Freshwater Picocyanobacteria: Single Cells, Microcolonies and Colonial Forms

  • Cristiana CallieriEmail author
  • Gertrud Cronberg
  • John G. Stockner


This chapter deals with some taxonomic and ecological aspects of picocyanobacteria (Pcy) single-cells, microcolonies and other colonial (CPcy), that are common in lakes throughout the world, and abundant across a wide spectrum of trophic conditions. We discussed phenotypic diversity of Pcy in conjunction with a genotypic approach in order to resolve whether a similar morphology also reflects a phylogenetic relationship. Microcolonies of different size (from 5 to 50 cells) constitute a gradient without a net separation from single-celled types and should be considered Pcy, as transition forms from single-cell to colonial morphotypes. The single-celled Pcy populations tend to be predominant in large, deep oligo-mesotrophic lakes, while the CPcy find optimal conditions in warmer, shallower and more nutrient rich lakes. The knowledge of Pcy diversity in pelagic and littoral zone habitats is a key to understand the dominance of certain genotypes in the water column and of their ubiquity. We devoted some paragraphs to analyse the factors (biotic and abiotic) which can influence the dynamics of the different Pcy forms and we have approached the study of their common ecology.


Cyanobacterial Bloom Oligotrophic Lake Dissolve Organic Phosphorus Deep Chlorophyll Maximum Synechococcus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





colonial picocyanobacteria


phycoerythrin containing Pcy


phycocyanin containing Pcy


chlorophyll a


heterotrophic nanoflagellates


internal transcribed spacer region between the 16S rRNA and 23S rRNA genes


terminal restriction fragment length polymorphism


denaturating gradient gel electrophoresis


automated ribosomal intergenic spacer analyses


deep chlorophyll maximum


operational taxonomic unit


real-time quantitative polymerase chain reaction


frequency of dividing cells


ribulose-1,5-bisphosphate carboxylase oxygenase


enzyme labelled fluorescence


extracellular phosphatase activity


dissolved organic phosphorus


cyclobutane pyrimidine dimer


biological weighting functions


mycosporine-like amino acid compounds


extinction coefficient of photosynthetically active radiation



The authors thank colleagues of the Microbial Ecology group of CNR-ISE Verbania, Italy, for their collaboration and strong support, and equally the Department of Fisheries and Oceans in British Columbia for supporting food chain research in lakes over the past three decades, including the special efforts of staff of Plankton Ecology Laboratory, West Vancouver, notably Ken Shortreed, Erland MacIsaac and Bruce Nidle. We also thank David Scanlan for valuable comments during preparation of the chapter, Roberto Bertoni for providing laboratory facilities in the microbial ecology laboratory at Verbania and Mario Contesini for technical assistance and field work on Lago Maggiore. A special thank to Brian Whitton for his untiring help to improve the manuscript.


  1. Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 523–561, 668 ppGoogle Scholar
  2. Ahlgren NA, Rocap G (2006) Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204PubMedCrossRefGoogle Scholar
  3. Ahlgren NA, Rocap G, Chisholm SW (2006) Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ Microbiol 8:441–454PubMedCrossRefGoogle Scholar
  4. Allende L, Izaguirre I (2003) The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. Hydrobiologia 502:211–224CrossRefGoogle Scholar
  5. Ålvik G (1934) Plankton-Algen norwegischer Austernpollen I. Systematik und Vorkommen der Arten. Bergens Mus Årb 1934(6):47 ppGoogle Scholar
  6. Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255(256):231–246CrossRefGoogle Scholar
  7. Bailey S, Clokie MRJ, Millard A, Mann NH (2004) Cyanophage infection and photoinhibition in marine cyanobacteria. Mini-review. Res Microbiol 155:720–725PubMedCrossRefGoogle Scholar
  8. Balseiro EG, Modenutti BE, Queimaliños CP (1997) Nutrient recycling and shifts in N:P ratio by different zooplankton structures in a South Andes lake. J Plankton Res 19:805–817CrossRefGoogle Scholar
  9. Balseiro EG, Queimaliños C, Modenutti BE (2004) Grazing impact on autotrophic picoplankton in two south Andean lakes (Patagonia, Argentina) with different light:nutrient ratios. Rev Chil Hist Nat 77:73–85CrossRefGoogle Scholar
  10. Beardall J, Raven JA (2004) Potential effects of global change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40CrossRefGoogle Scholar
  11. Bec A, Martin-Creuzburg D, von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707CrossRefGoogle Scholar
  12. Becker S, Böger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953PubMedCrossRefGoogle Scholar
  13. Becker S, Fahrbach M, Böger P, Ernst A (2002) Quantitative tracing, by Taq nuclease assays, of a Synechococcus ecotype in a highly diversified natural population. Appl Environ Microbiol 68:4486–4494PubMedCrossRefGoogle Scholar
  14. Becker S, Singh AK, Postius C, Böger P, Ernst A (2004) Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance. FEMS Microbiol Ecol 49:181–190PubMedCrossRefGoogle Scholar
  15. Becker S, Richl P, Ernst A (2007) Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol Ecol 62:64–67PubMedCrossRefGoogle Scholar
  16. Bell JL (1991) Patches and picoplankton. Effects on larval life spans on gastropod larvae. Am Zool 31:6AGoogle Scholar
  17. Bell T, Kalff L (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46:1243–1248CrossRefGoogle Scholar
  18. Bell RT, Tranvik L (1993) Impact of acidification and liming on the microbial ecology of lakes. Ambio 22:325–330Google Scholar
  19. Belykh OI, Ekaterina G, Sorokovikova T, Saphonova A, Tikhonova V (2006) Autotrophic picoplankton of Lake Baikal: composition, abundance and structure. Hydrobiologia 568:9–17CrossRefGoogle Scholar
  20. Bergman E, Hamrin SF, Romare P (1999) The effect of cyprinid reduction on the fish community. In Hansson LA and Bergman B (eds) Nutrient reduction and biomanipulation as tools to improve water quality. The Lake Ringsjön story. Hydrobiologia 404:65–75CrossRefGoogle Scholar
  21. Berman T, Yacobi YZ, Pollingher U (1992) Lake Kinneret phytoplankton: stability and variability during twenty years (1970–1989). Aquat Sci 54:104–127CrossRefGoogle Scholar
  22. Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731CrossRefGoogle Scholar
  23. Bertoni R, Piscia R, Callieri C (2004) Horizontal heterogeneity of seston, organic carbon and picoplankton in the photic zone of Lago Maggiore, Northern Italy. J Limnol 63:244–249CrossRefGoogle Scholar
  24. Bird DJ, Kalff J (1987) Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol Oceanogr 32:277–284CrossRefGoogle Scholar
  25. Bird C, Wyman M (2003) Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH8103: effect of nitrogen source and availability on gene expression. Appl Environ Microbiol 69:7009–7018PubMedCrossRefGoogle Scholar
  26. Björk S et al (1972) Ecosystem studies in connection with the restoration of lakes. Verh Int Ver Limnol 18:379–387Google Scholar
  27. Bláha L, Marsálek B (1999) Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol Stud 92:95–108Google Scholar
  28. Blank CE, Sánchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23PubMedCrossRefGoogle Scholar
  29. Blomqvist P (1996) Late summer phytoplankton responses to experimental manipulations of nutrients and grazing in unlimed and limed Lake Njupfatet, central Sweden. Arch Hydrobiol 137:425–455Google Scholar
  30. Boenigk J, Matz C, Jürgens K, Arndt H (2001) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb Ecol 42:168–176PubMedGoogle Scholar
  31. Boersma M, Wiltshire K (2006) Gut passage of phosphorus-limited algae through Daphnia: do they take up nutrients in the process? Arch Hydrobiol 167:498–500Google Scholar
  32. Bourrelly P (1985) Les Algues d’Eaux Douce. III. Les Algues Bleues et Rouges, Les Eugléniens, Peridiniens et Cryptomonadines. Société Nouvelle des Éditions Boubée, Paris, 606 ppGoogle Scholar
  33. Buma AGJ, van Hannen EJ, Veldhuis MJW, Gieskes WWC (1995) Monitoring ultraviolet B-induced DNA damage in individual diatom cells by immuno-fluorescent-thymin dimer detection. J Phycol 31:314–321CrossRefGoogle Scholar
  34. Burns CW, Schallenberg M (1996) Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J Plankton Res 18:683–714CrossRefGoogle Scholar
  35. Burns CW, Schallenberg M (2001) Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs on an oligotrophic and eutrophic lake. N Z J Mar Freshw Res 35:695–710CrossRefGoogle Scholar
  36. Butcher RW (1952) Contributions to our knowledge of smaller marine algae. J Mar Biol Assoc UK 31:610–652CrossRefGoogle Scholar
  37. Callieri C (1996) Extinction coefficient of red, green and blue light and its influence on Pcy types in lakes at different trophic levels. Mem Ist Ital Idrobiol 54:135–142Google Scholar
  38. Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28Google Scholar
  39. Callieri C (2010) Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. J Limnol 69:257–277CrossRefGoogle Scholar
  40. Callieri C, Bertoni R (1999) Organic carbon and microbial food web assemblages in an oligotrophic alpine lake. In: Straškrabová V, Callieri C, Fott J (eds) Pelagic food web in Mountain Lakes. MOuntain LAkes Research Program. J Limnol 58:136–143CrossRefGoogle Scholar
  41. Callieri C, Pinolini ML (1995) Picoplankton in Lake Maggiore, Italy. Int Rev Ges Hydrobiol 80:491–501CrossRefGoogle Scholar
  42. Callieri C, Piscia R (2002) Photosynthetic efficiency and seasonality of autotrophic picoplankton in Lago Maggiore after its recovery. Freshw Biol 47:941–956CrossRefGoogle Scholar
  43. Callieri C, Stockner JG (2002) Freshwater autotrophic picoplankton: a review. J Limnol 61:1–14Google Scholar
  44. Callieri C, Amicucci E, Bertoni R, Vörös L (1996a) Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. Int Rev Ges Hydrobiol 81:13–23CrossRefGoogle Scholar
  45. Callieri C, Bertoni R, Amicucci E, Pinolini ML, Jasser I (1996b) Growth rates of freshwater picocyanobacteria measured by FDC: problems and potentials for the estimation of picoplankton organic carbon synthesis. Arch Hydrobiol Spec Issues Adv Limnol 48:93–103Google Scholar
  46. Callieri C, Lami A, Bertoni (2011) Microcolony formation by single-cell Synechococcus strains as a fast response to UV radiation. Appl Environ Microbiol 77:7533–7540Google Scholar
  47. Callieri C, Morabito G, Huot Y, Neal P, Lichman E (2001) Photosynthetic response of pico- and nanoplanktonic algae to UVB, UVA and PAR in a high mountain lake. Aquat Sci 63:286–293CrossRefGoogle Scholar
  48. Callieri C, Karjalainen SM, Passoni S (2002) Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J Plankton Res 24:785–796CrossRefGoogle Scholar
  49. Callieri C, Balseiro E, Bertoni R, Modenutti B (2004) Picocyanobacterial photosynthetic efficiency under Daphnia grazing pressure. J Plankton Res 26:1471–1477CrossRefGoogle Scholar
  50. Callieri C, Moro S, Caravati E, Crosbie ND, Weisse T (2005) Strain specific photosynthetic response of freshwater picocyanobacteria. Verh Int Ver Limnol 29:777–782Google Scholar
  51. Callieri C, Caravati E, Morabito G, Oggioni A (2006) The unicellular freshwater cyanobacterium Synechococcus and mixotrophic flagellates: evidence for a functional association in an oligotrophic, subalpine lake. Freshw Biol 51:263–273CrossRefGoogle Scholar
  52. Callieri C, Modenutti B, Queimaliños C, Bertoni R, Balseiro E (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat Ecol 80:345–362Google Scholar
  53. Callieri C, Caravati E, Corno G, Bertoni R (2012) Picocyanobacterial community structure and space-time dynamics in the subalpine Lake Maggiore (N. Italy). J Limnol 71:95–103Google Scholar
  54. Camacho A, Picazo A, Miracle MR, Vicente E (2003) Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Algol Stud 109:171–184CrossRefGoogle Scholar
  55. Campbell L, Carpenter EJ (1986a) Diel pattern of cell division in marine Synechococcus spp. (Cyanobacteria): use of frequency of dividing cell technique to measure growth rate. Mar Ecol Prog Ser 32:139–148CrossRefGoogle Scholar
  56. Campbell L, Carpenter EJ (1986b) Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the seawater dilution and selective inhibitor techniques. Mar Ecol Prog Ser 33:121–129CrossRefGoogle Scholar
  57. Caravati E (2008) Biodiversità e caratteristiche eco-fisiologiche dei picocianobatteri d’acqua dolce. Ph D thesis, University of Parma, Parma, 133 ppGoogle Scholar
  58. Caravati E, Callieri C, Modenutti B, Corno G, Balseiro E, Bertoni R, Michaud L (2010) Picocyanobacterial assemblages in ultraoligotrophic Andean lakes reveal high regional microdiversity. J Plankton Res 32:357–366CrossRefGoogle Scholar
  59. Caron DA, Lim EL, Miceli G, Waterbury JB, Valois FW (1991) Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and coastal plankton community. Mar Ecol Prog Ser 76:205–217CrossRefGoogle Scholar
  60. Carpenter EJ, Foster RA (2002) Marine symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 11–18Google Scholar
  61. Carreto JI, Carignan MO, Daleo G, De Marco SG (1990) Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium escavatum: UV-photoprotective compounds? J Plankton Res 12:909–921CrossRefGoogle Scholar
  62. Carrillo P, Reche I, Cruz-Pizarro L (1996) Quantification of the phosphorus released by zooplankton in an oligotrophic lake (La Caldera, Spain) – regulating factors and adjustment to theoretical-models. J Plankton Res 18:1567–1586CrossRefGoogle Scholar
  63. Chen F, Wang K, Kan JJ, Suzuki MT, Wommack KE (2006) Diverse and unique Pcy in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol 72:2239–2243PubMedCrossRefGoogle Scholar
  64. Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237Google Scholar
  65. Chisholm SW, Armbrust EV, Olson RJ (1986) The individual cell in phytoplankton ecology: cell cycle and applications of flow cytometry. Can Bull Fish Aquat Sci 214:343–369Google Scholar
  66. Christoffersen K (1994) Variation of feeding activities of heterotrophic nanoflagellates on picoplankton. Mar Microb Food Web 8:111–123Google Scholar
  67. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770PubMedCrossRefGoogle Scholar
  68. Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Lautier J, Pastoureaud A, Souchu P, Vaquer A (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau Lagoon, southern France. J Sea Res 61:68–75CrossRefGoogle Scholar
  69. Cronberg G (1988) Cyanodictyon tubiforme, a new chroococcal blue-green alga from Lake Börringesjön, Scania, Sweden. Algol Stud 50–53:191–194Google Scholar
  70. Cronberg G (1991) Cyanothamnos plancticus gen. Et sp. Nov., a new colonial cyanophyte from an eutrophic Scanian lake, Sweden. Algol Stud 64:61–70Google Scholar
  71. Cronberg G (1999) Qualitative and quantitative investigations of phytoplankton in Lake Ringsjön, Scania Sweden. Hydrobiologia 404:27–40CrossRefGoogle Scholar
  72. Cronberg G (2003) New and interesting cyanoprokaryotes from tempe­rate, brackish ponds and the Baltic Sea. Algol Stud 109:197–211CrossRefGoogle Scholar
  73. Cronberg G, Komárek J (1994) Planktic Cyanoprokaryotes found in South Swedish lakes during the XIIth international symposium on Cyanophyte research, 1992. Algol Stud 75:323–352Google Scholar
  74. Cronberg G, Weibull C (1981) Cyanodictyon imperfectum a new chroococcal blue-green alga from Lake Trummen, Sweden. Algol Stud 27:101–110Google Scholar
  75. Crosbie ND, Pöckl M, Weisse T (2003a) Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol 69:5716–5721PubMedCrossRefGoogle Scholar
  76. Crosbie ND, Pöckl M, Weisse T (2003b) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Method 55:361–370CrossRefGoogle Scholar
  77. Crosbie ND, Teubner K, Weisse T (2003c) Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat Microb Ecol 33:53–66CrossRefGoogle Scholar
  78. Diaz M, Pedrozo F, Reynolds C(S), Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17–27CrossRefGoogle Scholar
  79. Dillon A, Parry JD (2008) Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus spp. Freshw Biol 53:1253–1261CrossRefGoogle Scholar
  80. Dillon A, Parry JD (2009) Amoebic grazing of freshwater Synechococcus strains rich in phycocyanin. FEMS Microbiol Ecol 69:106–112PubMedCrossRefGoogle Scholar
  81. Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW (2002) Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol 177:322–331PubMedCrossRefGoogle Scholar
  82. Domingos P, Rubim TK, Molica RJR, Azevedo SMFO, Carmichael WW (1999) First report of microcystin production by picoplanktic cyanobacteria isolated from a Northeast Brazilian drinking water supply. Environ Toxicol 14:13–35CrossRefGoogle Scholar
  83. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129PubMedCrossRefGoogle Scholar
  84. Drakare S, Blomqvist P, Bergström AK, Jansson M (2003) Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content. Freshw Biol 48:729–740CrossRefGoogle Scholar
  85. Drews G, Prauser H, Uhlmann D (1961) Massenvorkommen von Synechococcus plancticus nov. spec., einer solitären, planktischen Cyanophyceae, in einem Abwasserteich. Betrag zur Kenntnis der sogenannten “μ-Algen”. Arch Mikrobiol 39:101–115PubMedCrossRefGoogle Scholar
  86. Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AP, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90. doi: 10.1186/gb-2008-9-5-r90 PubMedCrossRefGoogle Scholar
  87. DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res Part II 48:1983–2003CrossRefGoogle Scholar
  88. Ernst A (1991) Cyanobacterial picoplankton from Lake Constance I. sola­tion by fluorescence characteristics. J Plankton Res 13:1307–1312CrossRefGoogle Scholar
  89. Ernst A, Postius C, Böger P (1996) Glycosylated surface proteins reflect genetic diversity among Synechococcus spp. of Lake Constance. Arch Hydrobiol 48:1–6Google Scholar
  90. Ernst A, Becker S, Hennes K, Postius C (1999) Is there a succession in the autotrophic picoplankton of temperate zone lakes? In: Bell CR, Brylinski M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 623–629Google Scholar
  91. Ernst A, Becker S, Wollenzien VIA, Postius C (2003) Ecosystem dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149:217–228PubMedCrossRefGoogle Scholar
  92. Everroad RC, Wood AM (2006) Comparative molecular evolution of newly discovered picocyanobacterial strains reveals a phylogenetically informative variable region of beta-phycoerythrin. J Phycol 42:1300–1311CrossRefGoogle Scholar
  93. Fahnenstiel GL, Carrick HJ (1992) Phototrophic picoplankton in lakes Huron and Michigan: abundance, distribution, composition and contribution to biomass and production. Can J Fish Aquat Sci 49:379–388CrossRefGoogle Scholar
  94. Fahnenstiel GL, Patton TR, Carrick HJ, McCormick MJ (1991) Diel division cycle and growth rates of Synechococcus in lakes Huron and Michigan. Int Rev Ges Hydrobiol 76:657–664CrossRefGoogle Scholar
  95. Foster RA, Collier JL, Carpenter EJ (2006) Reverse transcription PCR amplification of cyanobacterial symbiont 16S rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells. J Phycol 42:243–250CrossRefGoogle Scholar
  96. Frias-Lopez J, Thompson A, Waldbauer J, Chisholm S (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11:512–525PubMedCrossRefGoogle Scholar
  97. Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496CrossRefGoogle Scholar
  98. Fuller NJ, Tarran GA, Yallop M, Orcutt KM, Scanlan DJ (2006) Molecular analysis of picocyanobacterial community structure along an Arabian sea transect reveals distinct spatial separation of lineages. Limnol Oceanogr 51:2515–2526CrossRefGoogle Scholar
  99. Furnas M, Crosbie ND (1999) In situ growth dynamics of the photosynthetic prokaryotic picoplankters Synechococcus and Prochlorococcus. Bull Inst Oceanogr Monaco N Spec 19:387–417Google Scholar
  100. Furtado ALFF, Calijuri MDC, Lorenzi AS, Honda RY, Genuario DB, Fiore MF (2009) Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystis production. Hydrobiologia 627:195–209CrossRefGoogle Scholar
  101. Gaedke U, Weisse T (1998) Seasonal and interannual variability of picocyanobacteria in Lake Costance. Arch Hydrobiol Spec Issues Adv Limnol 53:143–158Google Scholar
  102. Gallager SM, Waterbury JB, Stoecker DK (1994) Efficient grazing and utilization of the marine cyanobacterium Synechococcus by larvae of the bivalve Mercenaria mercenaria. Mar Biol 119:251–259CrossRefGoogle Scholar
  103. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  104. Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacteria sheath pigment. J Phycol 27:395–409CrossRefGoogle Scholar
  105. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169PubMedGoogle Scholar
  106. Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-flora, vol 14. Akademische Verlagsgesellschaft, Leipzig, 1069 ppGoogle Scholar
  107. Gervais F, Padisák J, Koschel R (1997) Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? J Plankton Res 19:771CrossRefGoogle Scholar
  108. Gismervik I (2006) Top-down impact by copepods on ciliate numbers and persistence depends on copepod and ciliate species composition. J Plankton Res 28:499–507CrossRefGoogle Scholar
  109. Glibert PM, Ray RT (1990) Different patterns of growth and nitrogen uptake in two clones of marine Synechococcus spp. Mar Biol 107:273–280CrossRefGoogle Scholar
  110. Glover HE, Phinney DA, Yentsch CS (1985) Photosynthetic characteristics of picoplankton compared with those of larger phytoplankton populations in various water masses in the Gulf of Maine. Biol Oceanogr 3:223–248Google Scholar
  111. Gophen M, Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64:408–412CrossRefGoogle Scholar
  112. Gouvea AP, Boyer GL, Twiss MR (2008) Influeance of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). Harmful Algae 7:194–205CrossRefGoogle Scholar
  113. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749PubMedGoogle Scholar
  114. Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285PubMedCrossRefGoogle Scholar
  115. Harris GP (1980) Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Can J Fish Aquat Sci 37:877–900CrossRefGoogle Scholar
  116. Harrison JW, Smith REH (2009) Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities. Photochem Photobiol Sci 8:1218–1232PubMedCrossRefGoogle Scholar
  117. Hauschild CA, McMurter HJG, Pick FR (1991) Effect of spectral quality on growth and pigmentation of picocyanobacteria. J Phycol 27:698–702CrossRefGoogle Scholar
  118. Havens KE, Heath RT (1991) Increased transparency due to changes in the algal size spectrum during experimental acidification in mesocosms. J Plankton Res 13:673–679CrossRefGoogle Scholar
  119. Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 10:174–188PubMedGoogle Scholar
  120. Haverkamp THA, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408PubMedCrossRefGoogle Scholar
  121. Hawley GRW, Whitton BA (1991a) Survey of algal picoplankton from lakes in five continents. Verh Int Ver Limnol 24:1220–1222Google Scholar
  122. Hawley GRW, Whitton BA (1991b) Seasonal changes in chlorophyll-containing picoplankton populations of ten lakes in Northern England. Int Rev Ges Hydrobiol 76:545–554CrossRefGoogle Scholar
  123. Helbling EW, Villafañe VE, Barbieri ES (2001) Sensitivity of winter phytoplankton communities from Andean lakes to artificial ultraviolet-B radiation. Rev Chil Hist Nat 74:273–282CrossRefGoogle Scholar
  124. Helbling EW, Farías ME, Fernández Zenoff MV, Villafañe VE (2006) In situ responses of phytoplankton from the subtropical Lake La Angostura (Tucumán, Argentina) in relation to solar ultraviolet radiation exposure and mixing conditions. Hydrobiologia 559:123–134CrossRefGoogle Scholar
  125. Heldal M, Scanlan DJ, Norlans S, Thingstad F, Mann NH (2003) Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48:1731–1743CrossRefGoogle Scholar
  126. Hickel B (1985) Cyanonephron styloides gen. et sp. nov., a new chroococcal blue-green alga (Cyanophyta) from a brackish lake. Arch Hydrobiol Suppl 71; Algol Stud 38/39:99–104Google Scholar
  127. Hickel B (1991) Two new chroococcal cyanophytes from a brackish environment, (Schlei-Fjord) Germany. Algol Stud 64:97–104Google Scholar
  128. Hindák F (1975) Einige neue und interessante Planktonblaualgen aus der Westslowakei. Arch Hydrobiol Suppl 46(4); Algol Stud 13:330–353Google Scholar
  129. Hindák F (1982) On some planktonic coccoid blue-green algae characteristic by Fe-precipitates. Arch Hydrobiol Suppl 63(3); Algol Stud 32:241–258Google Scholar
  130. Hindák F (1985) The cyanophycean genus Lemmermanniella Geitler 1942. Arch Hydrobiol Suppl 71(3); Algol Stud 40:393–401Google Scholar
  131. Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739PubMedCrossRefGoogle Scholar
  132. Hopkinson BM, Morel FMM (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:656–669CrossRefGoogle Scholar
  133. Houlahan JE, Currie DJ, Cottenie K, Cumming GS, Ernest SKM, Findlay CS, Fuhlendorf SD, Gaedke U, Legendre P, Magnuson JJ, McArdle BH, Muldavin EH, Noble D, Russell R, Stevens RD, Willis TJ, Woiwod IP, Wondzell SM (2007) Compensatory dynamics are rare in natural ecological communities. Proc Natl Acad Sci USA 104:3273–3277PubMedCrossRefGoogle Scholar
  134. Ilikchyan IN, McKay RML, Zehr JP, Dyhrman ST, Bullerjahn GS (2009) Detection and expression of the phosphonate transporter gene PHND in marine and freshwater picocyanobacteria. Environ Microbiol 11:1314–1324PubMedCrossRefGoogle Scholar
  135. Iturriaga R, Mitchell BG (1986) Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar Ecol Prog Ser 28:291–297CrossRefGoogle Scholar
  136. Ivanikova NV, Popels LC, McKay RML, Bullerjahn GS (2007) Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl Environ Microbiol 73:4055–4065PubMedCrossRefGoogle Scholar
  137. Izaguirre I, Allende L, Marinone MC (2003) Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J Plankton Res 25:1079–1097CrossRefGoogle Scholar
  138. Jacquet S, Partensky F, Lennon JF, Vaulot D (2001) Diel patterns of growth and division in marine picoplankton in culture. J Phycol 37:357–369CrossRefGoogle Scholar
  139. Jacquet S, Domaizon I, Personnic S, Sime-Ngando T (2007) Do small grazers influence viral-induced bacterial mortality in Lake Bourget? Fund Appl Limnol 170:125–132CrossRefGoogle Scholar
  140. Jansson M, Olsson H, Pettersson K (1988) Phosphatases: origin, characteristic and function in lakes. Hydrobiologia 170:157–175CrossRefGoogle Scholar
  141. Jasser I (1997) The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. Hydrobiologia 342–343:87–93CrossRefGoogle Scholar
  142. Jasser I, Arvola L (2003) Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J Plankton Res 25:873–883CrossRefGoogle Scholar
  143. Jasser I, Królicka A, Karnkowska-Ishikawa A (2011) A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes. FEMS Microbiol Ecol 75:89–98Google Scholar
  144. Jezberová J, Komárková J (2007) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9:1858–1862PubMedCrossRefGoogle Scholar
  145. Jochem FJ (2000) Probing the physiological state of phytoplankton at the single-cell level. Sci Mar 64:183–195CrossRefGoogle Scholar
  146. Joosten AMT (2006) Flora of the blue-green algae of the Netherlands. KNNV Publishing, Utrecht, p 239Google Scholar
  147. Jürgens K, Jeppesen E (2000) The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J Plankton Res 22:1047–1070CrossRefGoogle Scholar
  148. Kana TM, Glibert PM (1987a) Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res 34:479–495CrossRefGoogle Scholar
  149. Kana TM, Glibert PM (1987b) Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803 -II. Photosynthetic responses and mechanisms. Deep Sea Res 34:497–516CrossRefGoogle Scholar
  150. Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166CrossRefGoogle Scholar
  151. Karl DM, Letelier R, Tupas L, Dore JE, Christian J, Hebel DV (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538CrossRefGoogle Scholar
  152. Kasai F, Waiser MJ, Robarts RD, Arts MT (2001) Size dependent UVR sensitivity in Redberry lake phytoplankton communities. Ver Int Ver Limnol 27:2018–2023Google Scholar
  153. Kasprzak P, Gervais F, Adrian R, Weiler W, Radke R, Jaeger I, Riest S, Siedel U, Schneider V, Boehme M, Eckmann R, Walz N (2000) Trophic characterization, pelagic food web structure and comparison of two mesotrophic lakes in Brandenburg (Germany). Int Rev Ges Hydrobiol 85:167–189CrossRefGoogle Scholar
  154. Katano T, Nakano S, Ueno H, Mitamura U, Anbutsu K, Kihira M, Satoh Y, Drucker V, Sugiyama M (2005) Abundance, growth and grazing loss rates of picophytoplankton in Barguzin Bay, Lake Baikal. Aquat Ecol 39:431–438CrossRefGoogle Scholar
  155. Katano T, Nakano S, Mitamura O, Yoshida H, Azumi H, Matsuura Y, Tanaka Y, Maezono H, Satoh Y, Satoh T, Sugiyama Y, Watanabe Y, Mimura T, Akagashi Y, Machida H, Drucker V, Tikhonova I, Belykh O, Fialkov VA, Han MS, Kang SH, Sugiyama M (2008) Abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal. Limnology 9:105–114CrossRefGoogle Scholar
  156. Klut EM, Stockner JG (1991) Picoplankton associations in an ultra-oligotrophic lake on Vancouver Island, British Columbia. Can J Fish Aquat Sci 48:1092–1099CrossRefGoogle Scholar
  157. Koblížek M, Komenda J, Masojídek J, Pechar L (2000) Cell aggregation of the cyanobacterium Synechococcus elongatus: role of the electron transport chain. J Phycol 36:662–668CrossRefGoogle Scholar
  158. Komárek J (1958) Die taxonomische Revision der planktischen Blaualgen der Tschechoslowakei. In: Komárek J, Ettl H (eds) Algologische Studien. Naklad, ČSAV, Prague, pp 10–106Google Scholar
  159. Komárek J (1976) Taxonomic review of the genera Synechocystis SAUV. 1892, Synechococcus Näg. 1849, and Cyanothece gen. nov. (Cyanophyceae). Arch Protistenk 118:119–179Google Scholar
  160. Komárek J (1996) Towards a combined approach for the taxonomic and species delimitation of picoplanktic cyanoprokaryotes. Algol Stud 83:377–401Google Scholar
  161. Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil Chroococcales. Süsswasserflora von Mitteleuropas. Gustav Fischer, Stuttgart, 548 ppGoogle Scholar
  162. Komárek J, Anagnostidis K (1999) Cyanoprokaryota 1. Teil Chroococcales. Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena, 548 pGoogle Scholar
  163. Komárek J, Kling H (1991) Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa). Algol Stud 61:21–45Google Scholar
  164. Komárek J, Komárková-Legnerová J (1992) Variability of some planktic gomphosphaeriod cyanoprocaryotes in northern lakes. Nord J Bot Sect Phycol 12:513–524CrossRefGoogle Scholar
  165. Komárek J, Azevedo SMFO, Domingos P, Komárková J, Tichý M (2001) Background of the Caruaru tragedy; a case taxonomic study of toxic cyanobacteria. Algol Stud 103:9–29Google Scholar
  166. Komárek J, Cepák V, Kaštovský J, Sulek J (2004) What are the cyanobacterial genera Cyanothece and Cyanobacterium? Contribution to the combined molecular and phenotype taxonomic evaluation of cyanobacterial diversity. Algol Stud 113:1–36CrossRefGoogle Scholar
  167. Komárková J (2002) Cyanobacterial picoplankton and its colonial formations in two eutrophic canyon reservoirs (Czech Republic). Arch Hydrobiol 154:605–623Google Scholar
  168. Komárková J, Cronberg G (1985) Lemmermanniella pallida (LEMM.) GEITL. from South-Swedish lakes. Arch Hydrobiol Suppl 71(3); Algol Stud 40:403–413Google Scholar
  169. Komárková-Legnerová J, Cronberg G (1994) Planktic blue-green algae from lakes in South Scania Sweden Part I: Chroococcales. Algol Stud 72:13–51Google Scholar
  170. Kranzler C, Lis H, Shaked Y, Keren N (2011) The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ Microbiol 13:2990–2999Google Scholar
  171. Lagerheim G (1883) Bidrag till Sveriges algflora. Öfv Kgl Vetensk-Akad Förhandl 40(2):37–39Google Scholar
  172. Landry MR, Hassett RP (1982) Estimating the grazing impact of marine microzooplankton. Mar Biol 67:283–288CrossRefGoogle Scholar
  173. Landry MR, Kirshtein J, Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton with experimental tests in the Central Equatorial Pacific. Mar Ecol Prog Ser 120:53–63CrossRefGoogle Scholar
  174. Laurion I, Vincent WF (1998) Cell size vs. taxonomic composition as determinants of UV sensitivity in natural phytoplankton communities. Limnol Oceanogr 43:1774–1779Google Scholar
  175. Lavallée BF, Pick FR (2002) Picocyanobacteria abundance in relation to growth and loss rates in oligotrophic to mesotrophic lakes. Aquat Microb Ecol 27:37–46CrossRefGoogle Scholar
  176. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzales A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  177. Lemmermann E (1904) Das Plankton schwedischer Gewasser. Ark Bot 2:1–209Google Scholar
  178. Li WKW (1998) Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr 43:1743–1753CrossRefGoogle Scholar
  179. Liu H, Campbell L, Landry MR (1995) Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar Ecol Prog Ser 116:277–287CrossRefGoogle Scholar
  180. Liu Z, Häder DP, Sommaruga R (2004) Occurrence of mycosporine-like aminoacids (MAAs) in the bloom-forming cyanobacterium Microcyctis aeruginosa. J Plankton Res 26:963–966CrossRefGoogle Scholar
  181. Liu X, Shi M, Liao Y, Gao Y, Zhang Z, Wen D, Wu W, An C (2006) Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion process. Microb Ecol 51:315–325CrossRefGoogle Scholar
  182. Logue JB, Lindström ES (2008) Biogeography of bacterioplankton in inland waters. Freshw Rev 1:99–114Google Scholar
  183. Mackey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900–913CrossRefGoogle Scholar
  184. Mackey KRM, Rivlin T, Grossman AR, Post AF, Paytan A (2009) Picophytoplankton responses to changing nutrient and light regimes during a bloom. Mar Biol 156:1535–1546CrossRefGoogle Scholar
  185. Maeda H, Kawai A, Tilzer MM (1992) The water bloom of cyano­bacterial picoplankton in Lake Biwa, Japan. Hydrobiologia 248:93–103CrossRefGoogle Scholar
  186. Malinsky-Rushansky N, Berman T, Dubinsky Z (1995) Seasonal dynamics of picophytoplankton in Lake Kinneret, Israel. Freshw Biol 34:241–254CrossRefGoogle Scholar
  187. Mann KH (1993) Physical oceanography, food chains, and fish stocks: a review. ICES J Mar Sci 50:105–119CrossRefGoogle Scholar
  188. Mann NH (2003) Phages of marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 27:17–34PubMedCrossRefGoogle Scholar
  189. Martin-Creuzburg D, Von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707CrossRefGoogle Scholar
  190. Martin-Creuzburg D, Bec A, Von Elert E (2005) Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat Microb Ecol 41:271–280CrossRefGoogle Scholar
  191. Massana R, del Campo J, Dinter C, Sommaruga R (2007) Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol 9:2660–2669PubMedCrossRefGoogle Scholar
  192. Mastala Z, Herodek S, V-Balogh K, Borbély G, Shafik HM, Vörös L (1996) Nutrient requirement and growth of a Synechococcus species isolated from Lake Balaton. Int Rev Ges Hydrobiol 81:503–512CrossRefGoogle Scholar
  193. Meyer B (1994) A new species of Cyanodictyon (Cyanophyceae, Chroococcales) planktic in eutrophic lakes. Algol Stud 75:183–188Google Scholar
  194. Mills MM, Ridame C, Davey M, La Roche J (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294PubMedCrossRefGoogle Scholar
  195. Modenutti BE, Balseiro EG (2002) Mixotrophic ciliates in an Andean lake: dependence on light and prey of an Ophrydium naumanni population. Freshw Biol 47:121–128CrossRefGoogle Scholar
  196. Modenutti BE, Queimaliños C, Balseiro EG, Reissig M (2003) Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecol 24:S289–S298CrossRefGoogle Scholar
  197. Moore LR, Ostrowski M, Scanlan DJ, Feren K, Sweetsir T (2005) Ecotypic variation in phosphorus acquisition mechanisms within marine picocyanobacteria. Aquat Microb Ecol 39:257–269CrossRefGoogle Scholar
  198. Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, an application to specific absorption of phytoplankton. Deep Sea Res 28:1375–1393CrossRefGoogle Scholar
  199. Morris I, Glover HE (1981) Physiology of photosynthesis by marine coccoid cyanobacteria some ecological implications. Limnol Oceanogr 26:957–961CrossRefGoogle Scholar
  200. Moser M, Callieri C, Weisse T (2009) Photosynthetic and growth response of freshwater picocyanobacteria are strain-specific and sensitive to photoacclimation. J Plankton Res 31:349–357PubMedCrossRefGoogle Scholar
  201. Moutin T, Thingstad TR, Van Wambeke F, Marie D, Slawyk G, Raimbault P, Claustre H (2002) Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus ? Limnol Oceanogr 47:1562–1567CrossRefGoogle Scholar
  202. Mózes A, Présing M, Vörös L (2006) Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int Rev Ges Hydrobiol 91:38–50CrossRefGoogle Scholar
  203. Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, Scanlan DJ, Post AF, Joint I, Mann NH (2005) Genetic diversity of marine Synechococcus and co-occurring cyanophage community: evidence for viral control of phytoplankton. Environ Microbiol 7:499–508PubMedCrossRefGoogle Scholar
  204. Murphy TP, Lean DRS, Nalewajko C (1976) Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192:900–902PubMedCrossRefGoogle Scholar
  205. Nagata T, Takai K, Kawanobe K, Kim D, Nakazato R, Guselnikova N, Bondarenko N, Mologawaya O, Kostrnova T, Drucker V, Satoh Y, Watanabe Y (1994) Autotrophic picoplankton in southern Lake Baikal: abundance growth and grazing mortality during summer. J Plankton Res 16:945–959CrossRefGoogle Scholar
  206. Nagata T, Takay K, Kawabata K, Nakanishi M, Urabe J (1996) The trophic transfer via a picoplankton-flagellate-copepod food chain during a picocyanobacterial bloom in Lake Biwa. Arch Hydrobiol 137:145–160Google Scholar
  207. Naumann E (1924) Sotvattnets plankton Stockholm, Sweden 267 ppGoogle Scholar
  208. Nedoma J, Štrojsová A, Vrba J, Komárková J, Šimek K (2003) Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol 5:462–472PubMedCrossRefGoogle Scholar
  209. Padisák J, Krienitz L, Koschel R, Nedoma J (1997) Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. Eur J Phycol 32:403–416Google Scholar
  210. Padisák J, Krienitz L, Scheffler W, Koschel R, Kristiansen J, Grigorszky I (1998) Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia 369/370:179–197CrossRefGoogle Scholar
  211. Padisák J, Barbosa FAR, Koschel R, Krienitz L (2003) Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Arch Hydrobiol Spec Issues Adv Limnol 58:175–199Google Scholar
  212. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042PubMedCrossRefGoogle Scholar
  213. Passoni S, Callieri C (2000) Picocyanobacteria single forms, aggregates and microcolonies: survival strategy or species succession? Ver Int Ver Limnol 27:1879–1883Google Scholar
  214. Pérez G, Quemaliños C, Modenutti B (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–599CrossRefGoogle Scholar
  215. Pernthaler J, Šimek K, Sattler B, Schwarzenbacher A, Bobkova J, Psenner R (1996) Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J Plankton Res 18:443–462CrossRefGoogle Scholar
  216. Personnic S, Domaizon I, Dorigo U, Berdjeb L, Jacquet S (2009a) Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia 627:99–116CrossRefGoogle Scholar
  217. Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009b) Seasonal variations of microbial abundances and virus-versus flagellate-induced mortality of picoplankton in three peri-alpine lakes. J Plankton Res 31:1161–1177CrossRefGoogle Scholar
  218. Peštová D, Macek M, Martínez Pérez ME (2008) Ciliates and their picophytoplankton-feeding activity in a high-altitude warm-monomictic saline lake. Eur J Protistol 44:13–25PubMedCrossRefGoogle Scholar
  219. Pick FR (1991) The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol Oceanogr 36:1457–1462CrossRefGoogle Scholar
  220. Pick FR, Agbeti DM (1991) The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int Rev Ges Hydrobiol 76:565–580CrossRefGoogle Scholar
  221. Ploug H, Stolte W, Jørgensen BB (1999) Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp. – implications for nutrient uptake and cellular growth. Limnol Oceanogr 44:1959–1967CrossRefGoogle Scholar
  222. Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature 244:179–180CrossRefGoogle Scholar
  223. Porter KG (1975) Viable gut passage of gelatinous green algae ingested by Daphnia. Ver Int Ver Limnol 19:2840–2850Google Scholar
  224. Postius C, Böger P (1998) Different interactions of phycoerythrin- and phycocyanin-rich Synechococcus spp. with diazotrophic bacteria from the picoplankton of Lake Constance. Arch Hydrobiol 141:181–194Google Scholar
  225. Postius C, Ernst A (1999) Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem. Arch Microbiol 172:69–75PubMedCrossRefGoogle Scholar
  226. Powell LM, Bowman JP, Skerratt JH, Franzmann PD, Burton HR (2005) Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar Ecol Prog Ser 291:65–80CrossRefGoogle Scholar
  227. Pradeep Ram AS, Sime-Ngando T (2008) Functional responses of prokaryotes and viruses to grazer effects and nutrient additions in freshwater microcosms. ISME J 2:498–509PubMedCrossRefGoogle Scholar
  228. Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Department of Fisheries and Oceans, Ottawa. Can Bull Fish Aquat Sci 214:1–70Google Scholar
  229. Reche I, Carrillo P, Cruz-Pizarro L (1997) Influence of metazooplankton on interactions of bacteria and phytoplankton in an oligotrophic lake. J Plankton Res 19:631–646CrossRefGoogle Scholar
  230. Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428CrossRefGoogle Scholar
  231. Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (Cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871PubMedCrossRefGoogle Scholar
  232. Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191PubMedCrossRefGoogle Scholar
  233. Roff JC, Turner JT, Webber MK, Hopcroft RR (1995) Bacterivory by tropical copepod nauplii extent and possible significance. Aquat Microb Ecol 9:165–175CrossRefGoogle Scholar
  234. Ronneberger D (1998) Uptake of latex beads as size-model for food of planktonic rotifers. Hydrobiologia 387(388):445–449CrossRefGoogle Scholar
  235. Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3:145–165CrossRefGoogle Scholar
  236. Sánchez-Baracaldo P, Handley BA, Hayes PK (2008) Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology 154:3347–3357PubMedCrossRefGoogle Scholar
  237. Sanders RW, Berninger UG, Lim EL, Kemp PF, Caron DA (2000) Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and Georges Bank. Mar Ecol Prog Ser 192:103–118CrossRefGoogle Scholar
  238. Sant’Anna CL, Azevedo MTP, Senna PAC, Komárková J, Komárková J (2004) Planktic cyanobacteria from Sao Paulo State, Brazil: Chroococcales. Rev Bras Bot 27(2):213–227CrossRefGoogle Scholar
  239. Scanlan DJ, West NJ (2002) Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 40:1–12PubMedCrossRefGoogle Scholar
  240. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky R (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299PubMedCrossRefGoogle Scholar
  241. Schindler DW (1977) Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science 195:260–262PubMedCrossRefGoogle Scholar
  242. Schindler DW (1990) Experimental perturbations of the whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57:25–41CrossRefGoogle Scholar
  243. Schindler DW (2006) Recent advantages in understanding and management of eutrophication. Limnol Oceanogr 51:351–355CrossRefGoogle Scholar
  244. Shannon S, Chrzanowski T, Grover J (2007) Prey food quality affects flagellate ingestion rates. Microb Ecol 53:66–73PubMedCrossRefGoogle Scholar
  245. Sherr EB, Sherr BF (1993) Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp P, Sherr B, Sherr E, Cole J (eds) Handbook of methods in aquatic microbial ecology. Lewis Publisher, Boca Raton, pp 695–701Google Scholar
  246. Sherr BF, Sherr EB, Albright LJ (1987) Bacteria: link or sink? Science 235:88–89CrossRefGoogle Scholar
  247. Sherr EB, Sherr BF, Berman T, Hadas O (1991) High abundance of picoplankton-ingesting ciliates during late fall in Lake Kinneret Israel. J Plankton Res 13:789–799CrossRefGoogle Scholar
  248. Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol 58:3715–3720PubMedGoogle Scholar
  249. Šimek K, Bobkova J, Macek M, Nedoma J, Psenner R (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090CrossRefGoogle Scholar
  250. Šimek K, Macek M, Pernthaler J, Straskrabová V, Psenner R (1996) Can freshwater planktonic ciliates survive on a diet of picoplankton? J Plankton Res 18:597–613CrossRefGoogle Scholar
  251. Sime-Ngando T (1995) Population dynamics of autotrophic picoplankton in relation to environmental factors in a productive lake. Aquat Sci 57:91–105CrossRefGoogle Scholar
  252. Simon RD (1987) Inclusion bodies in the cyanobacteria: cyanophycin, polyphospate, polyhedral bodies. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam/New York/Oxford, pp 199–225, 543 ppGoogle Scholar
  253. Sinha RP, Häder DP (2008) UV-protectants in cyanobacteria. Plant Sci 174:278–289CrossRefGoogle Scholar
  254. Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259PubMedCrossRefGoogle Scholar
  255. Skuja H (1932) Vorarbeiten zu einer Algenflora von Lettland. Bibl Phycol 26:1–302Google Scholar
  256. Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symb Bot Upsal 9:1–399Google Scholar
  257. Skuja H (1964) Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in schwedisch-Lappland. Nova Acta Reg Soc Sci Upsal Ser 4 18(3):1–465Google Scholar
  258. Sommaruga R (2009) Perspectives and research on environmental effects of ultraviolet radiation. Photochem Photobiol Sci 8:1217PubMedCrossRefGoogle Scholar
  259. Sommaruga R, Hofer JS, Alonso-Sáez L, Gasol JM (2005) Differential sunlight sensitivity of picophytoplankton from surface Mediterranean coastal waters. Appl Environ Microbiol 71:2154–2157PubMedCrossRefGoogle Scholar
  260. Sommaruga R, Chen Y, Liu Z (2009) Multiple strategies of bloom-forming Microcyctis to minimize damage by solar ultraviolet radiation in surface waters. Microb Ecol 57:667–674PubMedCrossRefGoogle Scholar
  261. Søndergaard M (1991) Phototrophic picoplankton in temperate lakes: seasonal abundance and importance along a trophic gradient. Int Rev Ges Hydrobiol 76:505–522CrossRefGoogle Scholar
  262. Staley JT (1997) Biodiversity: are microbial species threatened? Curr Opin Biotechnol 8:340–345PubMedCrossRefGoogle Scholar
  263. Stanier RY, Kuniswawa R, Mandel R, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205PubMedGoogle Scholar
  264. Stockner JG (ed) (1991a) Autotrophic picoplankton in freshwater ecosystems. Int Rev Ges Hydrobiol 76:664 ppGoogle Scholar
  265. Stockner JG (1991b) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Ges Hydrobiol 76:483–492CrossRefGoogle Scholar
  266. Stockner JG (1998) Global warming, picocyanobacteria and fisheries decline: is there a connection? In: Atti del 12° Congresso AIOL, Vol.II, Genova, pp 29–37Google Scholar
  267. Stockner JG, Antia NJ (1986) Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J Fish Aquat Sci 43:2472–2503CrossRefGoogle Scholar
  268. Stockner JG, Porter KG (1988) Microbial food webs in fresh-water planktonic ecosystems. In: Carpenter SR (ed) Complex interactions in lake communities. Springer, New York, pp 69–83, 283 ppCrossRefGoogle Scholar
  269. Stockner JG, Shortreed KS (1988) Response of Anabaena and Synechococcus to manipulation of nitrogen:phosphorus ratios in a lake fertilization experiment. Limnol Oceanogr 33(1348):1361Google Scholar
  270. Stockner JG, Shortreed KS (1989) Algal picoplankton production and contribution to food webs in oligotrophic British Columbia lakes. Hydrobiologia 173:151–166CrossRefGoogle Scholar
  271. Stockner JG, Shortreed KS (1991) Phototrophic picoplankton: community composition abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int Rev Ges Hydrobiol 76:581–601CrossRefGoogle Scholar
  272. Stockner JG, Shortreed KS (1994) Autotrophic picoplankton community dynamics in a pre-alpine lake in British Columbia, Canada. Hydrobiologia 274:133–142CrossRefGoogle Scholar
  273. Stockner J, Callieri C, Cronberg G (2000) Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 195–238, 688 ppGoogle Scholar
  274. Stockner JG, Langston A, Sebastian D, Wilson G (2005) The limnology of Williston Reservoir: British Columbia’s largest lacustrine ecosystem. Water Qual Res J Can 40:28–50Google Scholar
  275. Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107PubMedCrossRefGoogle Scholar
  276. Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colorful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298PubMedCrossRefGoogle Scholar
  277. Straškrabová V, Callieri C, Carrillo P, Cruz-Pizarro L, Fott J, Hartman P, Macek M, Medina-Sánchez JM, Nedoma J, Šimek K (1999a) Investigation on pelagic food web in mountain lakes – aims and methods. In: Straškrabová V, Callieri C, Fott J (eds) Pelagic food web in Mountain Lakes. MOuntain LAkes Research Program. J Limnol 58:77–87CrossRefGoogle Scholar
  278. Straškrabová V, Callieri C, Fott J (eds) (1999b) Pelagic food web in mountain lakes (Mountain Lakes Research Program). J Limnol 58:222 ppGoogle Scholar
  279. Štrojsová A, Vrba J, Nedoma J, Komarková J, Znachor P (2003) Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol 38:295–306CrossRefGoogle Scholar
  280. Sundt-Hansen LE, Olsen Y, Stibor H, Heldal M, Vadstein O (2006) Trophic cascades mediated by copepods, not nutrient supply rate, determine the development of picocyanobacteria. Aquat Microb Ecol 45:207–218CrossRefGoogle Scholar
  281. Suttle C (2000) Cyanophages and their role in the ecology of cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 563–589, 668 ppGoogle Scholar
  282. Szelag-Wasielewska E (2003) Phytoplankton community structure in non-stratified lakes of Pomerania (NW Poland). Hydrobiologia 506–509:229–236CrossRefGoogle Scholar
  283. Takano H, Arai T, Hirano M, Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl Microbiol Biotechnol 43:1014–1018CrossRefGoogle Scholar
  284. Tarao M, Jezbera J, Hahn M (2009) Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol 75:4720–4726PubMedCrossRefGoogle Scholar
  285. Tarbe AL, Unrein F, Stenuite S, Pirlot S, Sarmento H, Sinyinza D, Jean-Descy JP (2011) Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microb Ecol 62:314–323Google Scholar
  286. Taylor GT (1982) The role of pelagic heterotrophic protozoa in nutrient cycling: a review. Ann Inst Oceanogr 58:227–241Google Scholar
  287. Timmermans KR, van der Wagt B, Veldhuis MJW, Maatman A, de Baar HJW (2005) Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res 53:109–120CrossRefGoogle Scholar
  288. Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernandez-Valiente E, Marco E, Justel A, Avendañn MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of freshwater ecosystems of Byers peninsula, Livingstone Island, in maritime Antarctica. Polar Biol 30:635–649CrossRefGoogle Scholar
  289. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  290. Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structure inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201PubMedCrossRefGoogle Scholar
  291. Vadstein O (2000) Heterotrophic planktonic bacteria and cycling of phosphorus: phosphorus requirements, competitive ability, and food web interactions. In: Schink B (ed) Advances in microbial ecology, vol 16. Kluwer Academic Publisher, New York, pp 115–167CrossRefGoogle Scholar
  292. Van Donk E, Hessen DO (1993) Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93:508–511CrossRefGoogle Scholar
  293. Van Donk E, Faafeng BA, De Lange HJ, Hessen DO (2001) Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecol 154:247–259CrossRefGoogle Scholar
  294. Van Gremberghe I, Van Wichelen J, Van der Gucht K, Vanormelingen P, D’hondt S, Boutte C, Wilmotte A, Vyverman W (2008) Covariation between zooplankton community composition and cyanobacterial community dynamics in Lake Blaarmeersen (Belgium). FEMS Microbiol Ecol 63:222–237PubMedCrossRefGoogle Scholar
  295. Van Mooy BAS, Rocap G, Fredericks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103:8607–8612PubMedCrossRefGoogle Scholar
  296. Van Mooy BAS, Fredericks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MR, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarsity. Nature 458:69–72PubMedCrossRefGoogle Scholar
  297. Vázquez-Domínguez E, Peters F, Gasol JM, Vaqué D (1999) Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat Microb Ecol 20:119–128CrossRefGoogle Scholar
  298. Vázquez-Domínguez E, Duarte CM, Agustí S, Jürgens K, Vaqué D, Gasol JM (2008) Microbial plankton abundance and heterotrophic activity across the Central Atlantic Ocean. Prog Oceanogr 79:83–94CrossRefGoogle Scholar
  299. Veldhuis MJW, Admiral W (1987) Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar Biol 95:47–54CrossRefGoogle Scholar
  300. Villafañe VE, Andrade M, Lairana V, Zaratti F, Helbling EW (1999) Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: studies in Lake Titicaca, Bolivia. Freshw Biol 42:215–224CrossRefGoogle Scholar
  301. Villafañe VE, Sundbäck K, Figueroa FL, Helbling EW (2003) Photosynthesis in the aquatic environment as affected by UVR. In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. Comprehensive series in photochemistry and photobiology. The Royal Society of Chemistry, Cambridge, pp 357–398CrossRefGoogle Scholar
  302. Villafañe VE, Marcoval MA, Helbling EW (2004) Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar Ecol Prog Ser 284:23–34CrossRefGoogle Scholar
  303. Vincent WF (2000) Cyanobacteria dominance in the polar region. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 321–340, 668 ppGoogle Scholar
  304. Vincent WF, Bowman JP, Rankin LM, McMeekin TA (2000) Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, pp 317–322Google Scholar
  305. Vörös L, Callieri C, Balogh KV, Bertoni R (1998) Freshwater picocyanobacteria along trophic gradient and light quality range. Hydrobiologia 369(370):117–125CrossRefGoogle Scholar
  306. Vörös L, Mózes A, Somogyi B (2009) A five-year study of autotrophic winter picoplankton in Lake Balaton, Hungary. Aquat Ecol 43:727–734CrossRefGoogle Scholar
  307. Vrede K (1996) Regulation of bacterioplankton production and biomass in an oligotrophic clearwater lake – the importance of the phytoplankton community. J Plankton Res 18:1009–1032CrossRefGoogle Scholar
  308. Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterisation of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:17–120Google Scholar
  309. Wehr JD (1993) Effects of experimental manipulations of light phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can J Fish Aquat Sci 50:936–945CrossRefGoogle Scholar
  310. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181PubMedCrossRefGoogle Scholar
  311. Weisse T (1990) Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance (FRG). Hydrobiologia 191:111–122CrossRefGoogle Scholar
  312. Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology, vol 13. Plenum Press, New York, pp 327–370CrossRefGoogle Scholar
  313. Weisse T, Kenter U (1991) Ecological characteristics of autotrophic picoplankton in a prealpine lake. Int Rev Ges Hydrobiol 76:493–504CrossRefGoogle Scholar
  314. Weisse T, Schweizer A (1991) Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Verh Int Ver Limnol 24:821–825Google Scholar
  315. West W, West GS (1894) On some algae from the West Indies. J Linn Soc 30(208):264–280CrossRefGoogle Scholar
  316. Whitton BA, Grainger SLJ, Hawley GRW, Simon JW (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21:85–98CrossRefGoogle Scholar
  317. Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 ppCrossRefGoogle Scholar
  318. Wilhelm SW (1995) Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems. Aquat Microb Ecol 9:295–303CrossRefGoogle Scholar
  319. Wilmotte A, Golubić S (1991) Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algol Stud 64:1–24Google Scholar
  320. Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000CrossRefGoogle Scholar
  321. Winder M (2009) Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. J Plankton Res 31:1307–1320CrossRefGoogle Scholar
  322. Wood AM, Van Valen LM (1990) Paradox lost? On the release of energy-rich compounds by phytoplankton. Mar Microb Food Web 4:103–116Google Scholar
  323. Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM, Waterbury JB (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epi­fluorescence microscopy and flow cytometry. Limnol Oceanogr 30:1303–1315CrossRefGoogle Scholar
  324. Yang Z, Kong F (2012) Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. J Limnol 71:61–66Google Scholar
  325. Yoshida T, Gurung TB, Kagami M, Urabe J (2001) Contrasting effects of cladoceran (Daphnia galeata) and calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129:602–610Google Scholar
  326. Zaret M, Suffern KL (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21:804–813CrossRefGoogle Scholar
  327. Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Beja O (2005) Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol 7:1505–1513PubMedCrossRefGoogle Scholar
  328. Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193CrossRefGoogle Scholar
  329. Zwirglmaier K, Heywood JL, Chamberlain K, Malcolm E, Woodward S, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ Microbiol 9:1278–1290PubMedCrossRefGoogle Scholar
  330. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161PubMedGoogle Scholar
  331. Zwirglmaier K, Spence E, Zybkov MV, Scanlan DJ, Mann NH (2009) Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ Microbiol 11:1767–1776PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cristiana Callieri
    • 1
    Email author
  • Gertrud Cronberg
    • 2
  • John G. Stockner
    • 3
  1. 1.National Research CouncilInstitute of Ecosystem StudyVerbania PallanzaItaly
  2. 2.Aquatic Ecology, Ecology BuildingUniversity of LundLundSweden
  3. 3.Eco-Logic Ltd.West VancouverCanada

Personalised recommendations