Skip to main content

Spatial Organization and Diffusion in Neuronal Signaling

  • Chapter
  • First Online:
Computational Systems Neurobiology

Abstract

The intricate architecture of neuronal cells suggests that morphology plays a key role in cellular function. Yet descriptions and analyses of neuronal signaling systems often focus solely on biochemical reaction pathways. Models developed from these data implicitly assume that reactions occur in well mixed homogenous environments with instantaneous diffusion. However, if we have any hope of building truly predictive quantitative models, the intricate geometries and large length scales of neurons compel us to explicitly account for molecular diffusion and spatial organization.

The intricate architecture of neuronal cells suggests that morphology plays a key role in cellular function. Yet descriptions and analyses of neuronal signaling systems often focus solely on biochemical reaction pathways. Models developed from these data implicitly assume that reactions occur in well mixed homogenous environments with instantaneous diffusion. However, if we have any hope of building truly predictive quantitative models, the intricate geometries and large length scales of neurons compel us to explicitly account for molecular diffusion and spatial organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Courtesy of Maryanne Martone, Mark Ellisman and Masako Terada of the National Center for Microscopy and Imaging Research in San Diego, CA.

Bibliography

  • Aiba A, Kano M, Chen C, Stanton M, Fox G, Herrup K, Zwingman T, Tonegawa S (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388

    Article  PubMed  CAS  Google Scholar 

  • Alonso I, Costa C, Gomes A, Ferro A, Seixas A, Silva S, Cruz V, Coutinho P, Sequeiros J, Silveira I (2005) A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. J Hum Genet 50:523–529

    Article  PubMed  CAS  Google Scholar 

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6:e1000705

    Article  PubMed  Google Scholar 

  • Araya R, Jiang J, Eisenthal K, Yuste R (2006a) The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103:17961–17966

    Article  PubMed  CAS  Google Scholar 

  • Araya R, Eisenthal K, Yuste R (2006b) Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci U S A 103:18799–18804

    Article  PubMed  CAS  Google Scholar 

  • Araya R, Nikolenko V, Eisenthal K, Yuste R (2007) Sodium channels amplify spine potentials. Proc Natl Acad Sci U S A 104:12347–12352

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich B (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  • Brown S-A, Loew LM (2009) Toward a computational model of IP3R1-associated ataxia. Biophys J 96((3:S1)):96a

    Article  Google Scholar 

  • Brown S-A, Loew LM (2012) Computational analysis of calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons associated with ataxia. BMC Systems Biology (In Press)

    Google Scholar 

  • Brown S, Morgan F, Watras J, Loew L (2008) Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys J 95:1795–1812

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Moraru II, Schaff J, Loew LM (2011) Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. J Comput Neurosci 31(2):385–400

    Article  PubMed  Google Scholar 

  • Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L (2009) BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 4:e7991

    Article  PubMed  Google Scholar 

  • Chung H, Xia J, Scannevin R, Zhang X, Huganir R (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20:7258–7267

    PubMed  CAS  Google Scholar 

  • Chung H, Steinberg J, Huganir R, Linden D (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E (2008) Why are computational neuroscience and systems biology so separate? PLoS Comput Biol 4:e1000078

    Article  PubMed  Google Scholar 

  • De Smedt H, Missiaen L, Parys J, Henning R, Sienaert I, Vanlingen S, Gijsens A, Himpens B, Casteels R (1997) Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J 322(Pt 2):575–583

    PubMed  Google Scholar 

  • DeSouza N, Reiken S, Ondrias K, Yang Y, Matkovich S, Marks A (2002) Protein kinase a and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 277:39397–39400

    Article  PubMed  CAS  Google Scholar 

  • Ferris C, Huganir R, Bredt D, Cameron A, Snyder S (1991) Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci U S A 88:2232–2235

    Article  PubMed  CAS  Google Scholar 

  • Fiala J, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci 16:3760–3774

    PubMed  CAS  Google Scholar 

  • Finch E, Augustine G (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756

    Article  PubMed  CAS  Google Scholar 

  • Fink C, Slepchenko B, Moraru I, Watras J, Schaff J, Loew L (2000) An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys J 79:163–183

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara A, Hirose K, Yamazawa T, Iino M (2001) Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons. Neuroreport 12:2647–2651

    Article  PubMed  CAS  Google Scholar 

  • Goetz CG (2003) Textbook of clinical neurology. WB Saunders, St. Louis

    Google Scholar 

  • Guida S, Trettel F, Pagnutti S, Mantuano E, Tottene A, Veneziano L, Fellin T, Spadaro M, Stauderman K, Williams M, Volsen S, Ophoff R, Frants R, Jodice C, Frontali M, Pietrobon D (2001) Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet 68:759–764

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Armstrong D (2000) Conditional and unconditional inhibition of calcium-activated potassium channels by reversible protein phosphorylation. J Biol Chem 275:3749–3754

    Article  PubMed  CAS  Google Scholar 

  • Harris K, Stevens J (1988) Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8:4455–4469

    PubMed  CAS  Google Scholar 

  • Harris K, Stevens J (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 8:635–648

    Google Scholar 

  • Hernjak N, Slepchenko B, Fernald K, Fink C, Fortin D, Moraru I, Watras J, Loew L (2005) Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J 89:3790–3806

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366–5373

    PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134

    PubMed  CAS  Google Scholar 

  • Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W, Furuya H, Ohyagi Y, Taniwaki T, Kira J, Fukumaki Y (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35

    Article  PubMed  CAS  Google Scholar 

  • Khodakhah K, Ogden D (1993) Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proc Natl Acad Sci U S A 90:4976–4980

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Jun K, Lee S, Kang N, Min D, Kim Y, Ryu S, Suh P, Shin H (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293

    Article  PubMed  CAS  Google Scholar 

  • Le Novère N (2007) The long journey to a Systems Biology of neuronal function. BMC Syst Biol 1:28

    Article  PubMed  Google Scholar 

  • Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshima H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K, Noda T (1996) Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379:168–171

    Article  PubMed  CAS  Google Scholar 

  • Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM (2008) Virtual cell modelling and simulation software environment. IET Syst Biol 2:352–362

    Article  PubMed  CAS  Google Scholar 

  • Neuroscience. Sinauer Associates, Inc

    Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1988) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 8:693–698

    Google Scholar 

  • Palmer L, Stuart G (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine G (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Watras J, Loew L (2008) Anomalous diffusion in Purkinje spines. Neuron 95: 635–648

    Google Scholar 

  • Sarkisov D, Wang S (2008) Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 28:133–142

    Article  PubMed  CAS  Google Scholar 

  • Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer C, Feil R, Hofmann F, Korth M, Shipston M, Knaus H, Wolfer D, Pedroarena C, Storm J, Ruth P (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+ −activated K + channel deficiency. Proc Natl Acad Sci U S A 101:9474–9478

    Article  PubMed  CAS  Google Scholar 

  • Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational framework for modeling cellular structure and function. Biophys J 73:1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J (2010) Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci 33(5):211–219

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘'old’ proteins: the role of the calcium-binding proteins calbindin D-28 k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258

    Article  PubMed  CAS  Google Scholar 

  • Segev I, Friedman A, White E, Gutnick M (1995) Electrical consequences of spine dimensions in a model of a cortical spiny stellate cell completely reconstructed from serial thin sections. J Comput Neurosci 2:117–130

    Article  PubMed  CAS  Google Scholar 

  • Slepchenko BM, Loew LM (2010) Use of virtual cell in studies of cellular dynamics. Int Rev Cell Mol Biol 283:1–56

    Article  PubMed  CAS  Google Scholar 

  • Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757–760

    Article  PubMed  CAS  Google Scholar 

  • Turner D, Schwartzkroin P (1983) Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons. J Neurosci 3:2381–2394

    PubMed  CAS  Google Scholar 

  • Walter J, Alviña K, Womack M, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9:389–397

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Widmer H, Rowe I, Shipston M (2003) Conditional protein phosphorylation regulates BK channel activity in rat cerebellar Purkinje neurons. J Physiol 552:379–391

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Watras J, Loew L (2003) Kinetic analysis of receptor-activated phosphoinositide turnover. J Cell Biol 161:779–791

    Article  PubMed  CAS  Google Scholar 

  • Yue Q, Jen J, Nelson S, Baloh R (1997) Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 61:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Yan P, Wuskell J, Loew L, Antic S (2008) Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons. Eur J Neurosci 27:923–936

    Article  PubMed  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton D, Amos C, Dobyns W, Subramony S, Zoghbi H, Lee C (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Loew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, SA., Holmes, R.M., Loew, L.M. (2012). Spatial Organization and Diffusion in Neuronal Signaling. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_5

Download citation

Publish with us

Policies and ethics