Advertisement

Oxidative Surface Treatment of Silicone Rubber

  • Henrik HillborgEmail author
  • Ulf W. Gedde
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

The mechanisms behind the loss and recovery of hydrophobicity of silicone rubber after exposure to oxidative surface treatments, such as UV irradiation, corona or plasma, are presented. Initially, polar groups are introduced into the surface region, mainly in the form of silanol groups. The oxidation then proceeds towards a vitrified silica-like surface layer. The formation of complex buckling patterns, formed by the mechanical stress difference between the silica-like layer and the rubbery bulk opens the way to a wide range of new applications, such as gratings and flexible electronics. The main challenge is to address the hydrophobic recovery process after an oxidative surface treatment. In some applications, such as high-voltage outdoor insulation materials, this recovery is desired but usually it is not. The most common methods of inhibiting hydrophobic recovery are extraction of the silicone rubber to remove extractable oligomers, storage of oxidized silicone rubber in water directly after treatment, or the grafting of polar species onto the oxidized surface.

Keywords

Silicone surface oxidation Surface treatments Silica-like surface layer Hydrophobic recovery of silicone rubber surfaces Surface buckling Applications in soft lithography, microfluidics and high-voltage insulation 

References

  1. 1.
    Owen MJ (1990) In: Ziegler J, Fearon FWG (eds) Silicon-based polymer science, a comprehensive resource. Advances in Chemistry Series, vol 224. Am Chem Soc, Washington Google Scholar
  2. 2.
    Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. 1. Thermal degradation in controlled atmospheres. J Polym Sci 7:537–549 Google Scholar
  3. 3.
    Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul 6:703–717 CrossRefGoogle Scholar
  4. 4.
    Doyle CD (1958) Logarithmic thermal degradation of a silicone rubber in air. J Polym Sci 31:95–104 CrossRefGoogle Scholar
  5. 5.
    Kucera M, Jelinek M, Lankova J, Vesely K (1961) Termination in anionic polymerization of octamethylcyclotetrasiloxane. Formation of stable complexes on active sites. J Polym Sci 53:311–320 Google Scholar
  6. 6.
    Kucera M, Lanikova J, Jelinek M (1961) Neutralization of residual catalyst in polydimethylsiloxane. Effect of neutralization on the thermal stability of the polymer. J Polym Sci 53:301–310 Google Scholar
  7. 7.
    Morra M, Occhiello E, Marola R, Garbassi F, Humphrey P, Johnson D (1990) On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J Colloid Interface Sci 137:11–24 CrossRefGoogle Scholar
  8. 8.
    Fritz JL, Owen MJ (1995) Hydrophobic recovery of plasma-treated polydimethylsiloxane. J Adhes 54:33–45 Google Scholar
  9. 9.
    Roth J, Albrecht V, Nitschke M, Bellman C, Simon F, Zschoche S, Michel S, Luthmann C, Grundke K, Voit B (2008) Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24:12603–12611 CrossRefGoogle Scholar
  10. 10.
    Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315 CrossRefGoogle Scholar
  11. 11.
    Graubner VM, Jordan R, Nuyken O, Schnyder B, Lippert T, Kötz R, Wokaun A (2004) Photochemical modification of cross-linked poly(dimethylsiloxane) by irradiation at 172 nm. Macromolecules 37:5936–5943 CrossRefGoogle Scholar
  12. 12.
    Quyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon dioxide by UV/ozone photochemical processes. Chem Mater 12:1591–1596 CrossRefGoogle Scholar
  13. 13.
    Hillborg H, Tomczak N, Oláh A, Schönherr H, Vancso GJ (2004) Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/Ozone-treated cross-linked poly(dimethylsiloxane). Langmuir 20:785–794 CrossRefGoogle Scholar
  14. 14.
    Song J, Duval JFL, Stuart MAC, Hillborg H, Gunst U, Arlinghaus HF, Vancso GJ (2007) Surface ionization and nanoscale chemical composition of UV-irradiated poly(dimethylsiloxane) probed by chemical force microscopy, force titration, and electro kinetic measurements. Langmuir 23:5430–5438 CrossRefGoogle Scholar
  15. 15.
    Oláh A, Hillborg H, Vancso GJ (2005) Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl Polym Sci 239:410–423 Google Scholar
  16. 16.
    Hillborg H, Sandelin M, Gedde UW (2001) Hydrophobic recovery of polydimethylsiloxane after exposure to partial discharges as a function of crosslink density. Polymer 42:7349–7362 CrossRefGoogle Scholar
  17. 17.
    Hillborg H, Gedde UW (1998) Hydrophobic recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39:1991–1998 CrossRefGoogle Scholar
  18. 18.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester Google Scholar
  19. 19.
    Tóth A, Bertóti I, Blazsó M, Bánhegyi G, Bognár A, Szaplonczay P (1994) Oxidative damage and recovery of silicone rubber surfaces. I. X-ray photoelectron spectroscopic study. J Appl Polym Sci 52:1293–1307 CrossRefGoogle Scholar
  20. 20.
    Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) A study of HMDSO/O2 plasma deposits using a high sensitivity and -energy resolution XPS instrument. Curve fitting of the Si 2p core level. Appl Surf Sci 137:179–183 CrossRefGoogle Scholar
  21. 21.
    Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, Cambridge Google Scholar
  22. 22.
    Dan E, Guillet JE (1973) Photochemistry of ketone polymers. X. Chain scission reactions in the solid state. Macromolecules 6:230–235 CrossRefGoogle Scholar
  23. 23.
    Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikström K (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41:6581–6863 CrossRefGoogle Scholar
  24. 24.
    Béfahy S, Lipnik P, Pardoen T, Nascimento C, Patris B, Bertrand P, Yunus S (2009) Thickness and elastic modulus of plasma treated PDMS silica-like surface layer. Langmuir 26:3372–3375 CrossRefGoogle Scholar
  25. 25.
    Graubner VM, Clemens D, Gutberlet T, Kötz R, Lippert T, Nuyken O, Schnyder B, Wokaun A (2005) Neutron reflectometry and spectroscopic ellipsometry studies of cross-linked poly(dimethylsiloxane) after irradiation at 172 nm. Langmuir 21:8940–8946 CrossRefGoogle Scholar
  26. 26.
    Mirley CL, Koberstein JT (1995) A room temperature method for the preparation of ultrathin SiOx films from Langmuir–Blodgett layers. Langmuir 11:1049–1052 CrossRefGoogle Scholar
  27. 27.
    Bar G, Delineau L, Hafele A, Whangbo MH (2001) Investigation of the stiffness change in the indentation force and the hydrophobic recovery of plasma-oxidized polydimethylsiloxane surfaces by tapping mode atomic force microscopy. Polymer 42:3627–3632 CrossRefGoogle Scholar
  28. 28.
    Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297 CrossRefGoogle Scholar
  29. 29.
    Mills KL, Zhu X, Takayama S, Thouless MD (2008) The mechanical properties of a surface-modified layer on polydimethylsiloxane. J Mater Res 23:37–47 CrossRefGoogle Scholar
  30. 30.
    Bowden N, Huck WTS, Paul KE, Whitesides GM (1999) The controlled formation of ordered sinusoidal structures by plasma oxidation of an elastic polymer. Appl Phys Lett 75:2557–2559 CrossRefGoogle Scholar
  31. 31.
    Roucoules V, Ponche A, Geissler A, Siffer F, Vidal L, Ollivier S, Vallat MF, Marie P, Voegel JC, Hemmerlé J, Schaaf P (2007) Changes in silicone elastomeric surface properties under stretching induced by three surface treatments. Langmuir 23:13136–13145 CrossRefGoogle Scholar
  32. 32.
    Huck WTS, Bowden N, Onck P, Pardoen T, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar substrates. Langmuir 16:3497–3501 CrossRefGoogle Scholar
  33. 33.
    Huck WTS (2005) Artificial skins-Hierarchical wrinkling. Nat Mater 4:271–272 CrossRefGoogle Scholar
  34. 34.
    Chung JY, Youngblood JP, Stafford CM (2007) Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3:1163–1169 CrossRefGoogle Scholar
  35. 35.
    Tsougeni K, Tserepi A, Boulousis G, Constantoudis V, Gogolides E (2007) Control of nanotexture and wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Process Polym 4:398–405 CrossRefGoogle Scholar
  36. 36.
    Moon MW, Vaziri A (2009) Surface modification of polymers using a multi-step plasma treatment. Scr Mater 60:44–47 CrossRefGoogle Scholar
  37. 37.
    Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–149 CrossRefGoogle Scholar
  38. 38.
    Wang JH, Chen CF, Ho JR, Shih TK, Chen CC, Whang WT, Yang JY (2009) One-step fabrication of surface-relief diffusers by stress-induced undulations on elastomers. Opt Laser Technol 41:804–808 CrossRefGoogle Scholar
  39. 39.
    Görn P, Wagner S (2010) Topographies of plasma-hardened surfaces of poly(dimethylsiloxane). J Appl Phys 108:093522 CrossRefGoogle Scholar
  40. 40.
    Owen MJ, Gentle M, Orbeck T, Williams DE (1988) Dynamic wettability of hydrophobic polymers. In: Andrade JD (ed) Polymer surface dynamics. Plenum Press, New York Google Scholar
  41. 41.
    Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226:231–236 CrossRefGoogle Scholar
  42. 42.
    Kim J, Chaudhury MK, Owen MJ (2006) Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers. J Colloid Interface Sci 293:364–375 CrossRefGoogle Scholar
  43. 43.
    Donzel C, Geissler M, Bernard A, Wolf H, Michel B, Hilborn J, Delamarche E (2001) Hydrophilic poly(dimethylsiloxane) stamps for microcontact printing. Adv Mater 13:1164–1167 CrossRefGoogle Scholar
  44. 44.
    Pinto S, Alves P, Matos CM, Santos AC, Rodriques LR, Teixeira JA, Gil MH (2010) Poly(dimethylsiloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surf B, Biointerfaces 81:20–26 CrossRefGoogle Scholar
  45. 45.
    Roth J, Albrecht V, Nitschke M, Bellman C, Simon F, Zschoche S, Michel S, Luthmann C, Voit B, Grundke K (2011) Tailoring the surface properties of silicone elastomers to improve adhesion of epoxy topcoat. J Adhes Sci Technol 25:1–26 CrossRefGoogle Scholar
  46. 46.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed Engl 37:551–575 CrossRefGoogle Scholar
  47. 47.
    Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nature Protocols 5:491–502 CrossRefGoogle Scholar
  48. 48.
    Semlyen JA, Clarson SJ (1993) Silicone polymers. Prentice-Hall, Englewood Google Scholar
  49. 49.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373 CrossRefGoogle Scholar
  50. 50.
    Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320 CrossRefGoogle Scholar
  51. 51.
    Langowski BA, Uhrich KE (2005) Oxygen plasma-treatment effects on silicone transfer. Langmuir 21:6366–6372 CrossRefGoogle Scholar
  52. 52.
    Kim JH, Hwhang HS, Hahm SW, Khang DY (2010) Hydrophobically recovered and contact printed siloxane oligomers for general-purpose surface patterning. Langmuir 26:13015–13029 CrossRefGoogle Scholar
  53. 53.
    Makamba H, Kim JH, Lim K, Park N, Hahn JH (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619 CrossRefGoogle Scholar
  54. 54.
    Martin BD, Brandow SL, Dressick WJ, Schull TL (2000) Fabrication and application of hydrogel stamps for physisorptive micro contact printing. Langmuir 16:9944–9946 CrossRefGoogle Scholar
  55. 55.
    Tan SH, Nguyen NT, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannels. Biomicrofluidics 4:032204 CrossRefGoogle Scholar
  56. 56.
    Wang B, Chen L, Abdulali-Kanji Z, Horton JH, Oleschuk RD (2003) Aging effects on oxidized and amine-modified poly(dimethylsiloxane) surfaces studied with chemical force titrations: effects on electroosmotic flow rate in microfluidic channels. Langmuir 19:9792–9798 CrossRefGoogle Scholar
  57. 57.
    Chau K, Millare B, Lin A, Upadhyayula S, Nuñez V, Xu H, Vullev VI (2011) Dependence of the quality of adhesion between poly(dimethylsiloxane) and glass surfaces on the composition of the oxidizing plasma. Microfluid Nanofluid 10:907–917 CrossRefGoogle Scholar
  58. 58.
    Vlastós A, Gubanski SM (1991) Wettability of naturally aged silicone and EPDM insulators. IEEE Trans Power Deliv 5:1527–1535 Google Scholar
  59. 59.
    Kim SH, Cherney EA, Hackam R (1990) Loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings. IEEE Trans Power Deliv 5:1491–1500 CrossRefGoogle Scholar
  60. 60.
    Li C, Zhao L, Xiong J, Zhang S, Yao J (2008) Influence of seasons on hydrophobicity of silicone rubber insulators in semi-wet warm-temperature zone of China. IEEE Trans Dielectr Electr Insul 15:1081–1088 CrossRefGoogle Scholar
  61. 61.
    Gustavsson TG, Gubanski SM, Hillborg H, Karlsson S, Gedde UW (2001) Ageing of silicone rubber under ac and dc voltages in a coastal environment. IEEE Trans Dielectr Electr Insul 8:1029–1039 CrossRefGoogle Scholar
  62. 62.
    Kumagai S, Yoshimura N (2004) Polydimethylsiloxane and alumina trihydrate system subjected to dry-band discharges or high temperature. Part 1. Chemical structure. IEEE Trans Dielectr Electr Insul 11:691–700 CrossRefGoogle Scholar
  63. 63.
    Kumagai S, Yoshimura N (2004) Polydimethylsiloxane and alumina trihydrate system subjected to dry-band discharges or high temperature. Part 2. Electrical insulation. IEEE Trans Dielectr Electr Insul 11:701–707 CrossRefGoogle Scholar
  64. 64.
    Sigmond RS, Sigmond T, Goldman A, Goldman M (1991) On the role of water in the ageing of polymers in air-insulated electrical systems. IEEE Trans Electr Insul 26:770–775 CrossRefGoogle Scholar
  65. 65.
    Gubanski SM, Vlastós AE (1990) Wettability of naturally aged silicone and EPDM composite insulators. IEEE Trans Power Deliv 5:1527–1535 CrossRefGoogle Scholar
  66. 66.
    Sörqvist T, Vlastós AE (1997) Outdoor polymeric insulators long-term exposed to HVDC. IEEE Trans Power Deliv 12:1041–1048 CrossRefGoogle Scholar
  67. 67.
    Rowland SM, Robertson J, Xiong Y, Day RJ (2010) Electrical and material characterization of field-aged 400 kV silicone rubber composite insulators. IEEE Trans Dielectr Electr Insul 17:375–383 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Fibre and Polymer Technology, School of Chemical Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Corporate ResearchABB ABVästeråsSweden

Personalised recommendations