RWJM, van Santen RA, Abbenhuis HCL (2004) The dynamic status quo of polyhedral silsesquioxane coordination chemistry. Eur J Inorg Chem 675–683. doi: 10.1002/ejic.200300412
  60. 60.
    Ogarev VA (2001) Silsesquioxane films on water surface. Colloid J 63:445–452. doi: 10.1023/A:1016753805266 CrossRefGoogle Scholar
  61. 61.
    Hartmann-Thompson C (ed) (2011) Applications of polyhedral silsesquioxanes. Advances in silicon science, vol 3. Springer, Dordrecht Google Scholar
  62. 62.
    Joshi M, Butola BS (2004) Polymeric nanocomposites—polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J Macromol Sci, Polym Rev C44:389–410. doi: 10.1081/MC-200033687 CrossRefGoogle Scholar
  63. 63.
    Gnansekaran D, Madhavan K, Reddy BSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS) POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464 Google Scholar
  64. 64.
    Zhao JQ, Fu Y, Liu SM (2008) Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polymers and Polymer Composites 16:483–500 Google Scholar
  65. 65.
    Li GZ, Wang LC, Ni HL, Pittman CU (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154. doi: 10.1023/A:1015287910502 CrossRefGoogle Scholar
  66. 66.
    Quadrelli EA, Basset JM (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254:707–728. doi: 10.1016/j.ccr.2009.09.031 CrossRefGoogle Scholar
  67. 67.
    Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral silsesquioxane (POSS)-polymers oligomeric. Curr Opin Solid State Mater Sci 8:21–29. doi: 10.1016/j.cossms.2004.03.002 CrossRefGoogle Scholar
  68. 68.
    Tuteja A, Choi W, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622. doi: 10.1126/science.1148326 CrossRefGoogle Scholar
  69. 69.
    Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polymer Rev 49:25–63. doi: 10.1080/15583720802656237 CrossRefGoogle Scholar
  70. 70.
    Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68:356–358. doi: 10.1021/ja01207a003 CrossRefGoogle Scholar
  71. 71.
    Knischka R, Dietsche F, Hanselmann R, Frey H, Mulhaupt R (1999) Silsesquioxane-based amphiphiles. Langmuir 14:4752–4756. doi: 10.1021/la981594a CrossRefGoogle Scholar
  72. 72.
    Yu XF, Zhong S, Li XP, Tu YF, Yang SG, Van Horn RM, Ni CY, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD (2010) A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J Am Chem Soc 132:16741–16744. doi: 10.1021/ja1078305 CrossRefGoogle Scholar
  73. 73.
    Deng JJ, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water interface. J Am Chem Soc 124:15194–15195. doi: 10.1021/ja027860v CrossRefGoogle Scholar
  74. 74.
    Deng JJ, Hottle JR, Polidan JT, Kim HJ, Farmer-Creely CE, Viers BD, Esker AR (2004) Polyhedral oligomeric silsesquioxane amphiphiles: isotherm and brewster angle microscopy studies of trisilanolisobutyl-POSS at the air/water interface. Langmuir 20:109–115. doi: 10.1021/la035240h CrossRefGoogle Scholar
  75. 75.
    Deng JJ, Farmer-Creely CE, Viers BD, Esker AR (2004) Unique rodlike surface morphologies in trisilanolcyclohexyl polyhedral oligomeric silsesquioxane films. Langmuir 20:2527–2530. doi: 10.1021/la035992b CrossRefGoogle Scholar
  76. 76.
    Deng JJ, Viers BD, Esker AR, Anseth JW, Fuller GG (2005) Phase behavior and viscoelastic properties of trisilanolcyclohexyl-POSS at the air/water interface. Langmuir 21:2375–2385. doi: 10.1021/la047568w CrossRefGoogle Scholar
  77. 77.
    Mitsuishi M, Zhao F, Kim Y, Watanabe A, Miyashita T (2008) Preparation of ultrathin silsesquioxane nanofilms via polymer Langmuir–Blodgett films. Chem Mater 20:4310–4316. doi: 10.1021/cm800067j CrossRefGoogle Scholar
  78. 78.
    Kucuk AC, Matsui J, Miyashita T (2011) Langmuir–Blodgett films composed of amphiphilic double-decker shaped polyhedral oligomeric silsesquioxanes. J Colloid Interface Sci 355:106–114. doi: 10.1016/j.jcis.2010.12.033 CrossRefGoogle Scholar
  79. 79.
    Kucuk AC, Matsui J, Miyashita T (2011) Effects of hydrogen bonding on the monolayer properties of amphiphilic double-decker-shaped polyhedral silsesquioxanes. Langmuir 27:6381–6388. doi: 10.1021/la200604w CrossRefGoogle Scholar
  80. 80.
    Lee W, Ni SL, Deng JJ, Kim BS, Satija SK, Mather PT, Esker AR (2007) Telechelic poly(ethylene glycol)-POSS amphiphiles at the air/water interface. Macromolecules 40:682–688. doi: 10.1021/ma0618171 CrossRefGoogle Scholar
  81. 81.
    Yin W, Deng JJ, Esker AR (2009) Surface rheology of trisilanolisobutyl-POSS at the air/water interface. Langmuir 25:7181–7184. doi: 10.1021/la900397r CrossRefGoogle Scholar
  82. 82.
    Ferguson-McPherson MK, Low ER, Esker AR, Morris JR (2005) Sorption of dimethyl methylphosphonate within Langmuir–Blodgett films of trisilanolphenyl polyhedral oligomeric silsesquioxane. J Phys Chem 109:18914–18920. doi: 10.1021/jp0521959 CrossRefGoogle Scholar
  83. 83.
    Ferguson-McPherson MK, Low ER, Esker AR, Morris JR (2005) Corner capping of silsesquioxane cages by chemical warfare agent simulants. Langmuir 21:11226–11231. doi: 10.1021/la051477x CrossRefGoogle Scholar
  84. 84.
    Paul R, Esker AR (2006) Pattern formation in dewetting poly(tert-butyl acrylate)/polyhedral oligomeric silsesquioxane (POSS) bilayer films. Langmuir 22:6734–6738. doi: 10.1021/la060973y CrossRefGoogle Scholar
  85. 85.
    Paul R, Karabiyik U, Swift MC, Hottle JR, Esker AR (2008) Morphological evolution in dewetting polystyrene/polyhedral oligomeric silsesquioxane thin film bilayers. Langmuir 24:4676–4684. doi: 10.1021/la701625g CrossRefGoogle Scholar
  86. 86.
    Paul R, Karabiyik U, Swift MC, Esker AR (2008) Phase separation in poly(tert-butyl acrylate)/polyhedral oligomeric silsesquioxane (POSS) thin film blends. Langmuir 24:5079–5090. doi: 10.1021/la702065z CrossRefGoogle Scholar
  87. 87.
    Huffer SM, Karabiyik U, Uzarski JR, Esker AR (2010) Ion effects on trisilanolphenyl-POSS as an adhesion promoter. In: Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke ME (eds) Advances in silicones and silicone-modified materials. ACS symposium series, vol 1051. Am Chem Soc, Washington CrossRefGoogle Scholar
  88. 88.
    Hottle JR, Kim HJ, Deng JJ, Farmer-Creely CE, Viers BD, Esker AR (2004) Blends of amphiphilic PDMS and trisilanolisobutyl-POSS at the air/water interface. Macromolecules 37:4900–4908. doi: 10.1021/ma049511m CrossRefGoogle Scholar
  89. 89.
    Hottle JR, Deng JJ, Kim HJ, Farmer-Creely CE, Viers BD, Esker AR (2005) Blends of amphiphilic poly(dimethylsiloxane) and nonamphiphilic octaisobutyl-POSS at the air/water interface. Langmuir 21:2250–2259. doi: 10.1021/la047565j CrossRefGoogle Scholar
  90. 90.
    Kim HJ, Deng JJ, Lalli JH, Riffle JS, Viers BD, Esker AR (2005) Blends of amphiphilic trisilanolisobutyl-POSS and phosphine oxide substituted poly(dimethylsiloxane) at the air/water interface. Langmuir 21:1908–1916. doi: 10.1021/la0475674 CrossRefGoogle Scholar
  91. 91.
    Kim HJ, Hoyt Lalli J, Riffle JS, Viers BD, Esker AR (2007) Brewster angle microscopy studies of aggregate formation in blends of amphiphilic trisilanolisobutyl-POSS and nitrile substituted poly(dimethylsiloxane) at the air/water interface. In: Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke ME (eds) Science and technology of silicones and silicone-modified materials. ACS symposium series, vol 964. Am Chem Soc, Washington CrossRefGoogle Scholar
  92. 92.
    Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111:1741–1748. doi: 10.1021/ja00187a028 CrossRefGoogle Scholar
  93. 93.
    Fang JY, Dennin M, Knobler CM, Godovsky YK, Makarova NN, Yokoyama H (1997) Structures of collapsed polysiloxane monolayers investigated by scanning force microscopy. J Phys Chem B 101:3147–3154. doi: 10.1021/jp9633198 CrossRefGoogle Scholar
  94. 94.
    Buzin AI, Sautter E, Godovsky YK, Makarova NN, Pechhold W (1998) Influence of molecular weight on stepwise collapse of Langmuir monolayers of cyclolinear polyorganosiloxanes. Colloid Polym Sci 276:1078–1087. doi: 10.1007/s003960050349 CrossRefGoogle Scholar
  95. 95.
    Buzin AI, Godovsky YK, Makarova NN, Fang JY, Wang X, Knobler CM (1999) Stepwise collapse of monolayers of cyclolinear poly(organosiloxane)s at the air/water interface: a Brewster-angle microscopy and scanning force microscopy study. J Phys Chem B 103:11372–11381. doi: 10.1021/jp992708+ CrossRefGoogle Scholar
  96. 96.
    Jensen TR, Kjaer K, Brezesinski G, Ruiz-Garcia J, Mohwald H, Makarova NN, Godovsky YK (2003) Successive multilayer formation of cyclolinear polyorganosiloxanes floating at the air-water interface. A synchrotron X-ray reflectivity investigation. Macromolecules 36:7236–7243. doi: 10.1021/ma034473c CrossRefGoogle Scholar
  97. 97.
    Godovsky YK, Brezesinski G, Ruiz-Garcia J, Mohwald H, Jensen TR, Kjaer K, Makarova NN (2004) Stepwise collapse of cyclolinear polysiloxane langmuir monolayers studied by Brewster angle microscopy and grazing incidence X-ray diffraction. Macromolecules 37:4872–4881. doi: 10.1021/ma049631u CrossRefGoogle Scholar
  98. 98.
    Brooks CF, Fuller GG, Frank CW, Robertson CR (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15:2450–2459. doi: 10.1021/la980465r CrossRefGoogle Scholar
  99. 99.
    Naumann CA, Brooks CF, Fuller GG, Knoll W, Frank CW (1999) Viscoelastic properties of lipopolymers at the air-water interface: a combined interfacial stress rheometer and film balance study. Langmuir 15:7752–7761. doi: 10.1021/la990261q CrossRefGoogle Scholar
  100. 100.
    Sano M, Kawaguchi M, Chen YL, Skarlupka RJ, Chang T, Zografi G, Yu H (1986) Technique of surface-wave scattering and calibration with simple liquids. Rev Sci Instrum 57:1158–1162. doi: 10.1063/1.1138620 CrossRefGoogle Scholar
  101. 101.
    Hård S, Neuman RD (1981) Laser light-scattering measurements of viscoelastic monomolecular films. Sci J Colloid Interface 83:315–334. doi: 10.1016/0021-9797(81)90328-3 CrossRefGoogle Scholar
  102. 102.
    Hård S, Hamnerius Y, Nilsson O (1976) Laser heterodyne apparatus for measurements of liquid surface properties—theory and experiments. J Appl Phys 47:2433–2442. doi: 10.1063/1.32295 CrossRefGoogle Scholar
  103. 103.
    Langevin D (1992) Simple liquids. In: Langevin D (ed) Light scattering by liquid surfaces and complementary techniques. Marcel Dekker, New York Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Chemistry (0212)Virginia TechBlacksburgUSA
  2. 2.Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations