Sum Frequency Generation Vibrational Spectroscopy of Silicone Surfaces & Interfaces

  • Dongchan AhnEmail author
  • Ali DhinojwalaEmail author
Part of the Advances in Silicon Science book series (ADSS, volume 4)


While several general reviews of the applications of sum frequency generation vibrational spectroscopy (SFG) appear in the literature, none have focused specifically on the application of SFG to silicones. The unique and somewhat dichotomous surface properties of silicones, and their ever-increasing use in surface and interface-dependent applications such as lubricants, adhesives, micro-fluidic materials, sensors and matrices or scaffolds for nano-composites, calls for increased fundamental understanding that has motivated the use of SFG analysis. This chapter focuses on the combination of this uniquely surface sensitive tool to study applications using PDMS and other silicone-based materials. Because the interpretation of SFG spectra can be quite complex, many of these examples highlight how SFG can be coupled with complementary techniques to provide a more complete understanding of interfacial effects. Lastly, we conclude by providing a summary of strengths, limitations and potential future opportunities for application of SFG and complementary techniques to silicone-based materials.


Theory of sum frequency generation vibrational spectroscopy (SFG) Application of SFG to silicone-based systems Interpretation of silicone SFG spectra SFG spectra and complementary techniques Adhesion Friction and lubrication 



The authors would like to acknowledge helpful discussions with Professor Zhan Chen (DA) and support from Dow Corning Corporation (DA) and the National Science Foundation (AD, DA).


  1. 1.
    Noll W (1968) Chemistry and technology of silicones. Academic Press, New York Google Scholar
  2. 2.
    Kim J, Chaudhury MK, Owen MJ (1999) Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans Dielectr Electr Insul 6:695 CrossRefGoogle Scholar
  3. 3.
    Warrick EL (1990) Forty years of firsts: recollections of a Dow Corning pioneer. McGraw-Hill, New York Google Scholar
  4. 4.
    Shen YR (1996) A few selected applications of surface nonlinear optical spectroscopy. Proc Natl Acad Sci USA 93(22):12104–12111 CrossRefGoogle Scholar
  5. 5.
    Chen Z, Shen YR, Somorjai GA (2002) Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem 53(1):437–465 CrossRefGoogle Scholar
  6. 6.
    Miranda PB, Shen YR (1999) Liquid interfaces: a study by sum-frequency vibrational spectroscopy. J Phys Chem B 103(17):3292–3307 CrossRefGoogle Scholar
  7. 7.
    Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145 CrossRefGoogle Scholar
  8. 8.
    Morita A, Ishiyama T (2008) Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys Chem Chem Phys 10(38):5801–5816 CrossRefGoogle Scholar
  9. 9.
    Gracias DH, Chen Z, Shen YR, Somorjai GA (1999) Molecular characterization of polymer and polymer blend surfaces. Combined sum frequency generation surface vibrational spectroscopy and scanning force microscopy studies. Acc Chem Res 32:930–940 CrossRefGoogle Scholar
  10. 10.
    Chen Z (2010) Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog Polym Sci 35(11):1376–1402 CrossRefGoogle Scholar
  11. 11.
    Hirose C, Akamatsu N, Domen K (1992) Formulas for the analysis of the surface SFG spectrum and transformation coefficients of Cartesian SFG tensor components. Appl Spectrosc 46(6):1051–1072 CrossRefGoogle Scholar
  12. 12.
    Hirose C, Akamatsu N, Domen K (1992) Formulas for the analysis of surface sum frequency generation spectrum by CH stretching modes of methyl and methylene groups. J Chem Phys 96(2):997–1004 CrossRefGoogle Scholar
  13. 13.
    Shen YR (ed) (1984) The principles of nonlinear optics. Wiley, New York Google Scholar
  14. 14.
    Zhuang X, Miranda PB, Kim D, Shen YR (1999) Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B 59(19):12632 CrossRefGoogle Scholar
  15. 15.
    The theory section was reproduced with permission from Rangwalla H, Dhinojwala A (2004) J Adhesion 80:37–59 Google Scholar
  16. 16.
    Watanabe N, Yamamoto H, Wada A, Domen K, Hirose C, Ohtake T, Mino N (1994) Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate. Spectrochim Acta, Part A, Mol Biomol Spectrosc 50(8–9):1529–1537 Google Scholar
  17. 17.
    Simpson GJ, Rowlen KL (1999) An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution. J Am Chem Soc 121(11):2635–2636 CrossRefGoogle Scholar
  18. 18.
    Harp GP, Gautam KS, Dhinojwala A (2002) Probing polymer/polymer interfaces. J Am Chem Soc 124(27):7908–7909 CrossRefGoogle Scholar
  19. 19.
    Löbau J, Wolfrum K (1997) Sum-frequency spectroscopy in total internal reflection geometry: signal enhancement and access to molecular properties. J Opt Soc Am B 14(10):2505–2512 CrossRefGoogle Scholar
  20. 20.
    Wilson PT, Briggman KA, Wallace WE, Stephenson JC, Richter LJ (2002) Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference. Appl Phys Lett 80(17):3084–3086 CrossRefGoogle Scholar
  21. 21.
    Wang J, Chen C, Buck SM, Chen Z (2001) Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B 105(48):12118–12125 CrossRefGoogle Scholar
  22. 22.
    Gautam KS, Dhinojwala A (2001) Molecular structure of hydrophobic alkyl side chains at comb polymer-air interface. Macromolecules 34(5):1137–1139 CrossRefGoogle Scholar
  23. 23.
    Gautam KS, Dhinojwala A (2002) Melting at alkyl side chain comb polymer interfaces. Phys Rev Lett 88(14):145501 CrossRefGoogle Scholar
  24. 24.
    Harp GP, Rangwalla H, Yeganeh MS, Dhinojwala A (2003) Infrared-visible sum frequency generation spectroscopic study of molecular orientation at polystyrene/comb-polymer interfaces. J Am Chem Soc 125(37):11283–11290 CrossRefGoogle Scholar
  25. 25.
    Harp GP, Rangwalla H, Li G, Yeganeh MS, Dhinojwala A (2006) Coupling of interfacial motion at polystyrene–alkane interfaces. Macromolecules 39(22):7464–7466 CrossRefGoogle Scholar
  26. 26.
    Nanjundiah K, Dhinojwala A (2005) Confinement-induced ordering of alkanes between an elastomer and a solid surface. Phys Rev Lett 95(15):154301 CrossRefGoogle Scholar
  27. 27.
    Nanjundiah K, Hsu PY, Dhinojwala A (2009) Understanding rubber friction in the presence of water using sum-frequency generation spectroscopy. J Chem Phys 130(2):024702 CrossRefGoogle Scholar
  28. 28.
    Li G, Dhinojwala A, Yeganeh MS (2011) Interference effect from buried interfaces investigated by angular-dependent infrared—visible sum frequency generation technique. J Phys Chem C 115(15):7554–7561 CrossRefGoogle Scholar
  29. 29.
    Schwab AD, Dhinojwala A (2003) Relaxation of a rubbed polystyrene surface. Phys Rev E 67(2):021802 CrossRefGoogle Scholar
  30. 30.
    Oh-e M, Hong S-C, Shen YR (2002) Orientations of phenyl sidegroups and liquid crystal molecules on a rubbed polystyrene surface. Appl Phys Lett 80(5):784–786 CrossRefGoogle Scholar
  31. 31.
    Prasad S, Hanne L, Dhinojwala A (2005) Thermodynamic study of a novel surface ordered phase above the bulk melting temperature in alkyl side chain acrylate polymers. Macromolecules 38(7):2541–2543 CrossRefGoogle Scholar
  32. 32.
    Zhang D, Dougal SM, Yeganeh MS (2000) Effects of UV irradiation and plasma treatment on a polystyrene surface studied by IR—visible sum frequency generation spectroscopy. Langmuir 16(10):4528–4532 CrossRefGoogle Scholar
  33. 33.
    Rangwalla H, Schwab AD, Yudumakan B, Yablon DG, Yeganeh MS, Dhinojwala A (2004) Molecular structure of an alkyl-side-chain polymer-water interface: origins of contact angle hysteresis. Langmuir 20:8625–8633 CrossRefGoogle Scholar
  34. 34.
    Lachat V, Varshney V, Dhinojwala A, Yeganeh MS (2009) Molecular origin of solvent resistance of polyacrylonitrile. Macromolecules 42(18):7103–7107 CrossRefGoogle Scholar
  35. 35.
    Li G, Dhinojwala A, Yeganeh MS (2009) Interfacial structure and melting temperature of alcohol and alkane molecules in contact with polystyrene films. J Phys Chem B 113(9):2739–2747 CrossRefGoogle Scholar
  36. 36.
    Wilson PT, Richter LJ, Wallace WE, Briggman KA, Stephenson JC (2002) Correlation of molecular orientation with adhesion at polystyrene/solid interfaces. Chem Phys Lett 363(1–2):161–168 CrossRefGoogle Scholar
  37. 37.
    Kurian A, Prasad S, Dhinojwala A (2010) Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43(5):2438–2443 CrossRefGoogle Scholar
  38. 38.
    Clancy TC, Jang JH, Dhinojwala A, Mattice WL (2001) Orientation of phenyl rings and methylene bisectors at the free surface of atactic polystyrene. J Phys Chem B 105(46):11493–11497 CrossRefGoogle Scholar
  39. 39.
    Tsige M, Soddemann T, Rempe SB, Grest GS, Kress JD, Robbins MO, Sides SW, Stevens MJ, Webb E (2003) Interactions and structure of poly(dimethylsiloxane) at silicon dioxide surfaces: electronic structure and molecular dynamics studies. J Chem Phys 118(11):5132–5142 CrossRefGoogle Scholar
  40. 40.
    Yurdumakan B, Harp GP, Tsige M, Dhinojwala A (2005) Template-induced enhanced ordering under confinement. Langmuir 21(23):10316–10319 CrossRefGoogle Scholar
  41. 41.
    Brook MA (2000) Silicon in organic, organometallic and polymer chemistry. Wiley, New York Google Scholar
  42. 42.
    Skeist I (ed) (1990) Handbook of Adhesive, 3rd edn. Van Nostrand Reinhold, New York Google Scholar
  43. 43.
    Ahn D, Lipp ED, McMillan CS (2003) Improved self-priming silicone adhesives through selective interfacial enrichment. In: Proceedings 26th annual meeting of the adhesion society. Adhesion Society, Blacksburg, pp 430–432 Google Scholar
  44. 44.
    Ahn D, Shephard NE, Olney PA, McMillan CS (2007) Thermal gradient enabled XPS analysis of PDMS elastomer adhesion to polycarbonate. Macromolecules 40(11):3904–3906 CrossRefGoogle Scholar
  45. 45.
    Smith AL (ed) (1991) The analytical chemistry of silicones. Wiley-Interscience, New York Google Scholar
  46. 46.
    Zhou X, Hu S, Shephard NE, Ahn D (2003) Diffusion-controlled titanate-catalyzed condensation of alkoxysilanes in nonpolar solvents. In: Synthesis and properties of silicones and silicone-modified materials. ACS symposium series, vol 838, pp 375–387 CrossRefGoogle Scholar
  47. 47.
    Comyn J, de Buyl F, Comyn TP (2003) Diffusion of adhesion promoting and crosslinking additives in an uncured silicone sealant. Int J Adhes Adhes 23(6):495–497 CrossRefGoogle Scholar
  48. 48.
    Comyn J, de Buyl F, Shephard NE, Subramaniam C (2002) Kinetics of cure crosslink density and adhesion of water-reactive alkoxysilicone sealants. Int J Adhes Adhes 22(5):385–393 CrossRefGoogle Scholar
  49. 49.
    Gordon GVL, Loren D (2008) A generalized cure model for one-part RTV sealants and adhesives. In: Proceedings of the annual meeting of the adhesion society, pp 298–300 Google Scholar
  50. 50.
    Ismail AE, Grest GS, Heine DR, Stevens MJ, Tsige M (2009) Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water. Macromolecules 42(8):3186–3194 CrossRefGoogle Scholar
  51. 51.
    Chen CY, Wang J, Chen Z (2004) Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG. Langmuir 20:10186–10193 CrossRefGoogle Scholar
  52. 52.
    Lee SH, Ruckenstein E (1987) Surface restructuring of polymers. J Colloid Interface Sci 120(2):529–536 CrossRefGoogle Scholar
  53. 53.
    Park JY, Ahn D, Choi YY, Hwang CM, Takayama S, Lee SH, Lee S-H (2011) Surface chemistry modification of PDMS elastomers with boiling water improves cellular adhesion. Manuscript submitted for publication Google Scholar
  54. 54.
    Kurian A, Prasad S, Dhinojwala A (2010) Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43:2438–2443 CrossRefGoogle Scholar
  55. 55.
    Yurdumakan B, Nanjundiah K, Dhinojwala A (2006) Origin of higher friction for elastomers sliding on glassy polymers. J Phys Chem C 111(2):960–965 CrossRefGoogle Scholar
  56. 56.
    Ye S, Majumdar P, Chisholm B, Stafslien S, Chen Z (2010) Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir 26(21):16455–16462 CrossRefGoogle Scholar
  57. 57.
    Chen Z, Ward R, Tian Y, Eppler AS, Shen YR, Somorjai GA (1999) Surface composition of biopolymer blends biospan-SP/phenoxy and biospan-F/phenoxy observed with SFG, XPS, and contact angle goniometry. J Phys Chem B 103(15):2935–2942 CrossRefGoogle Scholar
  58. 58.
    Ye H, Gu Z, Gracias DH (2006) Kinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy. Langmuir 22(4):1863–1868 CrossRefGoogle Scholar
  59. 59.
    Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12(6):1591–1596 CrossRefGoogle Scholar
  60. 60.
    Schnyder B, Lippert T, Kötz R, Wokaun A, Graubner V-M Nuyken O UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf Sci 532–535, 1067–1071 (2003) CrossRefGoogle Scholar
  61. 61.
    Graubner V-M, Jordan R, Nuyken O, Schnyder B, Lippert T, Kötz R, Wokaun A (2004) Photochemical modification of cross-linked poly(dimethylsiloxane) by irradiation at 172 nm. Macromolecules 37(16):5936–5943 CrossRefGoogle Scholar
  62. 62.
    Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254(2):306–315 CrossRefGoogle Scholar
  63. 63.
    Harp GP, Dhinojwala A (2005) Direct probe of interfacial structure during mechanical contact between two polymer films using infrared visible sum frequency generation spectroscopy. J Adhes 81(3–4):371–379 Google Scholar
  64. 64.
    Schallamach A (1963) A theory of dynamic rubber friction. Wear 6(5):375–382 CrossRefGoogle Scholar
  65. 65.
    Kurian A, Prasad S, Dhinojwala A (2010) Direct measurement of acid-base interaction energy at solid interfaces. Langmuir 26(23):17804–17807 CrossRefGoogle Scholar
  66. 66.
    Roberts AD, Tabor D (1971) The extrusion of liquids between highly elastic solids. Proc R Soc London, Ser A 325(1562):323–345 CrossRefGoogle Scholar
  67. 67.
    Israelachvili JN (1991) Intermolecular & surface forces, 2nd edn. Academic Press, San Diego Google Scholar
  68. 68.
    Andrews EH, Kinloch AJ (1973) Proc R Soc London, Ser A 332:385 CrossRefGoogle Scholar
  69. 69.
    Gent AN, Schultz J (1972) J Adhes 3:281 CrossRefGoogle Scholar
  70. 70.
    Ferry JD (ed) (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York Google Scholar
  71. 71.
    Roan GA (2003) Advances in acrylic hybrid technology. Adhes Sealants Industry 2003:36–40 Google Scholar
  72. 72.
    Schmidt RG, Gordon GV, Dreiss CA, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM (2010) A critical size ratio for viscosity reduction in poly(dimethylsiloxane)-polysilicate nanocomposites. Macromolecules 43(23):10143–10151 CrossRefGoogle Scholar
  73. 73.
    Gordon GV, Schmidt RG, Quintero M, Benton NJ, Cosgrove T, Krukonis VJ, Williams K, Wetmore PM (2010) Impact of polymer molecular weight on the dynamics of poly(dimethylsiloxane)-polysilicate nanocomposites. Macromolecules 43(23):10132–10142 CrossRefGoogle Scholar
  74. 74.
    Gordon GV, Perz SV, Tabler RL, Stasser JL, Owen MJ, Tonge JS (1998) Silicone release coatings: a closer look at release mechanisms. Dow Corning Corporation, Midland, MI
  75. 75.
    Plueddeman EP (ed) (1991) Silane coupling agents, 2nd edn. Plenum Press, New York Google Scholar
  76. 76.
    Chen C, Loch CL, Wang J, Chen Z (2003) Different molecular structures at polymer/silane interfaces detected by SFG. J Phys Chem B 107:10440–10445 CrossRefGoogle Scholar
  77. 77.
    Chen C, Wang J, Loch CL, Ahn D, Chen Z (2004) Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG. J Am Chem Soc 126(4):1174–1179 CrossRefGoogle Scholar
  78. 78.
    Mine K, Nishio M, Sumimura S (1977) Heat curable organopolysiloxane compositions containing adhesion additives. US Patent 4,033,924, July 5 Google Scholar
  79. 79.
    Schulz JR (1978) Self-adhering silicone compositions and preparations thereof. US 4,087,585, May 2 Google Scholar
  80. 80.
    Gellman AJ, Naasz BM, Schmidt RG, Chaudhury MK, Gentle TM (1990) Secondary neutral mass spectrometry studies of germanium-silane coupling agent-polymer interphase. J Adhes Sci Technol 4(7):597–601 CrossRefGoogle Scholar
  81. 81.
    Gentle TE, Schmidt RG, Naasz BM, Gellman AJ, Gentle TM (1992) Organofunctional silanes as adhesion promoters: direct characterization of the polymer/silane interphase. In: Mittal KL (ed) Silanes and other coupling agents. VSP, Utrecht, pp 295–304 Google Scholar
  82. 82.
    Loch CL, Ahn D, Vazquez AV, Chen Z (2007) Diffusion of one or more components of a silane adhesion-promoting mixture into poly(methyl methacrylate). J Colloid Interface Sci 308(1):170–175 CrossRefGoogle Scholar
  83. 83.
    Loch CL, Ahn D, Chen C, Wang J, Chen Z (2004) Sum frequency generation studies at poly(ethylene terephthalate)/silane interfaces: hydrogen bond formation and molecular conformation determination. Langmuir 20:5467–5473 CrossRefGoogle Scholar
  84. 84.
    Loch CL, Ahn D, Chen CY, Chen Z (2006) Sum frequency generation vibrational spectroscopic studies on a silane adhesion promoting mixture at a polymer interface. J Phys Chem B 110:914–918 CrossRefGoogle Scholar
  85. 85.
    Vázquez AV, Boughton AP, Shephard NE, Rhodes SM, Chen Z (2009) Molecular structures of the buried interfaces between silicone elastomer and silane adhesion promoters probed by sum frequency generation vibrational spectroscopy and molecular dynamics simulations. ACS Appl Mater Interfaces 2(1):96–103 CrossRefGoogle Scholar
  86. 86.
    Loch CL, Ahn D, Chen Z (2005) Polymer-silane interactions probed by sum frequency generation vibrational spectroscopy. J Adhes 81:319–345 CrossRefGoogle Scholar
  87. 87.
    Vázquez AV, Shephard NE, Steinecker CL, Ahn D, Spanninga S, Chen Z (2009) Understanding molecular structures of silanes at buried polymer interfaces using sum frequency generation vibrational spectroscopy and relating interfacial structures to polymer adhesion. J Colloid Interface Sci 331(2):408–416 CrossRefGoogle Scholar
  88. 88.
    Meredith JC, Karim A, Amis EJ (2000) High-throughput measurement of polymer blend phase behavior. Macromolecules 33(26):5760–5762 CrossRefGoogle Scholar
  89. 89.
    Chen H-Y, McClelland AA, Chen Z, Lahann J (2008) Solventless adhesive bonding using reactive polymer coatings. Anal Chem 80(11):4119–4124 CrossRefGoogle Scholar
  90. 90.
    Hartmann-Thompson C, Keeley DL, Dvornic PR, Keinath SE, McCrea KR (2007) Hydrogen-bond acidic polyhedral oligosilsesquioxane filled polymer coatings for surface acoustic wave sensors. J Appl Polym Sci 104(5):3171–3182 CrossRefGoogle Scholar
  91. 91.
    Lu X, Li D, Kristalyn CB, Han J, Shephard N, Rhodes S, Xue G, Chen Z (2009) Directly probing molecular ordering at the buried polymer/metal interface. Macromolecules 42(22):9052–9057 CrossRefGoogle Scholar
  92. 92.
    Tschierske C (1998) Non-conventional liquid crystals-the importance of micro-segregation for self-organisation. J Mater Chem 8(7):1485–1508 CrossRefGoogle Scholar
  93. 93.
    Yoon H, Agra-Kooijman DM, Ayub K, Lemieux RP, Kumar S (2011) Direct observation of diffuse cone behavior in de Vries smectic-A and -C phases of organosiloxane mesogens. Phys Rev Lett 106(8):087801 CrossRefGoogle Scholar
  94. 94.
    Park JY, Hwang CM, Lee S-H (2008) Effective methods to improve the biocompatibility of poly(dimethylsiloxane). BioChip J 2(1):39–43 Google Scholar
  95. 95.
    Smith JP, Hinson-Smith V (2004) Product review: SFG coming of age. Anal Chem 76(15):287 A-290 CrossRefGoogle Scholar
  96. 96.
    Richter LJ, Petralli-Mallow TP, Stephenson JC (1998) Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt Lett 23(20):1594–1596 CrossRefGoogle Scholar
  97. 97.
    Vazquez AV, Shephard NE, Steinecker CL, Ahn D, Spanninga S, Chen Z (2009) Understanding molecular structures of silanes at buried polymer interfaces using sum frequency generation vibrational spectroscopy and relating interfacial structures to polymer adhesion. J Colloid Interface Sci 331(2):408–416 CrossRefGoogle Scholar
  98. 98.
    Hernandez M, Chinwangso P, Cimatu K, Srisombat L-O, Lee TR, Baldelli S (2011) Chemical imaging and distribution analysis of mono-, bi-, and tridentate alkanethiol self-assembled monolayers on gold by sum frequency generation imaging microscopy. J Phys Chem C 115(11):4688–4695 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dow Corning CorporationMidlandUSA
  2. 2.Department of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations