Advertisement

The Design of Non-wetting Surfaces with FluoroPOSS

  • Anish TutejaEmail author
  • Joseph M. MabryEmail author
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

Functional non-wetting materials are of interest for a diverse array of applications. Factors contributing to the wettability of a surface include surface free energy and surface roughness. More recently, surface texture has been found to be of equal or greater importance, especially for surface that repel low surface tension liquids, such as short-chain hydrocarbons and alcohols. This chapter describes recent work in the design and production of wetting-resistant surfaces utilizing fluorinated Polyhedral Oligomeric SilSesquioxanes (FluoroPOSS), as well as the development of dimensionless design parameters to aid in the preparation of such surfaces. FluoroPOSS compounds are organic/inorganic hybrid materials that exhibit low surface energy attributes, as well as an octahedral structure, which results in useful migration and aggregation characteristics when blended into polymer matrices. Wetting-resistant surfaces containing FluoroPOSS are produced either by techniques that specifically incorporate all three critical parameters for wetting-resistance, or by the modification of substrates already possessing the desired surface texture.

Keywords

Fluorinated polyhedral oligomeric silsesquioxanes (FluoroPOSS) Surface texture Superhydrophobicity Superoleophobicity Super-repellent Wetting-resistant Design parameters 

Notes

Acknowledgements

We thank Dr. Charles Y.-C. Lee and the Air Force Office of Scientific Research (AFOSR) for financial support under grants FA9550-10-1-0523 and LRIR-92PL0COR. We also thank the Air Force Research Laboratory, Propulsion Directorate for their financial support. We also thank Prof. Robert E. Cohen, Prof. Gareth H. McKinley, and Prof. Wonjae Choi for their contributions to this work and helpful conversations.

References

  1. 1.
    Young T (1805) An essay on the cohesion of luids. Philos Trans R Soc Lond 95:65 CrossRefGoogle Scholar
  2. 2.
    Shuttleworth R, Bailey GLJ (1948) The spreading of a liquid over a rough solid. Discuss Faraday Soc 3:16–22. doi: 10.1039/DF9480300016 CrossRefGoogle Scholar
  3. 3.
    Chen W, Fadeev AY, Hsieh MC, Oner D, Youngblood J, McCarthy TJ (1999) Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir 15(10):3395–3399 CrossRefGoogle Scholar
  4. 4.
    Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290(5499):2130–2133. doi: 10.1126/science.290.5499.2130 CrossRefGoogle Scholar
  5. 5.
    Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15(13):4321–4323 CrossRefGoogle Scholar
  6. 6.
    Tuteja A, Choi W, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622. doi: 10.1126/science.1148326 CrossRefGoogle Scholar
  7. 7.
    Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8 CrossRefGoogle Scholar
  8. 8.
    Herminghaus S (2000) Roughness-induced non-wetting. Europhys Lett 52(2):165–170 CrossRefGoogle Scholar
  9. 9.
    Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677 CrossRefGoogle Scholar
  10. 10.
    Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424(6949):663 CrossRefGoogle Scholar
  11. 11.
    Hu DL, Bush JWM (2005) Meniscus-climbing insects. Nature 437(7059):733 CrossRefGoogle Scholar
  12. 12.
    Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432(7013):36 CrossRefGoogle Scholar
  13. 13.
    Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685 CrossRefGoogle Scholar
  14. 14.
    Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22(5):339–360 CrossRefGoogle Scholar
  15. 15.
    Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33 CrossRefGoogle Scholar
  16. 16.
    Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 77(3):213–225 CrossRefGoogle Scholar
  17. 17.
    Choi W, Tuteja A, Mabry JM, Cohen RE, McKinley GH (2009) A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J Colloid Interface Sci 339(1):208–216 CrossRefGoogle Scholar
  18. 18.
    POSS is a registered trademark of Hybrid Plastics Inc., Hattiesburg, MS 39401 Google Scholar
  19. 19.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. In: Supramolecular polymers polymeric betains oligomers. Adv Polym Sci, vol 201. Springer, Berlin, pp 225–296. doi: 10.1007/12_077 CrossRefGoogle Scholar
  20. 20.
    Lickiss PD, Rataboul F (2008) Fully condensed polyhedral oligosilsesquioxanes (POSS): from synthesis to application. In: Anthony FH, Mark JF (eds) Advances in organometallic chemistry, vol 57. Academic Press, San Diego, pp 1–116. Chapter 1 Google Scholar
  21. 21.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173. doi: 10.1021/cr900201r CrossRefGoogle Scholar
  22. 22.
    Iacono ST, Vij A, Grabow W, Smith JDW, Mabry JM (2007) Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures. Chem Commun 47:4992–4994 CrossRefGoogle Scholar
  23. 23.
    Koh K, Sugiyama S, Morinaga T, Ohno K, Tsujii Y, Fukuda T, Yamahiro M, Iijima T, Oikawa H, Watanabe K, Miyashita T (2005) Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate). Macromolecules 38(4):1264–1270. doi: 10.1021/ma047636l CrossRefGoogle Scholar
  24. 24.
    Mabry JM, Vij A, Iacono ST, Viers BD (2008) Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew Chem, Int Ed Engl 47(22):4137–4140 CrossRefGoogle Scholar
  25. 25.
    Xu J, Li X, Cho CM, Toh CL, Shen L, Mya KY, Lu X, He C (2009) Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends. J Mater Chem 19(27):4740–4745 CrossRefGoogle Scholar
  26. 26.
    Anderson SE, Bodzin DJ, Haddad TS, Boatz JA, Mabry JM, Mitchell C, Bowers MT (2008) Structural investigation of encapsulated fluoride in polyhedral oligomeric silsesquioxane cages using ion mobility mass spectrometry and molecular mechanics. Chem Mater 20(13):4299–4309. doi: 10.1021/cm800058z CrossRefGoogle Scholar
  27. 27.
    Zeng F-L et al. (2009) Molecular simulations of the miscibility in binary mixtures of PVDF and POSS compounds. Modelling and Simulation in. Mater Sci Eng 17(7):075002. http://www.scientific.net/AMR.138.107 Google Scholar
  28. 28.
    Losada M, Mackie K, Osborne JH, Chaudhuri S (2010) Understanding nanoscale wetting using dynamic local contact angle method. In: Trasatti SPIJ (ed) Light weight metal corrosion and modeling for corrosion prevention, Life prediction and assessment. Advanced Materials Research, vol 138, pp 107–116. http://www.scientific.net/AMR.138.107 Google Scholar
  29. 29.
    Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE (2008) Robust omniphobic surfaces. Proc Natl Acad Sci USA 105(47):18200–18205. doi: 10.1073/pnas.0804872105 CrossRefGoogle Scholar
  30. 30.
    Chhatre SS, Choi W, Tuteja A, Park K-C, Mabry JM, McKinley GH, Cohen RE (2009) Scale dependence of omniphobic mesh surfaces. Langmuir 26(6):4027–4035. doi: 10.1021/la903489r CrossRefGoogle Scholar
  31. 31.
    Chhatre SS, Tuteja A, Choi W, Revaux A, Smith D, Mabry JM, McKinley GH, Cohen RE (2009) Thermal annealing treatment to achieve switchable and reversible oleophobicity on fabrics. Langmuir 25(23):13625–13632. doi: 10.1021/la901997s CrossRefGoogle Scholar
  32. 32.
    Choi W, Tuteja A, Chhatre S, Mabry JM, Cohen RE, McKinley GH (2009) Fabrics with tunable oleophobicity. Adv Mater 21(21):2190–2195. doi: 10.1002/adma.200802502 CrossRefGoogle Scholar
  33. 33.
    Vilcnik A, Jerman I, Såurca Vuk A, Kozåelj M, Orel B, TomsåicåB, SimoncåicåB, KovacåJ (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol–gel coatings for cotton fabrics. Langmuir 25(10):5869–5880. doi: 10.1021/la803742c CrossRefGoogle Scholar
  34. 34.
    Meuler AJ, Smith JD, Varanasi KK, Mabry JM, McKinley GH, Cohen RE (2010) Relationships between water wettability and ice adhesion. ACS Appl Mater Interfaces 2(11):3100–3110. doi: 10.1021/am1006035 CrossRefGoogle Scholar
  35. 35.
    Chhatre SS, Guardado JO, Moore BM, Haddad TS, Mabry JM, McKinley GH, Cohen RE (2010) Fluoroalkylated silicon-containing surfaces, an estimation of solid-surface energy. ACS Appl Mater Interfaces 2(12):3544–3554. doi: 10.1021/am100729j CrossRefGoogle Scholar
  36. 36.
    Iacono ST, Budy SM, Mabry JM, Smith DW (2010) Polyhedral oligomeric silsesquioxane-functionalized perfluorocyclobutyl aryl ether polymers. In: Advances in silicones and silicone-modified materials. ACS symposium series, vol 1051. Am Chem Soc, Washington, pp 195–209. doi: 10.1021/bk-2010-1051.ch016 CrossRefGoogle Scholar
  37. 37.
    Iacono ST, Budy SM, Mabry JM, Smith DW Jr. (2007) Synthesis, characterization, and properties of chain terminated polyhedral oligomeric silsesquioxane-functionalized perfluorocyclobutyl aryl ether copolymers. Polymer 48(16):4637–4645. doi: 10.1016/j.polymer.2007.06.022 CrossRefGoogle Scholar
  38. 38.
    Iacono ST, Budy SM, Smith DW, Mabry JM (2010) Preparation of composite fluoropolymers with enhanced dewetting using fluorinated silsesquioxanes as drop-in modifiers. J Mater Chem 20(15):2979–2984 CrossRefGoogle Scholar
  39. 39.
    Iacono ST, Peloquin AJ, Dennis W, Smith J, Mabry JM (2011) Fluorinated polyhedral oligosilsesquioxane surfaces and superhydrophobicity. In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, 1st edn. Springer, Berlin, p 392 Google Scholar
  40. 40.
    Mabry Joseph M, Vij A, Viers Brent D, Grabow Wade W, Marchant D, Iacono Scott T, Ruth Patrick N, Vij I (2007) Hydrophobic silsesquioxane nanoparticles and nanocomposite surfaces. In: Science and technology of silicones and silicone-modified materials. ACS symposium series, vol 964. Am Chem Soc, Washington, pp 290–300. doi: 10.1021/bk-2007-0964.ch018 CrossRefGoogle Scholar
  41. 41.
    Srinivasan S, Chhatre SS, Mabry JM, Cohen RE, McKinley GH (2011) Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52(14):3209–3218. doi: 10.1016/j.polymer.2011.05.008 CrossRefGoogle Scholar
  42. 42.
    Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22(43):4814–4818. doi: 10.1002/adma.201001898 CrossRefGoogle Scholar
  43. 43.
    Dai L, Yang C, Xu Y, Deng Y, Chen J, Galy J, Gérard J-F (2010) Preparation of novel methyl methacrylate/fluorinated silsesquioxane copolymer film with low surface energy. Sci Chin Chem 53(9):2000–2005. doi: 10.1007/s11426-010-4070-4 CrossRefGoogle Scholar
  44. 44.
    Dodiuk H, Rios PF, Dotan A, Kenig S (2007) Hydrophobic and self-cleaning coatings. Polym Adv Technol 18(9):746–750. doi: 10.1002/pat.957 CrossRefGoogle Scholar
  45. 45.
    Kannan AG, Choudhury NR, Dutta N (2009) Fluoro-silsesquioxane-urethane hybrid for thin film applications. ACS Appl Mater Interfaces 1(2):336–347. doi: 10.1021/am800056p CrossRefGoogle Scholar
  46. 46.
    Rios PF, Dodiuk H, Kenig S, McCarthy S, Dotan A (2007) Transparent ultra-hydrophobic surfaces. J Adhes Sci Technol 21(5–6):399–408. doi: 10.1163/156856107780474975 CrossRefGoogle Scholar
  47. 47.
    Gao Y, He C, Huang Y, Qing F-L (2010) Novel water and oil repellent POSS-based organic/inorganic nanomaterial: Preparation, characterization and application to cotton fabrics. Polymer 51(25):5997–6004. doi: 10.1016/j.polymer.2010.10.020 CrossRefGoogle Scholar
  48. 48.
    Iacono ST, Budy SM, Mabry JM, Smith DW (2007) Synthesis, characterization, and surface morphology of pendant polyhedral oligomeric silsesquioxane perfluorocyclobutyl aryl ether copolymers. Macromolecules 40(26):9517–9522. doi: 10.1021/ma071732f CrossRefGoogle Scholar
  49. 49.
    Sawada H, Yoshioka H, Ohashi R, Kawase T (2002) Synthesis and properties of novel fluoroalkyl end-capped oligomers containing silsesquioxane segments. J Appl Polym Sci 86(14):3486–3493. doi: 10.1002/app.10859. http://www.scientific.net/AMR.148-149.1212 CrossRefGoogle Scholar
  50. 50.
    Song L, Peng S, Shu Y (2011) Preparation of a novel functionated POSS nano-particle bearing the perfluoro aryl ether dendron. In: Liu XHJZYHJT (ed) Manufacturing processes and systems, Parts 1–2. Advanced materials research, vol 148–149, pp 1212–1216. doi: 10.4028. http://www.scientific.net/AMR.148-149.1212 Google Scholar
  51. 51.
    Vasilopoulou M et al. (2005) Characterization of various low- k dielectrics for possible use in applications at temperatures below 160°C. J Phys Conf Ser 10(1):218 CrossRefGoogle Scholar
  52. 52.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994 CrossRefGoogle Scholar
  53. 53.
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551 CrossRefGoogle Scholar
  54. 54.
    Callies M, Quéré D (2005) On water repellency. Soft Matter 1(1):55–61 CrossRefGoogle Scholar
  55. 55.
    Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19(20):8343–8348 CrossRefGoogle Scholar
  56. 56.
    Nosonovsky M (2007) Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23(6):3157–3161 CrossRefGoogle Scholar
  57. 57.
    Quéré D (2002) Rough ideas on wetting. Physica A, Stat Mech Appl 313(1–2):32–46 CrossRefGoogle Scholar
  58. 58.
    Johnson RE, Dettre RH (1964) Contact angle hysteresis. In: Contact angle, wettability and adhesion. ACS advances in chemistry series, vol 43. Am Chem Soc, Washington Google Scholar
  59. 59.
    Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19(4):1249–1253 CrossRefGoogle Scholar
  60. 60.
    Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460 CrossRefGoogle Scholar
  61. 61.
    Ahuja A, Taylor JA, Lifton V, Sidorenko AA, Salamon TR, Lobaton EJ, Kolodner P, Krupenkin TN (2008) Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 24(1):9–14. doi: 10.1021/la702327z CrossRefGoogle Scholar
  62. 62.
    Cao L, Price TP, Weiss M, Gao D (2008) Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24(5):1640–1643. doi: 10.1021/la703401f CrossRefGoogle Scholar
  63. 63.
    Leng B, Shao Z, de With G, Ming W (2009) Superoleophobic cotton textiles. Langmuir 25(4):2456–2460. doi: 10.1021/la8031144 CrossRefGoogle Scholar
  64. 64.
    Marmur A (2008) From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 24(14):7573–7579. doi: 10.1021/la800304r CrossRefGoogle Scholar
  65. 65.
    Armarego WLF, Chai CLL (2009) Purification of laboratory chemicals, 6th edn. Butterworth-Heinemann, Oxford. doi: 10.1016/b978-1-85617-567-8.50004-4 Google Scholar
  66. 66.
    Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid construction. In: Contact angle, wettability and adhesion. ACS advances in chemistry series, vol 43. Am Chem Soc, Washington Google Scholar
  67. 67.
    Tuteja A, Choi W, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622 CrossRefGoogle Scholar
  68. 68.
    Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE (2008) Engineering robust omniphobic surfaces. Proc Natl Acad Sci USA 105(47):18200–18205 CrossRefGoogle Scholar

Copyright information

© US Government 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Space and Missile Propulsion DivisionAir Force Research LaboratoryEdwards AFBUSA

Personalised recommendations