Surface Analysis of Silicones

  • Stuart Leadley
  • Lesley-Ann O’Hare
  • Christopher McMillanEmail author
Part of the Advances in Silicon Science book series (ADSS, volume 4)


As many of the desirable performance differences of silicones are related to their surface properties, it is important to be able analyze their surfaces effectively. This chapter presents an overview of key surface analysis techniques that can provide information on the surface morphology, chemical composition and surface physical properties of silicone materials. These techniques are X-ray photoelectron spectroscopy, secondary ion mass spectrometry, scanning electron microscopy and scanning probe microscopy. Both fundamentals and applications to the analysis of silicones are covered. It is evident from a consideration of key examples that in many cases it is a combination of these analytical techniques that provides a clearer picture of the surface properties of silicones.


Analysis of silicone surface morphology and chemical composition X-ray photoelectron spectroscopy Secondary ion mass spectrometry Scanning electron microscopy Scanning probe microscopy Surface structure—properties relationships 


  1. 1.
    Lichtman D (1975) Comparison of the methods of surface analysis and their applications. In: Czanderna AW (ed) Methods of surface analysis. Elsevier, Amsterdam, p 42 Google Scholar
  2. 2.
    Riviere JC (1982) Surface-specific analytical techniques. Philos Trans R Soc Lond A 305:545 CrossRefGoogle Scholar
  3. 3.
    Seah MP, Briggs D (1990) A perspective on the analysis of surfaces and interfaces. In: Briggs D, Seah MP (eds) Practical surface analysis, 2nd edn. Auger and X-ray photoelectron spectroscopy, vol 1. Wiley, New York, pp 1–18 Google Scholar
  4. 4.
    Campbell D, Pethrick RA, White RR (2000) Polymer characterization: physical techniques, 2nd edn. CRC Press, Boca Raton, p 417 Google Scholar
  5. 5.
    Vickerman JC, Gilmore IS (2009) Surface analysis: the principal techniques, 2nd edn. Wiley, New York CrossRefGoogle Scholar
  6. 6. Accessed 26 July 2011
  7. 7.
  8. 8.
    Czichos H, Saito T, Smith LM (2006) Springer handbook of materials measurement methods. Springer, Berlin, pp 153–158 CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Gilmore IS, Seah MP, Johnstone JE (2003) Quantification issues in ToF-SSIMS and AFM co-analysis in two-phase systems, exampled by a polymer blend. Surf Interface Anal 35:888–896 CrossRefGoogle Scholar
  11. 11.
    Aroca RF, Ross DJ, Domingo C (2004) Surface enhanced infrared spectroscopy. Appl Spectrosc 58:324A CrossRefGoogle Scholar
  12. 12.
    Chen Z, Shen YR, Somorjai GA (2002) Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu Rev Phys Chem 53:37–465 CrossRefGoogle Scholar
  13. 13.
    Griffiths P, De Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, New York CrossRefGoogle Scholar
  14. 14.
    Colthrup NB, Daly LH, Wilberley SE (1990) Introduction to infrared and raman spectroscopy, 3rd edn. Academic Press, San Diego Google Scholar
  15. 15.
    Burns DA, Ciurczak EW (2007) Handbook of near-infrared analysis, 3rd edn. CRC Press, Boca Raton Google Scholar
  16. 16.
  17. 17.
    Lipp ED, Smith AL (1991) Infrared, raman, near-infrared and ultraviolet spectroscopy. In: Smith AL (ed) The analytical chemistry of silicones. Wiley-Interscience, New York Google Scholar
  18. 18.
    Sakai Y, Iijima Y, Asakawa D, Hiraoka K (2010) XPS depth profiling of polystyrene etched by electrospray droplet impact. Surf Interface Anal 42:658–661 CrossRefGoogle Scholar
  19. 19.
    Miyayama T, Sanada N, Suzuki M, Hammond JS, Si S-QD, Takahara A (2010) X-ray photoelectron spectroscopy study of polyimide thin films with Ar cluster ion depth profiling. J Vac Sci Technol, A, Vac Surf Films 28:L1 CrossRefGoogle Scholar
  20. 20.
    Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, Chichester CrossRefGoogle Scholar
  21. 21.
    Clark DT, Dilks A, Peeling J, Thomas RH (1975) Applications of ESCA to studies of structure and bonding in polymers. Faraday Disc Chem Soc 60:183–195 CrossRefGoogle Scholar
  22. 22.
    Duel LA, Owen MJ (1983) ESCA studies of silicone release coatings. J Adhes 16:49–59 Google Scholar
  23. 23.
    Alexander MR, Short RD, Jones FR, Stollenwerk M, Zabold J, Michaeli W (1996) An X-ray photoelectron spectroscopic investigation into the chemical structure of deposits formed from hexamethyldisiloxane oxygen plasmas. J Mater Sci 31:1879–1885 CrossRefGoogle Scholar
  24. 24.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers—the scienta ESCA300 database. Wiley, Chichester Google Scholar
  25. 25.
    Noll W (1968) Chemistry and technology of silicones. Academic Press, New York Google Scholar
  26. 26.
    Morra M, Ochiello E, Marola R, Garbassi F, Humphrey P, Johnson DJ (1990) On the ageing of oxygen plasma-treated polydimethylsiloxane sufaces. J Colloid Interface Sci 137:11 CrossRefGoogle Scholar
  27. 27.
    Fakes DW, Newton JM, Watts JF, Edgell MJ (1987) Surface modification of a contact lens co-polymer by plasma-discharge treatments. Surf Interface Anal 10:416–423 CrossRefGoogle Scholar
  28. 28.
    Ward LJ, Schofield WCE, Badyal JPS, Goodwin AJ, Merlin PJ (2003) Atmospheric pressure glow discharge deposition of polysiloxanes and SiOx films. Langmuir 19:2110–2114 CrossRefGoogle Scholar
  29. 29.
    Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve-fitting of the Si 2p core level. Appl Surf Sci 137:179–183 CrossRefGoogle Scholar
  30. 30.
    Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wilkström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6851 CrossRefGoogle Scholar
  31. 31.
    Roualdes S, Berjoan R, Durand J (2001) 29Si NMR and Si 2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapour deposition. Sep Purif Technol 25:391 CrossRefGoogle Scholar
  32. 32.
    O’Hare L-A, Parbhoo B, Leadley SR (2004) Development of a methodology for XPS curve-fitting of the Si 2p core level of siloxane materials. Surf Interface Anal 36:1427–1434 CrossRefGoogle Scholar
  33. 33.
    O’Hare L-A, Hynes A, Alexander MR (2007) A methodology for curve-fitting of the XPS Si 2p core level from thin siloxane coatings. Surf Interface Anal 39:926–936 CrossRefGoogle Scholar
  34. 34.
    O’Hare L-A (2005) Surface characterization of atmospheric pressure plasma-modified and -deposited polymers. Dow Corning Ltd and the Open University Google Scholar
  35. 35.
    Roth J, Albrecht V, Nitscke M, Bellman C, Simon F, Zscoche S, Michel S, Luhmann C, Grundke K, Voit B (2011) Tailoring the surface properties of silicone elastomers to improve adhesion of epoxy topcoat. J Adhes Sci Technol 25:1–26 CrossRefGoogle Scholar
  36. 36.
    Owen MJ (2010) Fluorosilicones in advances in silicones and silicone-modified materials. In: Clarson S (ed) ACS symposium series. Am Chem Soc, Washington, Chap 9 Google Scholar
  37. 37.
    Zisman WA (1964) Contact angles, wettability and adhesion. In: Fowkes FM (ed) Advances in chemistry series, vol 43. Am Chem Soc, Washington Google Scholar
  38. 38.
    Conrad MPC (2009) Synthesis, characterization and thermal decomposition of hybrid and reverse fluorosilicones. Dissertation. University of Toronto Google Scholar
  39. 39.
    Clark DT, Kilcast D, Musgrave WKR (1971) J Chem Soc, Chem Commun 4:517 Google Scholar
  40. 40.
    Clark DT, Kilcast D, Musgrave WKR (1973) J Polym Sci Polym Chem Ed 11:389 CrossRefGoogle Scholar
  41. 41.
    Beamson G, Briggs D (2000) The XPS of Polymers Database, SurfaceSpectra Ltd. (Manchester UK) © 2000
  42. 42.
    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Science 318:1618 CrossRefGoogle Scholar
  43. 43.
    Mabry JM, Vij A, Iacono ST, Viers BD (2008) Angew Chem, Int Ed Engl 47:4137–4140 CrossRefGoogle Scholar
  44. 44.
    Chen L, Hook DJ, Valint PL, Gardella JA (2008) X-ray photoelectron spectroscopy studies of water-induced surface reorientation of amphiphilic poly(2-hydroxyethylmethacrylate-g-dimethylsiloxane) copolymers using cryogenic sample handling techniques. J Vac Sci Technol, A, Vac Surf Films 26:616–623 CrossRefGoogle Scholar
  45. 45.
    Ponjée MWG, Reijme MA, Denier van der Gon AW, Brongersma HH, Langeveld-Voss BMW (2002) Intermolecular segregation of siloxane in P3HT: surface quantification and molecular surface-structure. Polymer 43:77–85 CrossRefGoogle Scholar
  46. 46.
    Ramamoorthy A, Rahman M, Mooney DA, MacElroy JMD, Dowling DP (2008) Thermal stability studies of atmospheric plasma deposited siloxane films deposited on VycorTM+ glass. Surf Coat Technol 202:4130–4136 CrossRefGoogle Scholar
  47. 47.
    Ramamoorthy A, Rahman M, Mooney DA, MacElroy JMD, Dowling DP (2009) The influence of process parameters on chemistry, roughness and morphology of siloxane films deposited by an atmospheric plasma jet system. Plasma Proces Polym 6:S530–S536 CrossRefGoogle Scholar
  48. 48.
    Boscher ND, Choquet P, Duday D, Verdier S (2010) Chemical compositions of organosilicone thin films deposited on aluminium foil by atmospheric pressure dielectric barrier discharge and their electrochemical behavior. Surf Coat Technol 205:2438–2448 CrossRefGoogle Scholar
  49. 49.
    Xu Y, Yin H, Yuan S, Chen Z (2009) Film morphology and orientation of amino silicone adsorbed onto cellulose substrate. Appl Surf Sci 255:8435–8442 CrossRefGoogle Scholar
  50. 50.
    Cao S, Deng X, Liu B, Luo R, Chen J (2006) The preparation and characterization of a novel siloxane biomaterial. Polym Compos 14:833–840 Google Scholar
  51. 51.
    Egitto FD, Matienzo LJ (2006) Transformation of poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: factors affecting modification. J Mater Sci 41:6362–6373 CrossRefGoogle Scholar
  52. 52.
    Morra M, Occhiello E, Marola R, Garbassi F, Humphrey P, Johnson D (1990) On the ageing of oxygen plasma-treated polydimethylsiloxane surfaces. J Colloid Interface Sci 137:11–24 CrossRefGoogle Scholar
  53. 53.
    Roth J, Albrecht V, Nitscke M, Bellman C, Simon F, Zscoche S, Michel S, Luhmannm C, Grundke K, Voit B (2008) Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24:12603–12611 CrossRefGoogle Scholar
  54. 54.
    O’Neill L, Shephard N, Leadley SR, O’Hare L-A (2008) Atmospheric pressure plasma polymerized primer to promote adhesion of silicones. J. Adhes 84:562–577 CrossRefGoogle Scholar
  55. 55.
    Nwankire CE, Dowling DP (2010) Influence of atmospheric plasma deposited coatings on the adhesion of silicone elastomer to stainless steel. J Adhes Sci Technol 24:1291–1302 CrossRefGoogle Scholar
  56. 56.
    Ahn D, Shephard NE, Olney PA, McMillan CS (2007) Thermal gradient enabled XPS analysis of PDMS elastomer adhesion to polycarbonate. Macromolecules 40:3904–3906 CrossRefGoogle Scholar
  57. 57.
    Mahoney CM, Gardella JA, Rosenfeld JC (2002) Surface characterization and adhesive properties of poly(imidesiloxane) copolymer containing multiple siloxane segment lengths. Macromolecules 35:5256–5266 CrossRefGoogle Scholar
  58. 58.
    Perz SV, McMillan CS, Owen MJ (2001) Wettability of fluorosilicone surfaces. In: Castner DG, Grainger DW (eds) Fluorinated surfaces, coatings and films. ACS symposium series. Am Chem Soc, Washington Google Scholar
  59. 59.
    Ren L, Yin S, Zhao L, Wang Y, Chen H, Qu J (2008) Appl Surf Sci 255:473–476 CrossRefGoogle Scholar
  60. 60.
    Yin S, Ren Y, Zhao L, Juang T, Chen H, Qu J (2008) Appl Surf Sci 255:483–485 CrossRefGoogle Scholar
  61. 61.
    Nwankire CE, Favaro G, Duong Q-H, Dowling DP (2011) Enhancing the mechanical properties of superhydrophobic atmospheric pressure plasma deposited siloxane coatings. Plasma Proces Polym 8:305–315 CrossRefGoogle Scholar
  62. 62.
    Guan G-M, Lo Z-H, Qiu J-J, Tang P-P (2010) Eur Polym J 46:1582–1593 CrossRefGoogle Scholar
  63. 63.
    Thanawala SK, Chaudhury MK (2000) Langmuir 16:1256–1260 CrossRefGoogle Scholar
  64. 64.
    Ghosh N, Bajoria A, Vaidya AA (2009) ACS Appl Mater Interfaces 1:2636–2644 CrossRefGoogle Scholar
  65. 65.
    Guan C-M, Luo Z-H, Qiu J-J, Tang P-P (2010) Eur Polym J 46:1582–1593 CrossRefGoogle Scholar
  66. 66.
    Davies MC, Lyn RAP (1990) Crit Rev Biocompat 5:297 Google Scholar
  67. 67.
    Vickerman JC (1987) Chemistry in Britain, October, 969 Google Scholar
  68. 68.
    Dong X, Proctor A, Hercules DM (1997) Characterization of poly(dimethylsiloxane)s by time-of-flight secondary ion mass spectrometry. Macromolecules 30:63–70 CrossRefGoogle Scholar
  69. 69.
    Briggs D (1992) Static SIMS—surface analysis of organic materials. In: Briggs D, Seah MP (eds) Practical surface analysis, 2nd edn. Ion and neutral spectroscopy, vol 2. Wiley, New York, pp 367–423 Google Scholar
  70. 70.
    Briggs D (1998) Surface analysis of polymers by XPS and static SIMS. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  71. 71.
    Henderson A, Briggs D, Vickerman JC (eds) (2006) The SurfaceSpectra static SIMS library: version 4, SurfaceSpectra Ltd Google Scholar
  72. 72.
    Inoue M, Murase A, Sugira M (2004) Molecular weight evaluation of poly(dimethylsiloxane) on solid surfaces using silver deposition/TOF-SIMS. Anal Sci 20:1623–1628 CrossRefGoogle Scholar
  73. 73.
    Yang L, Shirahata N, Saini G, Zhang F, Pei L, Asplund MC, Kurth DG, Ariga K, Sautter K, Nakanishi T, Smentkowski V, Linford MR (2009) Effect of surface free energy on PDMS transfer in microcontact printing and its application to TOF-SIMS to probe surface energies. Langmuir 25:5674–5683 CrossRefGoogle Scholar
  74. 74.
    Glasmaester K, Gold J, Andersson A-S, Sutherland DS, Kasemo B (2003) Silicone transfer during microcontact printing. Langmuir 19:5475–5483 CrossRefGoogle Scholar
  75. 75.
    Yunus S, de Crombrugghe de Looringhe C, Poleunis C, Delcorte A (2007) Diffusion of oligomers from polydimethylsiloxane stamps on microcontact printing: surface analysis and possible applications. Surf Interface Anal 39:922–925 CrossRefGoogle Scholar
  76. 76.
    Hale PS, Kappen P, Prissanaroon W, Brack N, Pigram PJ, Liesegang J (2007) Minimizing silicone transfer during micro-contact printing. Appl Surf Sci 253:3746–3750 CrossRefGoogle Scholar
  77. 77.
    Graham DJ, Price DD, Ratner BD (2002) Solution assembled and microcontact printed monolayers of dodecanethiol on gold: a multivariate exploration of chemistry and contamination. Langmuir 18:1518–1527 CrossRefGoogle Scholar
  78. 78.
    Hauser J, Zietlow J, Koeller M, Esenwein SA, Halfmann H, Awakowicz P, Steinau HU (2009) Enhanced cell adhesion to silicone implant material through plasma surface modification. J Mater Sci, Mater Med 20:2541–2548 CrossRefGoogle Scholar
  79. 79.
    Delcorte A, Befahy S, Poleunis C, Troosters M, Bertrand P (2004) Improvement of metal adhesion to silicone films: a TOF-SIMS study. In: Mittal KL (ed) Adhesion aspects of thin films, vol 2, VSP, pp 1–12 Google Scholar
  80. 80.
    Zhuang H, Gardella JA, Hercules DM (1997) Determination of the distribution of poly(dimethylsiloxane) segment lengths at the surface of poly[(dimethylsiloxane)-urethane]-segmented copolymers by time-of-flight secondary ion mass spectrometry. Macromolecules 30:1153–1157 CrossRefGoogle Scholar
  81. 81.
    Chen J, Gardella JA (1998) Solvent effects on the surface composition of poly(dimethylsiloxane)-co-polystyrene/polystyrene blends. Macromolecules 31:9328–9336 CrossRefGoogle Scholar
  82. 82.
    Hinder SJ, Lowe C, Maxted JT, Watts JF (2005) Migration and segregation phenomena of a silicone additive in a multilayer organic coating. Prog Org Coat 54:104–112 CrossRefGoogle Scholar
  83. 83.
    Berthiaume MD, Merrifield JH, Riccio DA (1995) Effects of silicone pretreatment on oxidative hair damage. J Soc Cosmet Chem 46:231–245 Google Scholar
  84. 84.
    Brown MA, Hutchins TA, Garmsky CJ, Wagner MS, Page SH, Marsh JM (2010) Liquid crystal colloidal structures for increased silicone deposition efficiency on colour-treated hair. Sci Int J Cosmetic 32:193–203 CrossRefGoogle Scholar
  85. 85.
    Davidson MW, Abramowitz M (2011) Optical microscopy, online at Accessed 26 July 2011
  86. 86.
    Microscopy Resource Center (2011) Olympus America, online resource at Accessed 26 July 2011
  87. 87.
    MicroscopyU, Nikon, online resource available at Accessed 26 July 2011
  88. 88.
    Murphy D (2001) Fundamentals of light microscopy and electronic imaging. Wiley, New York Google Scholar
  89. 89.
    Sawyer L, Grubbs D, Meyers G (2008) Polymer microscopy, 3rd edn. Springer, Berlin Google Scholar
  90. 90.
    Goldstein J, Newbury D, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and x-ray microanalysis, 3rd edn. Springer, Berlin CrossRefGoogle Scholar
  91. 91.
    Michler GH (2008) Electron microscopy of polymers. Springer Laboratory Google Scholar
  92. 92.
  93. 93.
  94. 94.
  95. 95.
    Guryca V, Hobzova R, Pradny M, Sirc J, Michalek J (2007) Surface morphology of contact lenses probed with microscopy techniques. Contact lens anterior eye. J Br Contact Lens Assoc 30:215–222 CrossRefGoogle Scholar
  96. 96.
    Critchlow GW, Litychfield RE, Sutherland I, Grandy DB, Wilson S (2006) A review and comparative study of release coatings for optimized abhesion in resin transfer moulding applications. Int J Adhes Adhes 26:577–599 CrossRefGoogle Scholar
  97. 97.
    Polizos G, Tuncer E, Qiu X, Aytug T, Kidder M, Messman JM, Sauers I (2011) Nonfunctionalized polydimethylsiloxane superhydrophobic surfaces based on hydrophobic–hydrophilic interactions. Langmuir 27:2953–2957 CrossRefGoogle Scholar
  98. 98.
    Lin M-H, Chen C-F, Shiu J-W, Chen C-H, Gwo S (2009) Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range. J Am Chem Soc 131:10984–10991 CrossRefGoogle Scholar
  99. 99.
    Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B (2006) Modification of surface properties of a poly(dimethylsiloxane)-based elastomer, TRV11, upon exposure to seawater. Langmuir 22:7217–7225 CrossRefGoogle Scholar
  100. 100.
    Allwork SP, Norton R (1976) Surface ultrastructure of silicone rubber aortic valve poppets after long-term implantation. A scanning electron microscope study of four poppets. Thoirax 31:742–752 CrossRefGoogle Scholar
  101. 101.
    Freeman HA, Henrich RT (1991) Evaluation of silicone breast implant surfaces by transmission and scanning electron microscopy. In: Microbeam analysis, San Francisco 26th, pp 19–20 Google Scholar
  102. 102.
    Wickham MG, Rudolph R, Abraham JL (1978) Silicon identification in prosthesis-associated fibrous capsules. Science 27:437–439 CrossRefGoogle Scholar
  103. 103.
    Sauermann G, Duesing HJ, Kopplow HJ, Roemling E, Wittern W (1979) Effect of silicone oil-containing skin products. Aerztliche Kosmetologie 9:110–112, 114, 116 Google Scholar
  104. 104.
    Ratner BD, Hoffman AS (1980) Surface characterization of hydrophilic-hydrophobic copolymer model systems. I. A preliminary study. Polymer Science and Technology (Plenum), 12B (Adhes Adsorption Polym, Part B) 691–706 Google Scholar
  105. 105.
    Wilson JE, Freeman HA (1981) Analysis of silicone-coated papers with the scanning electron microprobe. Tappi J 64:95–97 Google Scholar
  106. 106.
    Vlastos A, Gubanski S (1991) Surface structural changes of naturally aged silicone and EPDM composite insulators. IEEE Trans Power Deliv 6:888–890 CrossRefGoogle Scholar
  107. 107.
    Feng L, Li S, Li Y, Li H, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860 CrossRefGoogle Scholar
  108. 108.
    Ghosh N, Bajoria A, Vaidya AA (2009) Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil repellant surfaces. ACS Appl Mater Interfaces 1:2636–2644 CrossRefGoogle Scholar
  109. 109.
    Longley JE, Chaudhury MK (2010) Determination of the modulus of thin sol-gel films using buckling instability. Macromolecules 43:680–681 CrossRefGoogle Scholar
  110. 110.
    Kanamori K, Nakanishi K, Hirao K, Jinnai J (2003) Interface-directed web-to-pillar transition of microphase-separated siloxane gels. Langmuir 19:9101–9103 CrossRefGoogle Scholar
  111. 111.
    Takoa H, Okoshi M, Inoue N (2004) Swelling and modification of silicone surface by F2 laser irradiation. Appl Phys A 79:1571–1574 Google Scholar
  112. 112.
    Orhan J-B, Parashar VK, Flueckiger J, Gijs MAM (2008) Internal modification of poly(dimethylsiloxane) microchannels with borosilicate glass coating. Langmuir 24:9154–9161 CrossRefGoogle Scholar
  113. 113.
    Patrito N, McCague C, Norton PR, Petersen NO (2001) Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethyl siloxane). Langmuir 23:715–719 CrossRefGoogle Scholar
  114. 114.
    Voelcker N, Klee D, Hoecker H, Langefeld S (2001) Functionalization of silicone rubber for the covalent immobilization of fibronectin. J Mater Sci, Mater Med 12:111–119 CrossRefGoogle Scholar
  115. 115.
    Barrios CA, Qingwei X, Cutright T, Newby BZ (2005) Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment. Colloids Surf B, Biointerfaces 41:83–93 CrossRefGoogle Scholar
  116. 116.
    Vilville P, Lazzaroni R (2003) Impact of silicone-based block copolymer surfactants on the surface and bulk microscopic organization of a biodegradable polymer, poly(e-caprolactone). Biomacromolecules 4:696–703 CrossRefGoogle Scholar
  117. 117.
    Yan P, Qiu L (2009) Preparation and characterisation of polysiloxane-acrylate latexes with MPS-PDMS oligomer as macromonomer. J Appl Polym Sci 114:760–768 CrossRefGoogle Scholar
  118. 118.
    Keüpczyn’ski M, Lewandowska J, Romek M, Zapotoczny S, Ganachaud F, Nowakowska M (2007) Silicone nanocapsules templated inside the membranes of catanionic vesicles. Langmuir 23:7314–7320 CrossRefGoogle Scholar
  119. 119.
    Ogoshi T, Fujiwara T, Bertolucci M, Galli G, Chiellini E, Chujo Y, Wynne KJ (2004) Tapping mode AFM evidence for an amorphous reticular phase in a condensation-cured hybrid elastomer: alpha, omega-dihydroxypoly(dimethylsiloxane)/poly(diethoxysiloxane)/fumed silica nanoparticles. J Am Chem Soc 126:12284–12285 CrossRefGoogle Scholar
  120. 120.
    Le HH, Ilisch S, Radusch H-J, Steinberger H (2008) Macro- and microdispersion of carbon black in liquid silicone rubbers. Plast Rubber Compos 37:367–375 CrossRefGoogle Scholar
  121. 121.
    Purohit P, Somasundaran P, Kulkarni R (2006) Study of properties of modified silicones at solid-liquid interface: fabric–silicone interactions. J Colloid Interface Sci 298:987–990 CrossRefGoogle Scholar
  122. 122.
    La Torre C, Bhushan B, Yang J-Z, Torgersen PM (2006) Nanotribological effects of silicone type, silicone deposition level and surfactant type on human hair using atomic force microscopy. J Cosmet Sci 57:37–56 Google Scholar
  123. 123.
    Gonzales-Meijome JM, Lopez-Alemany A, Almeida JB, Parafita MA (2008) Surface AFM microscopy of unworn and worn samples of silicone hydrogel contact lenses. J Biomed Mater Res, Part B, Appl Biomater 88B:75–82 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Stuart Leadley
    • 1
  • Lesley-Ann O’Hare
    • 2
  • Christopher McMillan
    • 2
    Email author
  1. 1.Dow Corning EuropeSeneffeBelgium
  2. 2.Dow Corning CorporationMidlandUSA

Personalised recommendations