Advertisement

General Introduction to Silicone Surfaces

  • Michael J. OwenEmail author
  • Petar R. DvornicEmail author
Part of the Advances in Silicon Science book series (ADSS, volume 4)

Abstract

Silicones, particularly polydimethylsiloxane (PDMS), are widely exploited for their surface properties. A quantitative review of relevant properties is presented including liquid surface tension measurements, water contact angle studies and solid surface tension determinations from both contact angle and contact mechanics approaches. The properties are considered in the light of the fundamental characteristics of PDMS and related siloxane polymers in order to establish a structure/property relationship of importance in any examination of the surface science of this family of polymers. The central position of PDMS in silicone science and industry follows inevitably from its structure. The combination of small, low-intermolecular-force methyl groups arrayed along the uniquely flexible siloxane backbone produces a polymer whose low surface energy can be equaled or bettered by relatively few other polymers. There is also the additional benefit of greater thermal and oxidative stability than most comparable organic polymers that is important in many applications.

Keywords

Liquid and solid surface tension Contact angle and contact mechanics Langmuir trough studies Structure-property relationships in silicone surface science 

References

  1. 1.
    Warrick EL (1990) Forty years of firsts. McGraw-Hill, New York Google Scholar
  2. 2.
    Mark JE (1978) Macromolecules 11:627 CrossRefGoogle Scholar
  3. 3.
    Langmuir I (1916) J Am Chem Soc 38:2221 CrossRefGoogle Scholar
  4. 4.
    Zisman WA (1964) In: Fowkes FM (ed) Contact angle, wettability and adhesion. Adv Chem Ser, vol 43. Amer Chem Soc, Washington, p 1 CrossRefGoogle Scholar
  5. 5.
    Shih H, Flory PJ (1972) Macromolecules 5:758 CrossRefGoogle Scholar
  6. 6.
    Owen MJ (2000) Surface properties and applications. In: Jones RG, Ando W, Chojnowski J (eds) Silicon-containing polymers. Kluwer, Dordrecht, pp 213–231 CrossRefGoogle Scholar
  7. 7.
    Kurian P, Kennedy JP, Kisliuk A, Sokolov A (2002) J Polym Sci, Part A, Polym Chem Ed 40:1285 CrossRefGoogle Scholar
  8. 8.
    Dvornic PR (2000) Thermal properties of polysiloxanes. In: Jones RG, Ando W, Chojnowski J (eds) Silicon containing polymers. Kluwer, Dordrecht, pp 185–212 CrossRefGoogle Scholar
  9. 9.
    Schiers J (1997) Perfluoroethers: synthesis, characterization and applications. In: Schiers J (ed) Modern fluoropolymers. Wiley, New York, pp 435–485 Google Scholar
  10. 10.
    Lee WA, Rutherford RA (1975) In: Brandrup J, Immergut EH (eds) Polymer handbook, 2nd ed. Wiley, New York, pp 111–139 Google Scholar
  11. 11.
    Kobayashi H, Owen MJ (1990) Macromolecules 23:4929 CrossRefGoogle Scholar
  12. 12.
    Nielson RH, Hani R, Wisian-Nielson P, Meister JJ, Roy AK, Hagnauer JL (1987) Macromolecules 20:910 CrossRefGoogle Scholar
  13. 13.
    Dvornic PR, Jovanovic JD, Govedarica MN (1993) J Appl Polym Sci 45:1497 CrossRefGoogle Scholar
  14. 14.
    Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc London A 324:301 CrossRefGoogle Scholar
  15. 15.
    Chaudhury MK, Whitesides GM (1991) Langmuir 7:1013 CrossRefGoogle Scholar
  16. 16.
    Owen MJ (1980) Ind Eng Chem Prod Res Dev 19:97 CrossRefGoogle Scholar
  17. 17.
    LeGrand DG, Gaines GL (1969) J Colloid Interface Sci 31:162 CrossRefGoogle Scholar
  18. 18.
    Falsafi A, Mangipudi S, Owen MJ (2006) Surface and interfacial properties. In: Mark JE (ed) Physical properties of polymers handbook 2nd ed. Am Inst Phys, New York. Chap 59 Google Scholar
  19. 19.
    Kanellopoulos AG, Owen MJ (1971) Trans Faraday Soc 67:3127 CrossRefGoogle Scholar
  20. 20.
    Kuo ACM (1999) Polydimethylsiloxane. In: Mark JE (ed) Polymer data handbook. OUP, New York, pp 411–435 Google Scholar
  21. 21.
    Antonow GN (1907) J Chim Phys 5:372 Google Scholar
  22. 22.
    Wu S (1982) Polymer interface and adhesion. Dekker, New York Google Scholar
  23. 23.
    Owen MJ (2003) Surface energy. In: Brady RF (ed) Comprehensive desk reference of polymer characterization and analysis. Am Chem Soc, New York. Chap 15 Google Scholar
  24. 24.
    Gordon DJ, Colquhoun JA (1976) Adhes Age 19(6):21 Google Scholar
  25. 25.
    Chaudhury MK, Whitesides GM (1992) Science 255:1231 CrossRefGoogle Scholar
  26. 26.
    Hunter MJ, Gordon MS, Barry AJ, Hyde JF, Heidenreich RD (1947) Ind Eng Chem 39:1389 CrossRefGoogle Scholar
  27. 27.
    Kennan JJ, Peters YA, Swarthout DE, Owen MJ, Namkamisorn A, Chaudhury MK (1997) J Biomed Mater Res 36:487 CrossRefGoogle Scholar
  28. 28.
    Wynne KJ, Lambert JM (2004) Silicones. In: Encyclopedia of biomaterial and biomedical engineering. Dekker, New York, pp 1348–1362 Google Scholar
  29. 29.
    She H, Chaudhury MK, Owen MJ (2000) In: Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD (eds) ACS Symp Ser, vol 729, pp 322–331 Google Scholar
  30. 30.
    Shafrin EG, Zisman WA (1960) J Phys Chem 64:519 CrossRefGoogle Scholar
  31. 31.
    Good RJ, Girifalco LA (1960) J Phys Chem 64:561 CrossRefGoogle Scholar
  32. 32.
    Fowkes FM (1964) Ind Eng Chem 56:40 CrossRefGoogle Scholar
  33. 33.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741 CrossRefGoogle Scholar
  34. 34.
    Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314 CrossRefGoogle Scholar
  35. 35.
    Chaudhury MK (1993) J Adhes Sci Technol 7:669 CrossRefGoogle Scholar
  36. 36.
    She H, Malotky D, Chaudhury MK (1998) Langmuir 14:3090 CrossRefGoogle Scholar
  37. 37.
    Tabor D, Winterton RHS (1969) Proc R Soc London Ser A 312:435 CrossRefGoogle Scholar
  38. 38.
    Mangipudi VS, Tirrell M, Pocius AV (1995) Langmuir 11:19 CrossRefGoogle Scholar
  39. 39.
    Li L, Mangipudi VS, Tirrell M, Pocius AV (2001) In: NATO Science Series II, Mathematics, Physics and Chemistry, vol 10, pp 305–329 Google Scholar
  40. 40.
    Chaudhury MK, Owen MJ (1993) Langmuir 9:29 CrossRefGoogle Scholar
  41. 41.
    Noll W, Steinbach H, Sucker C (1971) J Polym Sci, Part C 34:123 Google Scholar
  42. 42.
    Fox HW, Taylor PW, Zisman WA (1947) Ind Eng Chem 39:1401 CrossRefGoogle Scholar
  43. 43.
    Granick S, Kuzmenka DJ, Clarson SJ, Semlyen JA (1989) Macromolecules 22:1878 CrossRefGoogle Scholar
  44. 44.
    Mann EK, Henon S, Langevin D, Meunier J (1992) J Phys II (France) 2:1683 CrossRefGoogle Scholar
  45. 45.
    Kim C, Gurau MC, Cremer PS, Yu H (2008) Langmuir 24:10155 CrossRefGoogle Scholar
  46. 46.
    Kalachev AA, Litvinov VM, Wegner G (1991) Makromol Chem, Macromol Symp 46:365 CrossRefGoogle Scholar
  47. 47.
    Fang J, Dennin M, Knobler CM, Godovsky YK, Makarova NN, Yokoyama H (1997) J Phys Chem B 101:3147 CrossRefGoogle Scholar
  48. 48.
    Mehta SC, Somasundaran P, Maldarelli C, Kulkarni R (2006) Langmuir 22:9566 CrossRefGoogle Scholar
  49. 49.
    Dvornic PR, De Leuze-Jallouli A, Perz SV, Owen MJ (2000) Mol Cryst Liq Cryst 353:223 CrossRefGoogle Scholar
  50. 50.
    http://www.clearcoproducts.com. Accessed 23 March 2011
  51. 51.
    http://www.accudynetest.com. Accessed 23 March 2011
  52. 52.
    Schurch S, Georke J, Clements JA (1976) Proc Natl Acad Sci USA 73:4698 CrossRefGoogle Scholar
  53. 53.
    Doeff M, Lindner E (1989) Macromolecules 22:2951 CrossRefGoogle Scholar
  54. 54.
    Kobayashi H, Owen MJ (1995) Trends Polym Sci 3:330 Google Scholar
  55. 55.
    Thanawala SK, Chaudhury MK (2000) Langmuir 16:1256 CrossRefGoogle Scholar
  56. 56.
    Owen MJ (1993) Surface chemistry and applications. In: Clarson SJ, Semlyen JA (eds) Siloxane polymers. Prentice Hall, New York, pp 309–372 Google Scholar
  57. 57.
    Kostov G, Ameduri B, Sergeeva T, Dolbier WR Jr., Winter R, Gard GL (2005) Macromolecules 38:8316 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Michigan Molecular InstituteMidlandUSA

Personalised recommendations