Skip to main content

Creating Functional Materials by Chemical and Physical Functionalization of Silicone Elastomer Networks

  • Chapter
Silicone Surface Science

Part of the book series: Advances in Silicon Science ((ADSS,volume 4))

  • 3474 Accesses

Abstract

We provide an overview of fabricating functional surfaces by surface modification of parent silicone elastomer networks (SENs). Specifically, we demonstrate that polydimethylsiloxane and polyvinylmethylsiloxane represent convenient platforms for generating materials with tuned surface chemistry, topography, and mechanical characteristics. We discuss strategies that facilitate the manufacture of chemically-tailored flat supports as well as those that exhibit tailored topographical corrugations. We provide several examples of technological applications utilizing such structures. We also use SENs as supports enabling tailored assembly of molecules and macromolecules and outline techniques providing generation of substrates with position-dependent properties. We discuss new opportunities in using SENs as a platform for creating substrates that alter their properties swiftly in response to external stimuli. Finally, we offer a brief account of coating methodologies leading to the generation of bilayered sandwiched structures with tailorable chemistry and modulus.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-3876-8_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a typical set up, a dose of 8.2 mW cm−2 causes the temperature of a sample to raise to a maximum of 70° [Őzçam AE, unpublished data].

  2. 2.

    We infer this from our initial observation that PDMS SENs with lower molecular weight, i.e., higher degree of cross-linking, get modified to a larger degree than PDMS SENs made by cross-linking higher molecular weight PDMS chains.

References

  1. Jershow P (2001) Silicone elastomers, smithers rapra technology, vol 12. Report 137

    Google Scholar 

  2. Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–3283

    Article  CAS  Google Scholar 

  3. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed Engl 37:550–575

    Article  CAS  Google Scholar 

  4. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  5. Wong I, Ho C-M (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306

    Article  CAS  Google Scholar 

  6. Fudouzi H, Xia Y (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15:892–896

    Article  CAS  Google Scholar 

  7. So J-H, Qusba A, Hayes GJ, Lazzi G, Dickey MD (2009) Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Adv Funct Mater 19:3632–3637

    Article  CAS  Google Scholar 

  8. Plass KE, Filler MA, Spurgeon JM, Kayes BM, Maldonado S, Brunschwig BS, Atwater HA, Lewis NS (2009) Flexible polymer-embedded Si wire arrays. Adv Mater 21:325–328

    Article  CAS  Google Scholar 

  9. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5:3645–3650

    Article  CAS  Google Scholar 

  10. Görrn P, Lehnhardt P, Kowalsky W, Riedl T, Wagner S (2011) Elastically tunable self-organized organic lasers. Adv Mater 23:869–872

    Article  Google Scholar 

  11. Ahmed S, Yang YK, Őzçam AE, Efimenko K, Weiger MC, Genzer J, Haugh JM (2011) Poly(vinylmethylsiloxane) elastomer networks as functional materials for cell adhesion and migration studies. Biomacromolecules 12:1265–1271

    Article  CAS  Google Scholar 

  12. Sochol RD, Higa AT, Janairo RRR, Li S, Lin L (2011) Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7:4606–4609

    Article  CAS  Google Scholar 

  13. Qian T, Li Y, Wu Y, Zheng B, Ma H (2008) Superhydrophobic poly(dimethylsiloxane) via surface-initiated polymerization with ultralow initiator density. Macromolecules 41:6641–6645

    Article  CAS  Google Scholar 

  14. Tugulu S, Klok H-A (2009) Surface modification of polydimethylsioxane substrates with nonfouling poly(poly(ethyleneglycol)methacrylate) brushes. Macromol Symp 279:103–109

    Article  CAS  Google Scholar 

  15. Ouellet R, Yang CWT, Lin T, Yang LL, Lagally E (2010) Novel carboxyl-amine bonding methods for poly(dimethylsiloxane)-based devices. Langmuir 26:11609–11614

    Article  CAS  Google Scholar 

  16. Yang L, Li L, Tu Q, Ren L, Zhang Y, Wang X, Zhang Z, Liu W, Xin L, Wang J (2010) Photocatalyzed surface modification of poly(dimethhylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Anal Chem 82:6430–6439

    Article  CAS  Google Scholar 

  17. Duffy DC, McDonald JC, Schuller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  18. Owen MJ (2005) Plasma/corona treatment of silicones. Australian J Chem 58:433–436

    Article  CAS  Google Scholar 

  19. Zhou J, Ellis AV, Voelcker NH (2009) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16

    Article  Google Scholar 

  20. Wong I, Ho C-M (2009) Surface molecular property modification for poly(dimethylsoloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306

    Article  CAS  Google Scholar 

  21. Huszank R, Szika D, Simon A, Szilasi SZ, Nagy IP (2011) 4He+ ion beam irradiation induced modification of poly(dimethylsiloxane). Characterization by infrared spectroscopy and ion beam analytical techniques. Langmuir 27:3842–3848

    Article  CAS  Google Scholar 

  22. Fu Y-J, Qui H-Z, Liao K-S, Lue SJ, Hu C-C, Lee K-R, Lai JY (2010) Effect of UV-ozone treatment on poly(dimethylsoloxane) membranes: Surface characterization and gas separation performance. Langmuir 26:4392–4399

    Article  CAS  Google Scholar 

  23. Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6851–6863

    Article  CAS  Google Scholar 

  24. Kim J, Chaudhury MK, Owen MJ (1999) Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans Dielectr Electr Insul 6:695–702

    Article  CAS  Google Scholar 

  25. Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226:231–236

    Article  CAS  Google Scholar 

  26. Kim J, Chaudhury MK, Owen MJ, Orbeck T (2001) The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. J Colloid Interface Sci 244:200–207

    Article  CAS  Google Scholar 

  27. Kim J, Chaudhury MK, Owen MJ (2006) Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers. J Colloid Interface Sci 293:364–375

    Article  CAS  Google Scholar 

  28. Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39:1991–1998

    Article  CAS  Google Scholar 

  29. Meincken M, Berhane TA, Mallon PE (2005) Tracking the hydrophobicity recovery of PDMS compounds using the adhesive force determined by AFM force distance measurements. Polymer 46:203–208

    Article  CAS  Google Scholar 

  30. Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul 6:703–717

    Article  CAS  Google Scholar 

  31. Egitto FD, Matienzo LJ (2006) Transformation of poly(dimethylsiloxane) into thin surface films of SiO x by UV/Ozone treatment. Part I: Factors affecting modification. J Mater Sci 41:6362–6373

    Article  CAS  Google Scholar 

  32. Egitto FD, Matienzo LJ (2006) Transformation of poly(dimethylsiloxane) into thin surface films of SiO x by UV/Ozone treatment. Part II: Segregation and modification of doped polymer blends. J Mater Sci 41:6374–6384

    Article  Google Scholar 

  33. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315

    Article  CAS  Google Scholar 

  34. Efimenko K, Crowe JA, Manias E, Schwark DW, Fischer DA, Genzer J (2005) Rapid formation of soft hydrophilic silicone elastomer surfaces. Polymer 46:9329–9341

    Article  CAS  Google Scholar 

  35. Williams RL, Wilson DJ, Rhodes NP (2004) Stability of plasma-treated silicone rubber and its influence on the interfacial aspects of blood compatibility. Biomaterials 25:4659–4673

    Article  CAS  Google Scholar 

  36. Huck WTS, Bowden N, Onck P, Pardoen P, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16:3497–3501

    Article  CAS  Google Scholar 

  37. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12:1591–1596

    Article  CAS  Google Scholar 

  38. Őzçam AE, Efimenko K, Genzer J, in preparation

    Google Scholar 

  39. Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290:2130–2133

    Article  CAS  Google Scholar 

  40. Nishino T, Meguri M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15:4321–4323

    Article  CAS  Google Scholar 

  41. Efimenko K, Genzer J (2002) Tuning the surface properties of elastomers using hydrocarbon-based mechanically assembled monolayers. Mater Res Soc Symp Proc 710:DD10.3.1–DD10.3.6

    Google Scholar 

  42. Allara DL, Parikh AN, Judge E (1994) The existence of structure progressions and wetting transitions in intermediately disordered monolayer alkyl chain assemblies. J Chem Phys 100:1764–1767

    Article  Google Scholar 

  43. Chaudhury MK, Owen MJ (1993) Correlation between Adhesion Hysteresis and Phase State of Monolayer Films. J Phys Chem 97:5722–5726

    Article  CAS  Google Scholar 

  44. Snyder RG, Strauss HL, Elliger CA (1982) C-H Stretching Modes and the Structure of n-Alkyl Chains. 1. Long, Disordered Chains. J Phys Chem 90:5623–5630

    Article  Google Scholar 

  45. Efimenko K, Genzer J, Fischer DA unpublished results

    Google Scholar 

  46. Brittain W, Advincula R, Rühe J, Caster K (eds) (2004) Polymer Brushes. Wiley, New York

    Google Scholar 

  47. Brittain WJ, Minko S (2007) A Structural Definition of Polymer Brushes. J Polym Sci A Polym Chem 45:3505–3510

    Article  CAS  Google Scholar 

  48. Genzer J (2006) In silico polymerization: computer simulation of controlled radical polymerization in bulk and on flat surfaces. Macromolecules 39:7157–7169

    Article  CAS  Google Scholar 

  49. Turgman-Cohen S, Genzer J (2010) Computer simulation of controlled radical polymerization: Effect of chain confinement due to initiator grafting density and solvent quality in “grafting from” method. Macromolecules 43:9567–9577

    Article  CAS  Google Scholar 

  50. Wu T, Efimenko K, Genzer J (2001) Preparing high-density polymer brushes by mechanically assisted polymer assembly. Macromolecules 34:684–686

    Article  CAS  Google Scholar 

  51. Huang XY, Doneski LJ, Wirth MJ (1998) Surface-confined living radical polymerization for coatings in capillary electrophoresis. Anal Chem 70:4023–4029

    Article  CAS  Google Scholar 

  52. Huang XY, Doneski LJ, Wirth MJ (1998) Make ultrathin films using surface-confined living radical polymerization. Chemtech 28:19–25

    CAS  Google Scholar 

  53. Huang X, Wirth MJ (1999) Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity. Macromolecules 32:1694–1696

    Article  CAS  Google Scholar 

  54. Efimenko K, Genzer J (2001) How to prepare tunable planar molecular chemical gradients. Adv Mater 13:1560–1563

    Article  CAS  Google Scholar 

  55. Chaudhury MK, Whitesides GM (1992) How to Make Water Run Uphill. Science 256:1539–1541

    Article  CAS  Google Scholar 

  56. Genzer J, Efimenko K, Fischer DA (2006) Formation mechanisms and properties of semifluorinated molecular gradients on silica surfaces. Langmuir 22:8532–8541

    Article  CAS  Google Scholar 

  57. Douglas JF, Efimenko K, Fischer DA, Phelan FR, Genzer J (2007) Propagating waves of self-assembly in organosilane monolayers. Proc Natl Acad Sci USA 104:10324–10329

    Article  CAS  Google Scholar 

  58. Genzer J, Fischer DA, Efimenko K (2003) Fabricating two-dimensional molecular gradients via asymmetric deformation of uniformly-coated elastomer sheets. Adv Mater 15:1545–1547

    Article  CAS  Google Scholar 

  59. Genzer J, Fischer DA, Efimenko K (2003) Combinatorial near-edge x-ray absorption fine structure: Simultaneous determination of molecular orientation and bond concentration on chemically heterogeneous surfaces. Appl Phys Lett 82:266–268

    Article  CAS  Google Scholar 

  60. Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon, New York

    Google Scholar 

  61. Genzer J, Groenewold J (2006) Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2:310–323

    Article  CAS  Google Scholar 

  62. Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297

    Article  CAS  Google Scholar 

  63. Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90:074302

    Article  CAS  Google Scholar 

  64. Chen X, Hutchinson JW (2004) A family of herringbone patterns in thin films. Scr Mater 50:797–801

    Article  CAS  Google Scholar 

  65. Mahadevan L, Rica S (2005) Self-organized origami. Science 307:1740

    Article  CAS  Google Scholar 

  66. Efimenko K, Finlay J, Callow ME, Callow JA, Genzer J (2009) Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl Mater Interfaces 1:1031–1040

    Article  CAS  Google Scholar 

  67. Efimenko K, Aldred N, Genzer J, Clare A, in preparation

    Google Scholar 

  68. Hendricks TR, Wang W, Lee I (2010) Buckling in nanomechanical films. Soft Matter 6:3701–3706

    Article  CAS  Google Scholar 

  69. Chung JY, Nolte AJ, Stafford CM (2011) Surface wrinkling: a versatile platform for measuring thin-film properties. Adv Mater 23:349–368

    Article  CAS  Google Scholar 

  70. Crosby AJ (2010) Themed issue “The physics of buckling”. Soft Matter 6:5647–5818

    Article  Google Scholar 

  71. Cohen Stuart M, Huck W, Genzer J, Müller M, Ober CK, Stamm M, Sukhorukov G, Szleifer I, Tsuktruk V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Stimuli-responsive polymer materials for sensors, actuators, coatings, and delivery systems. Nat Mater 9:101–113

    Article  Google Scholar 

  72. Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698

    Article  CAS  Google Scholar 

  73. Minko S (2006) Responsive polymer brushes. Prog Chem 46:397–420

    CAS  Google Scholar 

  74. Minko S (ed) (2006) Responsive Polymer Materials: Designs and Applications. Wiley, Ames

    Google Scholar 

  75. Luzinov I, Minko S, Tsukruk VV (2008) Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter 4:714–725

    Article  CAS  Google Scholar 

  76. Bain CD, Whitesides GM (1988) Depth sensitivity of wetting—Monolayers of omega-mercapto ethers on gold. J Am Chem Soc 110:5897–5898

    Article  CAS  Google Scholar 

  77. Boutevin B, Guida-Pietrsanta F, Ratsimihety A (2000) Side group modified polysiloxanes. In: Chojnowski (ed) Silicone-containing polymers. Kluwer Academic, Dordrecht, pp 79–112

    Chapter  Google Scholar 

  78. Bauer J, Husing N, Kickelbick G (2001) Synthesis of new types of polysiloxane based surfactants. Chem Comm 137–138

    Google Scholar 

  79. Bauer J, Husing N, Kickelbick G (2002) Preparation of functional block copolymers based on a polysiloxane backbone by anionic ring-opening polymerization. J Polym Sci A Polym Chem 40:1539–1551

    Article  CAS  Google Scholar 

  80. Cai GP, Weber WP (2002) Synthesis and chemical modification of poly(divinylsiloxane). Polymer 43:1753–1759

    Article  CAS  Google Scholar 

  81. Marciniec B, Pietraszuk C (2010) Functionalisation of vinylsubstituted (poly)siloxanes and silsesquioxanes via cross-metathesis and silylative coupling transformations. In: Draguta V, Demonceau A, Dragutan I, Finkelshtein ES (eds) Green metathesis chemistry: great challenges in synthesis catalysis and nanotechnology. Springer, Berlin

    Google Scholar 

  82. Zak P, Skrobanska M, Pietraszuk C, Marciniec B (2009) Functionalization of vinyl-substituted linear oligo- and polysiloxanes via ruthenium catalyzed silylative coupling with styrene. J Organomet Chem 694:1903–1906

    Article  CAS  Google Scholar 

  83. Crowe JA, Efimenko K, Genzer J, Schwark DW (2006) Responsive siloxane-based polymeric surfaces. In: Minko S (ed) Responsive polymer materials: design and applications. Blackwell, Oxford, pp 184–205

    Google Scholar 

  84. Chojnowski J, Cypryk M, Fortuniak W, Rozga-Wijas K, Scibiorek M (2002) Controlled synthesis of vinylmethylsiloxane-dimethylsiloxane gradient, block and alternate copolymers by anionic ROP of cyclotrisiloxanes. Polymer 43:1993–2001

    Article  CAS  Google Scholar 

  85. Crowe-Willoughby JA, Genzer J (2009) Formation and properties of responsive siloxane-based polymeric surfaces with tunable surface reconstruction kinetics. Adv Funct Mater 19:460–469

    Article  CAS  Google Scholar 

  86. Crowe JA, Genzer J (2005) Creating responsive surfaces with tailored wettability switching kinetics and reconstruction reversibility. J Am Chem Soc 127:17610–17611

    Article  CAS  Google Scholar 

  87. Crowe-Willoughby JA, Stevens DR, Genzer J, Clarke LI (2010) Investigating the molecular origins of responsiveness in functional silicone elastomer networks. Macromolecules 43:5043–5051

    Article  CAS  Google Scholar 

  88. http://www.sigmaaldrich.com/catalog/search/ProductDetail/ALDRICH/

  89. Woo PJ, Park SY, Suh KY, Lee HH (2002) Physical self-assembly of microstructures by anisotropic buckling. Adv Mater 14:1383–1387

    Article  Google Scholar 

  90. Woo PJ, Park SY, Kwon SJ, Suh KY, Lee HH (2003) Microshaping metal surfaces by wave-directed self-organization. Appl Phys Lett 83:4444–4446

    Article  Google Scholar 

  91. Kwon SJ, Yoo PJ, Lee HH (2004) Wave interactions in buckling: Self-organization of a metal surface on a structured polymer layer. Appl Phys Lett 84:4487–4489

    Article  CAS  Google Scholar 

  92. Yoo PJ, Lee HH (2003) Evolution of a stress-driven pattern in thin bilayer films: Spinodal wrinkling. Phys Rev Lett 91:154502

    Article  Google Scholar 

  93. Yoo PJ, Suh KY, Kang H, Lee HH (2004) Polymer-elasticity-driven wrinkling and coarsening in high temperature buckling of metal-sapped polymer thin films. Phys Rev Lett 93:034301

    Article  Google Scholar 

  94. Őzçam AE (2011) PhD thesis, NC State University

    Google Scholar 

Download references

Acknowledgements

We acknowledge gratefully the financial support from the National Science Foundation and the Office of Naval Research. We are also grateful for the gift of PJ Fluid from the Dow Corning Corporation. Finally, we thank our many colleagues around the world for fruitful collaboration on various SEN-related projects over the past several years. Specifically, we thank William Wallace, Daniel Fischer (both NIST), L. Mahadevan (Harvard University), Evangelos Manias (Penn State University), Laura Clarke (NC State University), Manoj Chaudhury (Lehigh University), Dwight Schwark (Cryovac SealedAir), Jan Groenewold (University of Twente), Russell Gorga (NC State University), Simon Lappi (NC State University) and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Genzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Genzer, J., Őzçam, A.E., Crowe-Willoughby, J.A., Efimenko, K. (2012). Creating Functional Materials by Chemical and Physical Functionalization of Silicone Elastomer Networks. In: Owen, M., Dvornic, P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3876-8_3

Download citation

Publish with us

Policies and ethics