Advertisement

Using Surface-Attached Organosilanes to Control and Understand Hydrophobicity and Superhydrophobicity

  • Joseph W. Krumpfer
  • Lichao Gao
  • Alexander Y. Fadeev
  • Thomas J. McCarthyEmail author
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

The preparative aspects of three different, but overlapping research programs are reviewed. Silane monolayers prepared using monofunctional silanes and random covalent attachment reactions are described that implicate molecular topography and flexibility as important issues in wetting. Surfaces prepared using multifunctional methylchlorosilanes are discussed. Samples similar to those prepared in the 1940s are shown to be the most hydrophobic (superhydrophobic) ever prepared. The chemical reactions of linear trimethylsilyl-terminated polydimethylsiloxanes with the surface of oxidized silicon are described. These reactions lead to covalently attached polydimethylsiloxane polymer chains and to hydrophobized inorganic surfaces. Linear silicones of this type (silicone oils) are generally not considered to be reactive with inorganic oxide surfaces.

Keywords

Silane monolayers from monofunctional silanes Contact angle hysteresis Superhydrophobicity Surface modifications by multifunctional methylchlorosilanes Hydrophobization of inorganic surfaces by covalent bonding of trimethylsilyl-terminated polydimethylsiloxanes 

Notes

Acknowledgements

We thank the Materials Research Science and Engineering Center (DMR-0213695) and Center for Hierarchical Manufacturing (CMMI-0531171) at the University of Massachusetts for support as well as 3M, Henkel, and Shocking Technologies for unrestricted funding. We also acknowledge the American Chemical Society for permission to reproduce figures.

References

  1. 1.
    Gao L, McCarthy TJ (2009) Langmuir 25:14105 CrossRefGoogle Scholar
  2. 2.
    Chen W, McCarthy TJ (1998) Macromolecules 31:3648 CrossRefGoogle Scholar
  3. 3.
    Plueddemann EP (1982) Silane coupling agents. Plenum, New York Google Scholar
  4. 4.
    Mittal KL (ed) (1992) Silanes and other coupling agents. VSP, Utrecht Google Scholar
  5. 5.
    Leyden DE (1986) Silanes, surfaces and interfaces. Gordon and Breach, New York Google Scholar
  6. 6.
    Maoz R, Sagiv J (1984) J Colloid Interface Sci 100:465 CrossRefGoogle Scholar
  7. 7.
    Maoz R, Sagiv J (1987) Langmuir 3:1034 CrossRefGoogle Scholar
  8. 8.
    Maoz R, Sagiv J (1987) Langmuir 3:1045 CrossRefGoogle Scholar
  9. 9.
    Wasserman SR, Tao Y-T, Whitesides GM (1989) Langmuir 5:1074 CrossRefGoogle Scholar
  10. 10.
    Fadeev AY, McCarthy TJ (1999) Langmuir 15:3759 CrossRefGoogle Scholar
  11. 11.
    Fadeev AY, McCarthy TJ (2000) Langmuir 16:7268 CrossRefGoogle Scholar
  12. 12.
    Horr TJ, Ralston J, Smart R (1995) Colloids Surf A, Physicochem Eng Asp 97:183 CrossRefGoogle Scholar
  13. 13.
    Korosi G, Kováts E (1981) Colloids Surf 2:315 CrossRefGoogle Scholar
  14. 14.
    Fadeev AY, Soboleva OA, Summ BD (1997) Colloid J 59:273 Google Scholar
  15. 15.
    Duchet J, Chabert B, Chapel JP, Jerard JF, Chovelon JM, Jaffrezic-Renault N (1997) Langmuir 13:2271 CrossRefGoogle Scholar
  16. 16.
    Park J-M, Andrade JD (1988) In: Andrade JD (ed) Polymer Surface Dynamics. Plenum Press, New York, pp 67–68 CrossRefGoogle Scholar
  17. 17.
    Park J-M, Kim JH (1994) J Colloid Interface Sci 168:103 CrossRefGoogle Scholar
  18. 18.
    Drelich J, Miller JD, Good RJ (1996) J Colloid Interface Sci 179:37 CrossRefGoogle Scholar
  19. 19.
    Lakowski J, Kitchener JA (1969) J Colloid Interface Sci 29:670 CrossRefGoogle Scholar
  20. 20.
    Trau M, Murray BS, Grant K, Grieser F (1992) J Colloid Interface Sci 148:182 CrossRefGoogle Scholar
  21. 21.
    Fadeev AY, McCarthy TJ (1999) Langmuir 15:7238 CrossRefGoogle Scholar
  22. 22.
    Chen W, Fadeev AY, Hsieh MC, Oner D, Youngblood J, McCarthy TJ (1999) Langmuir 15:3395 CrossRefGoogle Scholar
  23. 23.
    Gao L, McCarthy TJ, Zhang X (2009) Langmuir 25:14100 CrossRefGoogle Scholar
  24. 24.
    Fogg GE (1944) Nature 154:515 CrossRefGoogle Scholar
  25. 25.
    Cassie ABD, Baxter S (1945) Nature 155:21 CrossRefGoogle Scholar
  26. 26.
    Schuyten HA, Reid DJ, Weaver JW, Frick JG (1948) Tex Res J 18:396 CrossRefGoogle Scholar
  27. 27.
    Schuyten HA, Reid DJ, Weaver JW, Frick JG (1948) Tex Res J 18:490 CrossRefGoogle Scholar
  28. 28.
    Bartell FE, Purcel WR, Dodd CG (1948) Discuss Faraday Soc 3:257 CrossRefGoogle Scholar
  29. 29.
    Rochow EG (1945) J Am Chem Soc 67:963 CrossRefGoogle Scholar
  30. 30.
    Rochow EG U.S. Patent 2,380,995, Aug. 7, 1945 Google Scholar
  31. 31.
    Patnode WI U.S. Patent 2,306,222, Dec. 22, 1942 Google Scholar
  32. 32.
    Gao L, McCarthy TJ (2006) J Am Chem Soc 128:9052 CrossRefGoogle Scholar
  33. 33.
    Krumpfer JW, McCarthy TJ (2010) Faraday Discuss 146:103 CrossRefGoogle Scholar
  34. 34.
    Gao L, McCarthy TJ (2008) Langmuir 24:362 CrossRefGoogle Scholar
  35. 35.
    Jia X, McCarthy TJ (2003) Langmuir 19:2449 CrossRefGoogle Scholar
  36. 36.
    Gao L, McCarthy TJ (2006) Langmuir 22:5998 CrossRefGoogle Scholar
  37. 37.
    Gao L, McCarthy TJ (2007) J Am Chem Soc 129:3804 CrossRefGoogle Scholar
  38. 38.
    Gao L, McCarthy TJ (2007) Langmuir 23:10445 CrossRefGoogle Scholar
  39. 39.
    Krumpfer JW, McCarthy TJ (2011) Langmuir 27:11514 CrossRefGoogle Scholar
  40. 40.
    Fadeev AY, McCarthy TJ (1999) J Am Chem Soc 121:12184 CrossRefGoogle Scholar
  41. 41.
    Gao L, McCarthy TJ (2006) Langmuir 22:6234 CrossRefGoogle Scholar
  42. 42.
    Kole S, Srivastava SK, Tripathy DK, Showmick AK (2003) J Appl Polym Sci 54:1329 CrossRefGoogle Scholar
  43. 43.
    Lai SK, Batra A, Cohen C (2005) Polymer 46:4204 CrossRefGoogle Scholar
  44. 44.
    Scott DW (1946) J Am Chem Soc 68:2294 CrossRefGoogle Scholar
  45. 45.
    Patnode W, Wilcock DF (1946) J Am Chem Soc 68:358 CrossRefGoogle Scholar
  46. 46.
    Hyde JF U.S. Patent 2,567,110, September 4, 1951 Google Scholar
  47. 47.
    Kantor SW, Grubb WT, Ostoff RC (1954) J Am Chem Soc 76:5191 CrossRefGoogle Scholar
  48. 48.
    Warrick EL (1990) Forty years of firsts. McGraw-Hill, New York, p 71 Google Scholar
  49. 49.
    Bageli NN, Bryk MT (1981) Ukr Khim Zh 47:409 Google Scholar
  50. 50.
    Xu S, Lehmann RG, Miller JR, Chandra G (1998) Environ Sci Technol 32:1199 CrossRefGoogle Scholar
  51. 51.
    Hunter MJ, Gordon MS, Barry AJ, Hyde JF, Heidenreich RD (1947) Ind Eng Chem 39:1389 CrossRefGoogle Scholar
  52. 52.
    Gao L, McCarthy TJ (2006) Langmuir 22:2966 CrossRefGoogle Scholar
  53. 53.
    Gao L, McCarthy TJ (2007) Langmuir 23:3762 CrossRefGoogle Scholar
  54. 54.
    Gao L, McCarthy TJ (2009) Langmuir 25:7249 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Joseph W. Krumpfer
    • 1
  • Lichao Gao
    • 1
  • Alexander Y. Fadeev
    • 1
  • Thomas J. McCarthy
    • 1
    Email author
  1. 1.Polymer Science and Engineering DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations