Skip to main content

Functional Genomics and Molecular Networks Gene Expression Regulations in Complex Diseases: Down Syndrome as a Case Study

  • Chapter
  • First Online:
  • 1668 Accesses

Abstract

The goal of functional genomics is to understand the relationship between whole genomes and phenotypes through a dynamic approach. It requires high throughput technologies such as microarrays and data analysis. The power of this approach allowed to study complex biological functions as well as diseases. In this chapter, we introduce functional genomics and describe the statistical methods that are used to find differentially expressed genes. We analyze a large number of data sets produced on a complex disease, namely Down syndrome, in different models. We show that, whatever the model, genes that are in three copies are globally overexpressed. However, we failed to identify a set of two-copy genes that would be dysregulated in all studies. It either suggests that studies are incomplete, or that this set of genes does not exist and that overexpression of the three-copy genes impacts on the whole transcriptome in a “stochastic” way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Transforming expression data to a log scale (any base) reduces the asymmetry of the distribution of the intensities and homogenizes their variance. Here, probe intensities are systematically log2values.

References

  • Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G et al. (2007) Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 81(3):475–491

    Article  PubMed  CAS  Google Scholar 

  • Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N et al. (2004) Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet 13(13):1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5(10):725–738

    Article  PubMed  CAS  Google Scholar 

  • Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 9(2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300

    Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101(7):2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  PubMed  CAS  Google Scholar 

  • Bontoux N, Dauphinot L, Vitalis T, Studer V, Chen Y, Rossier J et al. (2008) Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip 8(3):443–450

    Article  PubMed  CAS  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G et al. (2005) The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet 14(3):373–384

    Article  PubMed  CAS  Google Scholar 

  • Dudoit S, Yang YH, Callow MJ, Speed T (2002) Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments. Stat Sin 12:111–139

    Google Scholar 

  • Dunlop MJ, Cox RS 3rd, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat Genet 40(12):1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Emilsson L, Saetre P, Jazin E (2006) Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol Dis 21(3): 618–625

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ (1990) The consequences of chromosome imbalance. Am J Med Genet 7(Suppl):31–37

    CAS  Google Scholar 

  • FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD, Hastie ND (2002) Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 11(26):3249–3256

    Article  PubMed  CAS  Google Scholar 

  • Giannone S, Strippoli P, Vitale L, Casadei R, Canaider S, Lenzi L et al. (2004) Gene expression profile analysis in human T lymphocytes from patients with Down syndrome. Ann Hum Genet 68(Pt 6):546–554

    Article  PubMed  CAS  Google Scholar 

  • Golfier G, Lemoine S, van Miltenberg A, Bendjoudi A, Rossier J, Le Crom S et al. (2009) Selection of oligonucleotides for whole-genome microarrays with semi-automatic update. Bioinformatics 25(1):128–129

    Article  PubMed  CAS  Google Scholar 

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Laffaire J, Rivals I, Dauphinot L, Pasteau F, Wehrle R, Larrat B et al. (2009) Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. BMC Genom 10:138

    Article  Google Scholar 

  • Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Lejeune J, Gautier M, Turpin R (1959) Study of somatic chromosomes from 9 mongoloid children. C R Hebd Seances Acad Sci 248(11):1721–1722

    PubMed  CAS  Google Scholar 

  • Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S (2007) Gene expression profiling in the adult Down syndrome brain. Genomics 90(6):647–660

    Article  PubMed  CAS  Google Scholar 

  • Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320(5872):65–68

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J et al. (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891

    Article  PubMed  CAS  Google Scholar 

  • Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526–529

    Article  PubMed  CAS  Google Scholar 

  • Macarthur BD, Ma’ayan A, Lemischka IR (2009) Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10(10):672–681

    PubMed  CAS  Google Scholar 

  • Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM (2007) Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28(12):1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Mao R, Zielke CL, Zielke HR, Pevsner J (2003) Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 81(5):457–467

    Article  PubMed  CAS  Google Scholar 

  • Mao R, Wang X, Spitznagel EL Jr, Frelin LP, Ting JC, Ding H et al. (2005) Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol 6(13):R107

    Article  PubMed  Google Scholar 

  • McLachlan GJ, Do K-A, Ambroise C (2004) Analyzing microarray gene expression data. Wiley, New York

    Book  Google Scholar 

  • Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 28(6):1410–1420

    Article  PubMed  CAS  Google Scholar 

  • Moldrich RX, Dauphinot L, Laffaire J, Vitalis T, Herault Y, Beart PM et al. (2009) Proliferation deficits and gene expression dysregulation in Down’s syndrome (Ts1Cje) neural progenitor cells cultured from neurospheres. J Neurosci Res 87(14):3143–3152

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka Y, Dillner K, Ebise H, Teramoto R, Nakagawa H, Lilius L et al. (2005) A unique gene expression signature discriminates familial Alzheimer’s disease mutation carriers from their wild-type siblings. Proc Natl Acad Sci U S A 102(41):14854–14859

    Article  PubMed  CAS  Google Scholar 

  • Olson LE, Roper RJ, Baxter LL, Carlson EJ, Epstein CJ, Reeves RH (2004) Down syndrome mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Dev Dyn 230(3):581–589

    Article  PubMed  CAS  Google Scholar 

  • Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J et al. (2006) Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem 97(Suppl 1):104–109

    Article  PubMed  CAS  Google Scholar 

  • Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M et al. (2007) Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet 81(2):252–263

    Article  PubMed  CAS  Google Scholar 

  • Ray M, Ruan J, Zhang W (2008) Variations in the transcriptome of Alzheimer’s disease reveal molecular networks involved in cardiovascular diseases. Genome Biol 9(10):R148

    Article  PubMed  Google Scholar 

  • Rivals I, Personnaz L, Taing L, Potier MC (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23(4):401–407

    Article  PubMed  CAS  Google Scholar 

  • Roper RJ, Baxter LL, Saran NG, Klinedinst DK, Beachy PA, Reeves RH (2006) Defective cerebellar response to mitogenic Hedgehog signaling in Down [corrected] syndrome mice. Proc Natl Acad Sci U S A 103(5):1452–1456

    Article  PubMed  CAS  Google Scholar 

  • Sago H, Carlson EJ, Smith DJ, Rubin EM, Crnic LS, Huang TT et al. (2000) Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr Res 48(5):606–613

    Article  PubMed  CAS  Google Scholar 

  • Saran NG, Pletcher MT, Natale JE, Cheng Y, Reeves RH (2003) Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum Mol Genet 12(16): 2013–2019

    Article  PubMed  CAS  Google Scholar 

  • Sartor MA, Leikauf GD, Medvedovic M (2009) LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25(2):211–217

    Article  PubMed  CAS  Google Scholar 

  • Sasik R, Woelk CH, Corbeil J (2004) Microarray truths and consequences. J Mol Endocrinol 33:1–9

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Weinberger LS (2009) Stochastic gene expression as a molecular switch for viral latency. Curr Opin Microbiol 4:460–466. http://www.doodle.com/yix62vkik5gks8v612

    Google Scholar 

  • Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z et al. (2009) Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc Natl Acad Sci U S A 106(23):9425–9429

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Vencio RZ, Shmulevich I (2007) ProbCD: enrichment analysis accounting for categorization uncertainty. BMC Bioinforma 8:383

    Article  Google Scholar 

  • Westfall PH, Young SS (1992) Resampling-based multiple testing. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank The European program AnEUploidy and the Fondation Jérôme Lejeune for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Potier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Potier, MC., Rivals, I. (2012). Functional Genomics and Molecular Networks Gene Expression Regulations in Complex Diseases: Down Syndrome as a Case Study. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_1

Download citation

Publish with us

Policies and ethics