Advertisement

Creating Functional Materials by Chemical and Physical Functionalization of Silicone Elastomer Networks

  • Jan GenzerEmail author
  • Ali E. Őzçam
  • Julie A. Crowe-Willoughby
  • Kirill Efimenko
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

We provide an overview of fabricating functional surfaces by surface modification of parent silicone elastomer networks (SENs). Specifically, we demonstrate that polydimethylsiloxane and polyvinylmethylsiloxane represent convenient platforms for generating materials with tuned surface chemistry, topography, and mechanical characteristics. We discuss strategies that facilitate the manufacture of chemically-tailored flat supports as well as those that exhibit tailored topographical corrugations. We provide several examples of technological applications utilizing such structures. We also use SENs as supports enabling tailored assembly of molecules and macromolecules and outline techniques providing generation of substrates with position-dependent properties. We discuss new opportunities in using SENs as a platform for creating substrates that alter their properties swiftly in response to external stimuli. Finally, we offer a brief account of coating methodologies leading to the generation of bilayered sandwiched structures with tailorable chemistry and modulus.

Keywords

Surface modification of silicone elastomer networks UV/Ozone treatment Manufacturing chemically tailored flat and topographical surfaces Generation of substrates with position-dependent properties Stimuli responsive surfaces Bilayer sandwiched coatings 

Notes

Acknowledgements

We acknowledge gratefully the financial support from the National Science Foundation and the Office of Naval Research. We are also grateful for the gift of PJ Fluid from the Dow Corning Corporation. Finally, we thank our many colleagues around the world for fruitful collaboration on various SEN-related projects over the past several years. Specifically, we thank William Wallace, Daniel Fischer (both NIST), L. Mahadevan (Harvard University), Evangelos Manias (Penn State University), Laura Clarke (NC State University), Manoj Chaudhury (Lehigh University), Dwight Schwark (Cryovac SealedAir), Jan Groenewold (University of Twente), Russell Gorga (NC State University), Simon Lappi (NC State University) and others.

References

  1. 1.
    Jershow P (2001) Silicone elastomers, smithers rapra technology, vol 12. Report 137 Google Scholar
  2. 2.
    Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–3283 CrossRefGoogle Scholar
  3. 3.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed Engl 37:550–575 CrossRefGoogle Scholar
  4. 4.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184 CrossRefGoogle Scholar
  5. 5.
    Wong I, Ho C-M (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306 CrossRefGoogle Scholar
  6. 6.
    Fudouzi H, Xia Y (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15:892–896 CrossRefGoogle Scholar
  7. 7.
    So J-H, Qusba A, Hayes GJ, Lazzi G, Dickey MD (2009) Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv Funct Mater 19:3632–3637 CrossRefGoogle Scholar
  8. 8.
    Plass KE, Filler MA, Spurgeon JM, Kayes BM, Maldonado S, Brunschwig BS, Atwater HA, Lewis NS (2009) Flexible polymer-embedded Si wire arrays. Adv Mater 21:325–328 CrossRefGoogle Scholar
  9. 9.
    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5:3645–3650 CrossRefGoogle Scholar
  10. 10.
    Görrn P, Lehnhardt P, Kowalsky W, Riedl T, Wagner S (2011) Elastically tunable self-organized organic lasers. Adv Mater 23:869–872 CrossRefGoogle Scholar
  11. 11.
    Ahmed S, Yang YK, Őzçam AE, Efimenko K, Weiger MC, Genzer J, Haugh JM (2011) Poly(vinylmethylsiloxane) elastomer networks as functional materials for cell adhesion and migration studies. Biomacromolecules 12:1265–1271 CrossRefGoogle Scholar
  12. 12.
    Sochol RD, Higa AT, Janairo RRR, Li S, Lin L (2011) Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7:4606–4609 CrossRefGoogle Scholar
  13. 13.
    Qian T, Li Y, Wu Y, Zheng B, Ma H (2008) Superhydrophobic poly(dimethylsiloxane) via surface-initiated polymerization with ultralow initiator density. Macromolecules 41:6641–6645 CrossRefGoogle Scholar
  14. 14.
    Tugulu S, Klok H-A (2009) Surface modification of polydimethylsioxane substrates with nonfouling poly(poly(ethyleneglycol)methacrylate) brushes. Macromol Symp 279:103–109 CrossRefGoogle Scholar
  15. 15.
    Ouellet R, Yang CWT, Lin T, Yang LL, Lagally E (2010) Novel carboxyl-amine bonding methods for poly(dimethylsiloxane)-based devices. Langmuir 26:11609–11614 CrossRefGoogle Scholar
  16. 16.
    Yang L, Li L, Tu Q, Ren L, Zhang Y, Wang X, Zhang Z, Liu W, Xin L, Wang J (2010) Photocatalyzed surface modification of poly(dimethhylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Anal Chem 82:6430–6439 CrossRefGoogle Scholar
  17. 17.
    Duffy DC, McDonald JC, Schuller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984 CrossRefGoogle Scholar
  18. 18.
    Owen MJ (2005) Plasma/corona treatment of silicones. Australian J Chem 58:433–436 CrossRefGoogle Scholar
  19. 19.
    Zhou J, Ellis AV, Voelcker NH (2009) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16 CrossRefGoogle Scholar
  20. 20.
    Wong I, Ho C-M (2009) Surface molecular property modification for poly(dimethylsoloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306 CrossRefGoogle Scholar
  21. 21.
    Huszank R, Szika D, Simon A, Szilasi SZ, Nagy IP (2011) 4He+ ion beam irradiation induced modification of poly(dimethylsiloxane). Characterization by infrared spectroscopy and ion beam analytical techniques. Langmuir 27:3842–3848 CrossRefGoogle Scholar
  22. 22.
    Fu Y-J, Qui H-Z, Liao K-S, Lue SJ, Hu C-C, Lee K-R, Lai JY (2010) Effect of UV-ozone treatment on poly(dimethylsoloxane) membranes: Surface characterization and gas separation performance. Langmuir 26:4392–4399 CrossRefGoogle Scholar
  23. 23.
    Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6851–6863 CrossRefGoogle Scholar
  24. 24.
    Kim J, Chaudhury MK, Owen MJ (1999) Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans Dielectr Electr Insul 6:695–702 CrossRefGoogle Scholar
  25. 25.
    Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226:231–236 CrossRefGoogle Scholar
  26. 26.
    Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Colloid Interface Sci 244:200–207 CrossRefGoogle Scholar
  27. 27.
    Kim J, Chaudhury MK, Owen MJ (2006) Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers. J Colloid Interface Sci 293:364–375 CrossRefGoogle Scholar
  28. 28.
    Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39:1991–1998 CrossRefGoogle Scholar
  29. 29.
    Meincken M, Berhane TA, Mallon PE (2005) Tracking the hydrophobicity recovery of PDMS compounds using the adhesive force determined by AFM force distance measurements. Polymer 46:203–208 CrossRefGoogle Scholar
  30. 30.
    Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul 6:703–717 CrossRefGoogle Scholar
  31. 31.
    Egitto FD, Matienzo LJ (2006) Transformation of poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification. J Mater Sci 41:6362–6373 CrossRefGoogle Scholar
  32. 32.
    Egitto FD, Matienzo LJ (2006) Transformation of poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part II: Segregation and modification of doped polymer blends. J Mater Sci 41:6374–6384 CrossRefGoogle Scholar
  33. 33.
    Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315 CrossRefGoogle Scholar
  34. 34.
    Efimenko K, Crowe JA, Manias E, Schwark DW, Fischer DA, Genzer J (2005) Rapid formation of soft hydrophilic silicone elastomer surfaces. Polymer 46:9329–9341 CrossRefGoogle Scholar
  35. 35.
    Williams RL, Wilson DJ, Rhodes NP (2004) Stability of plasma-treated silicone rubber and its influence on the interfacial aspects of blood compatibility. Biomaterials 25:4659–4673 CrossRefGoogle Scholar
  36. 36.
    Huck WTS, Bowden N, Onck P, Pardoen P, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16:3497–3501 CrossRefGoogle Scholar
  37. 37.
    Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12:1591–1596 CrossRefGoogle Scholar
  38. 38.
    Őzçam AE, Efimenko K, Genzer J, in preparation Google Scholar
  39. 39.
    Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290:2130–2133 CrossRefGoogle Scholar
  40. 40.
    Nishino T, Meguri M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15:4321–4323 CrossRefGoogle Scholar
  41. 41.
    Efimenko K, Genzer J (2002) Tuning the surface properties of elastomers using hydrocarbon-based mechanically assembled monolayers. Mater Res Soc Symp Proc 710:DD10.3.1–DD10.3.6 Google Scholar
  42. 42.
    Allara DL, Parikh AN, Judge E (1994) The existence of structure progressions and wetting transitions in intermediately disordered monolayer alkyl chain assemblies. J Chem Phys 100:1764–1767 CrossRefGoogle Scholar
  43. 43.
    Chaudhury MK, Owen MJ (1993) Correlation between Adhesion Hysteresis and Phase State of Monolayer Films. J Phys Chem 97:5722–5726 CrossRefGoogle Scholar
  44. 44.
    Snyder RG, Strauss HL, Elliger CA (1982) C-H Stretching Modes and the Structure of n-Alkyl Chains. 1. Long, Disordered Chains. J Phys Chem 90:5623–5630 CrossRefGoogle Scholar
  45. 45.
    Efimenko K, Genzer J, Fischer DA unpublished results Google Scholar
  46. 46.
    Brittain W, Advincula R, Rühe J, Caster K (eds) (2004) Polymer Brushes. Wiley, New York Google Scholar
  47. 47.
    Brittain WJ, Minko S (2007) A Structural Definition of Polymer Brushes. J Polym Sci A Polym Chem 45:3505–3510 CrossRefGoogle Scholar
  48. 48.
    Genzer J (2006) In silico polymerization: computer simulation of controlled radical polymerization in bulk and on flat surfaces. Macromolecules 39:7157–7169 CrossRefGoogle Scholar
  49. 49.
    Turgman-Cohen S, Genzer J (2010) Computer simulation of controlled radical polymerization: Effect of chain confinement due to initiator grafting density and solvent quality in “grafting from” method. Macromolecules 43:9567–9577 CrossRefGoogle Scholar
  50. 50.
    Wu T, Efimenko K, Genzer J (2001) Preparing high-density polymer brushes by mechanically assisted polymer assembly. Macromolecules 34:684–686 CrossRefGoogle Scholar
  51. 51.
    Huang XY, Doneski LJ, Wirth MJ (1998) Surface-confined living radical polymerization for coatings in capillary electrophoresis. Anal Chem 70:4023–4029 CrossRefGoogle Scholar
  52. 52.
    Huang XY, Doneski LJ, Wirth MJ (1998) Make ultrathin films using surface-confined living radical polymerization. Chemtech 28:19–25 Google Scholar
  53. 53.
    Huang X, Wirth MJ (1999) Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity. Macromolecules 32:1694–1696 CrossRefGoogle Scholar
  54. 54.
    Efimenko K, Genzer J (2001) How to prepare tunable planar molecular chemical gradients. Adv Mater 13:1560–1563 CrossRefGoogle Scholar
  55. 55.
    Chaudhury MK, Whitesides GM (1992) How to Make Water Run Uphill. Science 256:1539–1541 CrossRefGoogle Scholar
  56. 56.
    Genzer J, Efimenko K, Fischer DA (2006) Formation mechanisms and properties of semifluorinated molecular gradients on silica surfaces. Langmuir 22:8532–8541 CrossRefGoogle Scholar
  57. 57.
    Douglas JF, Efimenko K, Fischer DA, Phelan FR, Genzer J (2007) Propagating waves of self-assembly in organosilane monolayers. Proc Natl Acad Sci USA 104:10324–10329 CrossRefGoogle Scholar
  58. 58.
    Genzer J, Fischer DA, Efimenko K (2003) Fabricating two-dimensional molecular gradients via asymmetric deformation of uniformly-coated elastomer sheets. Adv Mater 15:1545–1547 CrossRefGoogle Scholar
  59. 59.
    Genzer J, Fischer DA, Efimenko K (2003) Combinatorial near-edge x-ray absorption fine structure: Simultaneous determination of molecular orientation and bond concentration on chemically heterogeneous surfaces. Appl Phys Lett 82:266–268 CrossRefGoogle Scholar
  60. 60.
    Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon, New York Google Scholar
  61. 61.
    Genzer J, Groenewold J (2006) Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2:310–323 CrossRefGoogle Scholar
  62. 62.
    Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297 CrossRefGoogle Scholar
  63. 63.
    Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90:074302 CrossRefGoogle Scholar
  64. 64.
    Chen X, Hutchinson JW (2004) A family of herringbone patterns in thin films. Scr Mater 50:797–801 CrossRefGoogle Scholar
  65. 65.
    Mahadevan L, Rica S (2005) Self-organized origami. Science 307:1740 CrossRefGoogle Scholar
  66. 66.
    Efimenko K, Finlay J, Callow ME, Callow JA, Genzer J (2009) Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl Mater Interfaces 1:1031–1040 CrossRefGoogle Scholar
  67. 67.
    Efimenko K, Aldred N, Genzer J, Clare A, in preparation Google Scholar
  68. 68.
    Hendricks TR, Wang W, Lee I (2010) Buckling in nanomechanical films. Soft Matter 6:3701–3706 CrossRefGoogle Scholar
  69. 69.
    Chung JY, Nolte AJ, Stafford CM (2011) Surface wrinkling: a versatile platform for measuring thin-film properties. Adv Mater 23:349–368 CrossRefGoogle Scholar
  70. 70.
    Crosby AJ (2010) Themed issue “The physics of buckling”. Soft Matter 6:5647–5818 CrossRefGoogle Scholar
  71. 71.
    Cohen Stuart M, Huck W, Genzer J, Müller M, Ober CK, Stamm M, Sukhorukov G, Szleifer I, Tsuktruk V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Stimuli-responsive polymer materials for sensors, actuators, coatings, and delivery systems. Nat Mater 9:101–113 CrossRefGoogle Scholar
  72. 72.
    Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698 CrossRefGoogle Scholar
  73. 73.
    Minko S (2006) Responsive polymer brushes. Prog Chem 46:397–420 Google Scholar
  74. 74.
    Minko S (ed) (2006) Responsive Polymer Materials: Designs and Applications. Wiley, Ames Google Scholar
  75. 75.
    Luzinov I, Minko S, Tsukruk VV (2008) Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter 4:714–725 CrossRefGoogle Scholar
  76. 76.
    Bain CD, Whitesides GM (1988) Depth sensitivity of wetting—Monolayers of omega-mercapto ethers on gold. J Am Chem Soc 110:5897–5898 CrossRefGoogle Scholar
  77. 77.
    Boutevin B, Guida-Pietrsanta F, Ratsimihety A (2000) Side group modified polysiloxanes. In: Chojnowski (ed) Silicone-containing polymers. Kluwer Academic, Dordrecht, pp 79–112 CrossRefGoogle Scholar
  78. 78.
    Bauer J, Husing N, Kickelbick G (2001) Synthesis of new types of polysiloxane based surfactants. Chem Comm 137–138 Google Scholar
  79. 79.
    Bauer J, Husing N, Kickelbick G (2002) Preparation of functional block copolymers based on a polysiloxane backbone by anionic ring-opening polymerization. J Polym Sci A Polym Chem 40:1539–1551 CrossRefGoogle Scholar
  80. 80.
    Cai GP, Weber WP (2002) Synthesis and chemical modification of poly(divinylsiloxane). Polymer 43:1753–1759 CrossRefGoogle Scholar
  81. 81.
    Marciniec B, Pietraszuk C (2010) Functionalisation of vinylsubstituted (poly)siloxanes and silsesquioxanes via cross-metathesis and silylative coupling transformations. In: Draguta V, Demonceau A, Dragutan I, Finkelshtein ES (eds) Green metathesis chemistry: great challenges in synthesis catalysis and nanotechnology. Springer, Berlin Google Scholar
  82. 82.
    Zak P, Skrobanska M, Pietraszuk C, Marciniec B (2009) Functionalization of vinyl-substituted linear oligo- and polysiloxanes via ruthenium catalyzed silylative coupling with styrene. J Organomet Chem 694:1903–1906 CrossRefGoogle Scholar
  83. 83.
    Crowe JA, Efimenko K, Genzer J, Schwark DW (2006) Responsive siloxane-based polymeric surfaces. In: Minko S (ed) Responsive polymer materials: design and applications. Blackwell, Oxford, pp 184–205 Google Scholar
  84. 84.
    Chojnowski J, Cypryk M, Fortuniak W, Rozga-Wijas K, Scibiorek M (2002) Controlled synthesis of vinylmethylsiloxane-dimethylsiloxane gradient, block and alternate copolymers by anionic ROP of cyclotrisiloxanes. Polymer 43:1993–2001 CrossRefGoogle Scholar
  85. 85.
    Crowe-Willoughby JA, Genzer J (2009) Formation and properties of responsive siloxane-based polymeric surfaces with tunable surface reconstruction kinetics. Adv Funct Mater 19:460–469 CrossRefGoogle Scholar
  86. 86.
    Crowe JA, Genzer J (2005) Creating responsive surfaces with tailored wettability switching kinetics and reconstruction reversibility. J Am Chem Soc 127:17610–17611 CrossRefGoogle Scholar
  87. 87.
    Crowe-Willoughby JA, Stevens DR, Genzer J, Clarke LI (2010) Investigating the molecular origins of responsiveness in functional silicone elastomer networks. Macromolecules 43:5043–5051 CrossRefGoogle Scholar
  88. 88.
  89. 89.
    Woo PJ, Park SY, Suh KY, Lee HH (2002) Physical self-assembly of microstructures by anisotropic buckling. Adv Mater 14:1383–1387 CrossRefGoogle Scholar
  90. 90.
    Woo PJ, Park SY, Kwon SJ, Suh KY, Lee HH (2003) Microshaping metal surfaces by wave-directed self-organization. Appl Phys Lett 83:4444–4446 CrossRefGoogle Scholar
  91. 91.
    Kwon SJ, Yoo PJ, Lee HH (2004) Wave interactions in buckling: Self-organization of a metal surface on a structured polymer layer. Appl Phys Lett 84:4487–4489 CrossRefGoogle Scholar
  92. 92.
    Yoo PJ, Lee HH (2003) Evolution of a stress-driven pattern in thin bilayer films: Spinodal wrinkling. Phys Rev Lett 91:154502 CrossRefGoogle Scholar
  93. 93.
    Yoo PJ, Suh KY, Kang H, Lee HH (2004) Polymer-elasticity-driven wrinkling and coarsening in high temperature buckling of metal-sapped polymer thin films. Phys Rev Lett 93:034301 CrossRefGoogle Scholar
  94. 94.
    Őzçam AE (2011) PhD thesis, NC State University Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jan Genzer
    • 1
    Email author
  • Ali E. Őzçam
    • 1
  • Julie A. Crowe-Willoughby
    • 1
    • 2
  • Kirill Efimenko
    • 1
  1. 1.Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.College of TextilesNorth Carolina State UniversityRaleighUSA

Personalised recommendations