Skip to main content

The Performance (and Limits) of Simple Neuron Models: Generalizations of the Leaky Integrate-and-Fire Model

  • Chapter
  • First Online:
Computational Systems Neurobiology

Abstract

The study of neuronal populations with regards to coding, computation and learning relies on its primary building bloc: the single neuron. Describing the activity of single neurons can be done by mathematical models of various complexity. In this chapter we start with the integrate-and-fire model, and then consider a set of enhancements so as to approach the behaviour of multiple types of real neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azouz R, Gray C (2000) Dynamic spike threshold reveals a mechanism for coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci USA 97:8110–8115

    Article  PubMed  CAS  Google Scholar 

  • Azouz R, Gray CM (2003) Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37:513–523

    Article  PubMed  CAS  Google Scholar 

  • Badel L, Lefort S, Berger T, Petersen C, Gerstner W, Richardson MJE (2008a) Extracting non-linear integrate-and-fire models from experimental data using dynamic i–v curves. Biol Cybern 99:361–370

    Article  PubMed  Google Scholar 

  • Badel L, Lefort S, Brette R, Petersen C, Gerstner W, Richardson M (2008b) Dynamic i-v curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656–666

    Article  PubMed  Google Scholar 

  • Baker MD, Bostock H (1998) Inactivation of macroscopic late na+ current and characteristics of unitary late na+ currents in sensory neurons. J Neurophysiol 80(5):2538–2549

    PubMed  CAS  Google Scholar 

  • Baldissera F, Gustafsson B, Parmiggiani F (1976) A model for refractoriness accumulation and secondary range firing in spinal motoneurones. Biol Cybern 24(2):61–65

    Article  Google Scholar 

  • Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–65

    Article  PubMed  CAS  Google Scholar 

  • Benda J, Herz A (2003) A universal model for spike-frequency adaptation. Neural Comput 15(11):2523–2564

    Article  PubMed  Google Scholar 

  • Berry M, Meister M (1998) Refractoriness and neural precision. J Neurosci 18:2200–2211

    PubMed  CAS  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642

    Article  PubMed  Google Scholar 

  • Clemens S, Combes D, Meyrand P, Simmers J (1998) Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster. J Neurophysiol 79(3):1396–408

    PubMed  CAS  Google Scholar 

  • Cook EP, Guest JA, Liang Y, Masse NY, Colbert CM (2007) Dendrite-to-soma input/output function of continuous time-varying signals in hippocampal ca1 pyramidal neurons. J Neurophysiol 98(5):2943–2955

    Article  PubMed  Google Scholar 

  • Cox DR (1962) Renewal theory. Methuen, London

    Google Scholar 

  • Daley D, Vere-Jones D (1988) An introduction to the theory of point processes. Springer, New York

    Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Doiron B, Oswald A, Maler L (2007) Interval coding. II. Dendrite-dependent mechanisms. J Neurophysiol 97:2744–2757

    Google Scholar 

  • Faisal A, Selen L, Wolpert D (2008) Noise in the nervous system. Nat Rev Neurosci 9(4):292

    Article  PubMed  CAS  Google Scholar 

  • Fourcaud-Trocme N, Hansel D, Vreeswijk CV, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurophysiol 23(37):11628–11640

    CAS  Google Scholar 

  • Fuortes M, Mantegazzini F (1962) Interpretation of the repetitive firing of nerve cells. J Gen Physiol 45:1163–1179

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga MS (2004) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  • Gerstner W (2008) Spike-response model. Scholarpedia 3(12):1343

    Google Scholar 

  • Gerstner W, Brette R (2009) Adaptive exponential integrate-and-fire model. Scholarpedia 4(6):8427

    Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, New York

    Book  Google Scholar 

  • Gerstner W, van Hemmen J, Cowan J (1996) What matters in neuronal locking? Neural Comput 8:1653–1676

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Oertel D (1997) Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. J Neurophysiol 78(1):248–60

    PubMed  CAS  Google Scholar 

  • Hill A (1936) Excitation and accomodation in nerve. Proc R Soc B 119:305–355

    Article  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  • Huguenard JR, Hamill OP, Prince DA (1988) Developmental changes in na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol 59(3):778–95

    PubMed  CAS  Google Scholar 

  • Izhikevich E (2001) Resonate-and-fire neurons. Neural Netw 14:883–894

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  • Johannesma P (1968) Diffusion models of the stochastic acticity of neurons. In: Caianiello ER (ed) Neural networks, Springer, Berlin, pp 116–144

    Chapter  Google Scholar 

  • Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006a) Integrate-and-fire models with adaptation are good enough. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in neural information processing systems 18, MIT Press, Cambridge, pp 595–602

    Google Scholar 

  • Jolivet R, Rauch A, Luscher HR, Gerstner W (2006b) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21(1):35–49

    Article  PubMed  Google Scholar 

  • Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neuroscience Methods 169:417–424

    Article  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Article  Google Scholar 

  • Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9

    Article  PubMed  Google Scholar 

  • Korngreen A, Sakmann B (2000) Voltage-gated k+ channels in layer 5 neocortical pyramidal neurones from young rats:subtypes and gradients. J Physiol 525(3):621–639

    Article  PubMed  CAS  Google Scholar 

  • La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S (2004) Minimal models of adpated neuronal responses to in-vivo like input currents. Neural Comput 16:2101–2104

    Article  PubMed  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitée comme une polarization. J Physiol Pathol Gen 9:620–635. Cited in Tuckwell HC (1988) Introduction to theoretic neurobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Latham PE, Richmond B, Nelson P, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808–827

    CAS  Google Scholar 

  • Lundstrom B, Higgs M, Spain W, Fairhall A (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11(11):1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Manwani A, Koch C (1999) Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources. Neural Comput 11:1797–1829

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gubta A, Silbrberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  • Mauro A, Conti F, Dodge F, Schor R (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon. J Gen Physiol 55(4):497–523

    Article  PubMed  CAS  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, vol 37, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Mihalaş S, Niebur E (2009) A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput 21(3):704–18

    Article  PubMed  Google Scholar 

  • Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19(11):2958–3010

    Article  PubMed  Google Scholar 

  • Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99:335–347

    Article  PubMed  Google Scholar 

  • Paninski L (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Netw Comput Neural Syst 15(4):243–262

    Article  Google Scholar 

  • Paninski L, Pillow J, Simoncelli E (2004) Maximum likelihood estimate of a stochastic integrate-and-fire neural encoding model. Neural Comput 16:2533–2561

    Article  PubMed  Google Scholar 

  • Passmore G, Selyanko A, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, Dickenson AH, Brown TA, Burbidge SA, Main M, Brown DA (2003) Kcnq/m currents in sensory neurons: significance for pain therapy. J Neurosci 23(18):7227–7236

    PubMed  CAS  Google Scholar 

  • Pillow J, Paninski L, Uzzell V, Simoncelli E, EJChichilnisky (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25:11003–11023

    Google Scholar 

  • Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207):995–1000

    Article  PubMed  CAS  Google Scholar 

  • Rauch A, Camera GL, Luscher H, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like currents. J Neurophysiol 90:1598–1612

    Article  PubMed  Google Scholar 

  • Richardson MJE (2009) Dynamics of populations and networks of neurons with voltage-activated and calcium-activated currents. Phys Rev E 80(2 Pt.1):021928

    Google Scholar 

  • Richardson M, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538-2554

    Article  PubMed  Google Scholar 

  • Schwindt, Spain W, Crill W (1989) Long-lasting reduction of excitability by a sodium-dependent potassium current in cat cortical neurons. J Neurosci 61(2):233–244

    CAS  Google Scholar 

  • Slee SJ, Higgs MH, Fairhall AL, Spain WJ (2005) Two-dimensional time coding in the auditory brainstem. J Neurosci 25(43):9978–9988

    Article  PubMed  CAS  Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194

    Article  PubMed  CAS  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  PubMed  CAS  Google Scholar 

  • Touboul J (2008) Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J Appl Math 68(4):1045–1079

    Article  Google Scholar 

  • Toyoizumi T, Rad K, Paninski L (2009) Mean-field approximations for coupled populations of generalized linear model spiking neurons with markov refractoriness. Neural Comput 21(5):1203–1243

    Article  PubMed  Google Scholar 

  • Truccolo W, Hochberg LR, Donoghue JP (2010) Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat Neurosci 13(1):105–111

    Article  PubMed  CAS  Google Scholar 

  • van Kampen NG (1992) Stochastic processes in physics and chemistry, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci 23(3):1–7

    Article  Google Scholar 

  • Wolf H, Pearson K (1989) Comparison of motor patterns in the intact and deafferented flight system of the locust. III: patterns of interneuronal activity. J Comp Physiol A Sens Neural Behav Physiol 165(1):61–74

    Article  Google Scholar 

  • Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH (2005) Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93(5):2710–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Naud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Naud, R., Gerstner, W. (2012). The Performance (and Limits) of Simple Neuron Models: Generalizations of the Leaky Integrate-and-Fire Model. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_6

Download citation

Publish with us

Policies and ethics