Skip to main content

Oxidative Surface Treatment of Silicone Rubber

  • Chapter
Silicone Surface Science

Part of the book series: Advances in Silicon Science ((ADSS,volume 4))

Abstract

The mechanisms behind the loss and recovery of hydrophobicity of silicone rubber after exposure to oxidative surface treatments, such as UV irradiation, corona or plasma, are presented. Initially, polar groups are introduced into the surface region, mainly in the form of silanol groups. The oxidation then proceeds towards a vitrified silica-like surface layer. The formation of complex buckling patterns, formed by the mechanical stress difference between the silica-like layer and the rubbery bulk opens the way to a wide range of new applications, such as gratings and flexible electronics. The main challenge is to address the hydrophobic recovery process after an oxidative surface treatment. In some applications, such as high-voltage outdoor insulation materials, this recovery is desired but usually it is not. The most common methods of inhibiting hydrophobic recovery are extraction of the silicone rubber to remove extractable oligomers, storage of oxidized silicone rubber in water directly after treatment, or the grafting of polar species onto the oxidized surface.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-3876-8_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owen MJ (1990) In: Ziegler J, Fearon FWG (eds) Silicon-based polymer science, a comprehensive resource. Advances in Chemistry Series, vol 224. Am Chem Soc, Washington

    Google Scholar 

  2. Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. 1. Thermal degradation in controlled atmospheres. J Polym Sci 7:537–549

    CAS  Google Scholar 

  3. Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul 6:703–717

    Article  CAS  Google Scholar 

  4. Doyle CD (1958) Logarithmic thermal degradation of a silicone rubber in air. J Polym Sci 31:95–104

    Article  CAS  Google Scholar 

  5. Kucera M, Jelinek M, Lankova J, Vesely K (1961) Termination in anionic polymerization of octamethylcyclotetrasiloxane. Formation of stable complexes on active sites. J Polym Sci 53:311–320

    CAS  Google Scholar 

  6. Kucera M, Lanikova J, Jelinek M (1961) Neutralization of residual catalyst in polydimethylsiloxane. Effect of neutralization on the thermal stability of the polymer. J Polym Sci 53:301–310

    Google Scholar 

  7. Morra M, Occhiello E, Marola R, Garbassi F, Humphrey P, Johnson D (1990) On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J Colloid Interface Sci 137:11–24

    Article  CAS  Google Scholar 

  8. Fritz JL, Owen MJ (1995) Hydrophobic recovery of plasma-treated polydimethylsiloxane. J Adhes 54:33–45

    CAS  Google Scholar 

  9. Roth J, Albrecht V, Nitschke M, Bellman C, Simon F, Zschoche S, Michel S, Luthmann C, Grundke K, Voit B (2008) Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24:12603–12611

    Article  CAS  Google Scholar 

  10. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315

    Article  CAS  Google Scholar 

  11. Graubner VM, Jordan R, Nuyken O, Schnyder B, Lippert T, Kötz R, Wokaun A (2004) Photochemical modification of cross-linked poly(dimethylsiloxane) by irradiation at 172 nm. Macromolecules 37:5936–5943

    Article  CAS  Google Scholar 

  12. Quyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon dioxide by UV/ozone photochemical processes. Chem Mater 12:1591–1596

    Article  Google Scholar 

  13. Hillborg H, Tomczak N, Oláh A, Schönherr H, Vancso GJ (2004) Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/Ozone-treated cross-linked poly(dimethylsiloxane). Langmuir 20:785–794

    Article  CAS  Google Scholar 

  14. Song J, Duval JFL, Stuart MAC, Hillborg H, Gunst U, Arlinghaus HF, Vancso GJ (2007) Surface ionization and nanoscale chemical composition of UV-irradiated poly(dimethylsiloxane) probed by chemical force microscopy, force titration, and electro kinetic measurements. Langmuir 23:5430–5438

    Article  CAS  Google Scholar 

  15. Oláh A, Hillborg H, Vancso GJ (2005) Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl Polym Sci 239:410–423

    Google Scholar 

  16. Hillborg H, Sandelin M, Gedde UW (2001) Hydrophobic recovery of polydimethylsiloxane after exposure to partial discharges as a function of crosslink density. Polymer 42:7349–7362

    Article  CAS  Google Scholar 

  17. Hillborg H, Gedde UW (1998) Hydrophobic recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39:1991–1998

    Article  CAS  Google Scholar 

  18. Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  19. Tóth A, Bertóti I, Blazsó M, Bánhegyi G, Bognár A, Szaplonczay P (1994) Oxidative damage and recovery of silicone rubber surfaces. I. X-ray photoelectron spectroscopic study. J Appl Polym Sci 52:1293–1307

    Article  Google Scholar 

  20. Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) A study of HMDSO/O2 plasma deposits using a high sensitivity and -energy resolution XPS instrument. Curve fitting of the Si 2p core level. Appl Surf Sci 137:179–183

    Article  CAS  Google Scholar 

  21. Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, Cambridge

    Google Scholar 

  22. Dan E, Guillet JE (1973) Photochemistry of ketone polymers. X. Chain scission reactions in the solid state. Macromolecules 6:230–235

    Article  CAS  Google Scholar 

  23. Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6581–6863

    Article  Google Scholar 

  24. Béfahy S, Lipnik P, Pardoen T, Nascimento C, Patris B, Bertrand P, Yunus S (2009) Thickness and elastic modulus of plasma treated PDMS silica-like surface layer. Langmuir 26:3372–3375

    Article  Google Scholar 

  25. Graubner VM, Clemens D, Gutberlet T, Kötz R, Lippert T, Nuyken O, Schnyder B, Wokaun A (2005) Neutron reflectometry and spectroscopic ellipsometry studies of cross-linked poly(dimethylsiloxane) after irradiation at 172 nm. Langmuir 21:8940–8946

    Article  CAS  Google Scholar 

  26. Mirley CL, Koberstein JT (1995) A room temperature method for the preparation of ultrathin SiO x films from Langmuir–Blodgett layers. Langmuir 11:1049–1052

    Article  CAS  Google Scholar 

  27. Bar G, Delineau L, Hafele A, Whangbo MH (2001) Investigation of the stiffness change in the indentation force and the hydrophobic recovery of plasma-oxidized polydimethylsiloxane surfaces by tapping mode atomic force microscopy. Polymer 42:3627–3632

    Article  CAS  Google Scholar 

  28. Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297

    Article  CAS  Google Scholar 

  29. Mills KL, Zhu X, Takayama S, Thouless MD (2008) The mechanical properties of a surface-modified layer on polydimethylsiloxane. J Mater Res 23:37–47

    Article  CAS  Google Scholar 

  30. Bowden N, Huck WTS, Paul KE, Whitesides GM (1999) The controlled formation of ordered sinusoidal structures by plasma oxidation of an elastic polymer. Appl Phys Lett 75:2557–2559

    Article  CAS  Google Scholar 

  31. Roucoules V, Ponche A, Geissler A, Siffer F, Vidal L, Ollivier S, Vallat MF, Marie P, Voegel JC, Hemmerlé J, Schaaf P (2007) Changes in silicone elastomeric surface properties under stretching induced by three surface treatments. Langmuir 23:13136–13145

    Article  CAS  Google Scholar 

  32. Huck WTS, Bowden N, Onck P, Pardoen T, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar substrates. Langmuir 16:3497–3501

    Article  CAS  Google Scholar 

  33. Huck WTS (2005) Artificial skins-Hierarchical wrinkling. Nat Mater 4:271–272

    Article  CAS  Google Scholar 

  34. Chung JY, Youngblood JP, Stafford CM (2007) Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3:1163–1169

    Article  CAS  Google Scholar 

  35. Tsougeni K, Tserepi A, Boulousis G, Constantoudis V, Gogolides E (2007) Control of nanotexture and wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Process Polym 4:398–405

    Article  CAS  Google Scholar 

  36. Moon MW, Vaziri A (2009) Surface modification of polymers using a multi-step plasma treatment. Scr Mater 60:44–47

    Article  CAS  Google Scholar 

  37. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–149

    Article  CAS  Google Scholar 

  38. Wang JH, Chen CF, Ho JR, Shih TK, Chen CC, Whang WT, Yang JY (2009) One-step fabrication of surface-relief diffusers by stress-induced undulations on elastomers. Opt Laser Technol 41:804–808

    Article  CAS  Google Scholar 

  39. Görn P, Wagner S (2010) Topographies of plasma-hardened surfaces of poly(dimethylsiloxane). J Appl Phys 108:093522

    Article  Google Scholar 

  40. Owen MJ, Gentle M, Orbeck T, Williams DE (1988) Dynamic wettability of hydrophobic polymers. In: Andrade JD (ed) Polymer surface dynamics. Plenum Press, New York

    Google Scholar 

  41. Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226:231–236

    Article  CAS  Google Scholar 

  42. Kim J, Chaudhury MK, Owen MJ (2006) Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers. J Colloid Interface Sci 293:364–375

    Article  CAS  Google Scholar 

  43. Donzel C, Geissler M, Bernard A, Wolf H, Michel B, Hilborn J, Delamarche E (2001) Hydrophilic poly(dimethylsiloxane) stamps for microcontact printing. Adv Mater 13:1164–1167

    Article  CAS  Google Scholar 

  44. Pinto S, Alves P, Matos CM, Santos AC, Rodriques LR, Teixeira JA, Gil MH (2010) Poly(dimethylsiloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surf B, Biointerfaces 81:20–26

    Article  CAS  Google Scholar 

  45. Roth J, Albrecht V, Nitschke M, Bellman C, Simon F, Zschoche S, Michel S, Luthmann C, Voit B, Grundke K (2011) Tailoring the surface properties of silicone elastomers to improve adhesion of epoxy topcoat. J Adhes Sci Technol 25:1–26

    Article  CAS  Google Scholar 

  46. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed Engl 37:551–575

    Article  Google Scholar 

  47. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nature Protocols 5:491–502

    Article  CAS  Google Scholar 

  48. Semlyen JA, Clarson SJ (1993) Silicone polymers. Prentice-Hall, Englewood

    Google Scholar 

  49. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  50. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320

    Article  CAS  Google Scholar 

  51. Langowski BA, Uhrich KE (2005) Oxygen plasma-treatment effects on silicone transfer. Langmuir 21:6366–6372

    Article  CAS  Google Scholar 

  52. Kim JH, Hwhang HS, Hahm SW, Khang DY (2010) Hydrophobically recovered and contact printed siloxane oligomers for general-purpose surface patterning. Langmuir 26:13015–13029

    Article  CAS  Google Scholar 

  53. Makamba H, Kim JH, Lim K, Park N, Hahn JH (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619

    Article  CAS  Google Scholar 

  54. Martin BD, Brandow SL, Dressick WJ, Schull TL (2000) Fabrication and application of hydrogel stamps for physisorptive micro contact printing. Langmuir 16:9944–9946

    Article  CAS  Google Scholar 

  55. Tan SH, Nguyen NT, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannels. Biomicrofluidics 4:032204

    Article  Google Scholar 

  56. Wang B, Chen L, Abdulali-Kanji Z, Horton JH, Oleschuk RD (2003) Aging effects on oxidized and amine-modified poly(dimethylsiloxane) surfaces studied with chemical force titrations: effects on electroosmotic flow rate in microfluidic channels. Langmuir 19:9792–9798

    Article  CAS  Google Scholar 

  57. Chau K, Millare B, Lin A, Upadhyayula S, Nuñez V, Xu H, Vullev VI (2011) Dependence of the quality of adhesion between poly(dimethylsiloxane) and glass surfaces on the composition of the oxidizing plasma. Microfluid Nanofluid 10:907–917

    Article  CAS  Google Scholar 

  58. Vlastós A, Gubanski SM (1991) Wettability of naturally aged silicone and EPDM insulators. IEEE Trans Power Deliv 5:1527–1535

    Google Scholar 

  59. Kim SH, Cherney EA, Hackam R (1990) Loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings. IEEE Trans Power Deliv 5:1491–1500

    Article  CAS  Google Scholar 

  60. Li C, Zhao L, Xiong J, Zhang S, Yao J (2008) Influence of seasons on hydrophobicity of silicone rubber insulators in semi-wet warm-temperature zone of China. IEEE Trans Dielectr Electr Insul 15:1081–1088

    Article  CAS  Google Scholar 

  61. Gustavsson TG, Gubanski SM, Hillborg H, Karlsson S, Gedde UW (2001) Ageing of silicone rubber under ac and dc voltages in a coastal environment. IEEE Trans Dielectr Electr Insul 8:1029–1039

    Article  CAS  Google Scholar 

  62. Kumagai S, Yoshimura N (2004) Polydimethylsiloxane and alumina trihydrate system subjected to dry-band discharges or high temperature. Part 1. Chemical structure. IEEE Trans Dielectr Electr Insul 11:691–700

    Article  CAS  Google Scholar 

  63. Kumagai S, Yoshimura N (2004) Polydimethylsiloxane and alumina trihydrate system subjected to dry-band discharges or high temperature. Part 2. Electrical insulation. IEEE Trans Dielectr Electr Insul 11:701–707

    Article  CAS  Google Scholar 

  64. Sigmond RS, Sigmond T, Goldman A, Goldman M (1991) On the role of water in the ageing of polymers in air-insulated electrical systems. IEEE Trans Electr Insul 26:770–775

    Article  CAS  Google Scholar 

  65. Gubanski SM, Vlastós AE (1990) Wettability of naturally aged silicone and EPDM composite insulators. IEEE Trans Power Deliv 5:1527–1535

    Article  CAS  Google Scholar 

  66. Sörqvist T, Vlastós AE (1997) Outdoor polymeric insulators long-term exposed to HVDC. IEEE Trans Power Deliv 12:1041–1048

    Article  Google Scholar 

  67. Rowland SM, Robertson J, Xiong Y, Day RJ (2010) Electrical and material characterization of field-aged 400 kV silicone rubber composite insulators. IEEE Trans Dielectr Electr Insul 17:375–383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hillborg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hillborg, H., Gedde, U.W. (2012). Oxidative Surface Treatment of Silicone Rubber. In: Owen, M., Dvornic, P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3876-8_11

Download citation

Publish with us

Policies and ethics