Skip to main content

Microcystis

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

The chapter focuses on features of Microcystis influencing its success in forming water blooms world-wide. The topics covered included its life strategy, life cycle, cell structure and function, together with the environmental variables especially important at different stages in its life cycle. A polyphasic approach to its taxonomy has shown the complexity of the situation in nature and in the laboratory. While the genus is distinct enough to be recognized, we suggest using “morphospecies” for descriptions of species. The increasing literature on the benthic phase of the life cycle in temperate regions is reviewed, together with the subsequent reinvasion of colonies to the plankton. Temperature and bioperturbation appear to be among the most important factors influencing the latter stage and there is no evidence for any sort of time clock. There has been a shift during recent years from considering extracellular and intracellular peptides, alkaloids and other biologically active compounds largely with respect to their human impact, especially toxicity, to a broader one of understanding their ecological role. Partly associated with this the process of colony formation has become an important area of study. Morphological, ecophysiological approaches combined with molecular genetic and sensitive instrumental methods can open a new view on signal transduction and intercellular communication within individual colonies and whole populations. Such information will not only aid the understanding of colony formation, but also bloom formation, populations dynamic and the competitive advantages of various “morphospecies”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborn F (1895) Über die Wasserblüte Byssus flos-aquae und ihr Verhalten gegen Druck. Verh Naturwiss 2:25

    Google Scholar 

  • Ahn CY, Park DK, Kim HS, Chung AS, Oh HM (2004) K: Fe ratio as an indicator of cyanobacterial bloom in a eutrophic lake. J Microbiol Biotechnol 14:290–296

    CAS  Google Scholar 

  • Aleya L, Michard M, Khattabi H, Devaux J (2006) Coupling of the biochemical composition and calorific content of zooplankters with the Microcystis aeruginosa proliferation in a highly eutrophic reservoir. Environ Technol 27:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25

    Article  PubMed  CAS  Google Scholar 

  • Alva-Martinez AF, Sarma SSS, Nandini S (2004) Population growth of Daphnia pulex (Cladocera) on a mixed diet (Microcystis aeruginosa with Chlorella or Scenedesmus). Crustaceana 77:973–988

    Article  Google Scholar 

  • Anagnostidis K (1961) Untersuchungen uber die Cyanophyceen einiger Thermen in Griechenland. Institut der Systematichen Botanik und Pflanzengeographie. University of Thessaloniki, Thessaloniki, 322 pp

    Google Scholar 

  • Anagnostidis K, Komárek J (1985) Modern approach to the classification system of cyanophytes. Introduction. Algol Stud 38(39):291–302

    Google Scholar 

  • Babica P, Blaha L, Maršálek B (2006) Exploring the natural role of microcystins. – a review of effects on photoautotrophic organisms. J Phycol 42:1–20

    Article  Google Scholar 

  • Balistrieri LS, Murray JW, Paul B (1992) The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol Oceanogr 37:510–528

    Article  CAS  Google Scholar 

  • Beard SJ, Handley BA, Walsby AE (2002) Spontaneous mutations in gas vesicle genes of Planktothrix spp. affect gas vesicle production and critical pressure. FEMS Microbiol Lett 215:189–195

    Article  PubMed  CAS  Google Scholar 

  • Becker S, (Matthijs HCP, van Donk E) (2010) Biotic factors in induced defence revisited: cell aggregate formation in the toxic cyanobacterium Microcystis aeruginosa PCC 7806 is triggered by spent Daphnia medium and disrupted cells. Hydrobiologia 644:159–168. (Author citation corrected from Becker S, to Becker S, Matthijs HCP, van Donk E in Hydrobiologia erratum published in 2011)

    Google Scholar 

  • Belikova OA (1978) Electron microscopic studies in structure of Microcystis wesenbergii Komárek (Cyanophyta) cells. Ukr Bot Zh 35:252–257

    Google Scholar 

  • Belov AP, Giles JD (1997) Dynamical model of buoyant cyanobacteria. Hydrobiologia 349:87–97

    Article  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234

    Article  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Bickel H, Lyck S, Utkilen H (2000) Energy state and toxin content – experiments on Microcystis aeruginosa (Chroococcales, Cyanophyta). Phycologia 39:212–218

    Article  Google Scholar 

  • Biswas JK, Rana S, Bhakta JN, Jana BB (2009) Bioturbation potential of chironomid larvae for the sediment-water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecol Eng 35:1444–1453

    Article  Google Scholar 

  • Boing WJ, Wagner A, Voigt H, Deppe T, Benndorf J (1998) Phyto­plankton responses to grazing by Daphnia galeata in the biomanipulated Bautzen reservoir. Hydrobiologia 389:101–114

    Article  Google Scholar 

  • Bonnet MP, Poulin M (2002) Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance. Ecol Model 156:93–112

    Article  Google Scholar 

  • Bostrom B, Pettersson AK, Ahlgren I (1989) Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow, eutrophic lake. Aquat Sci 51:153–178

    Article  Google Scholar 

  • Boudreau BP, Gardiner BS, Johnson BD (2001) Rate of growth of isolated bubbles in sediments with a diagenetic source of methane. Limnol Oceanogr 46:616–622

    Article  CAS  Google Scholar 

  • Bowen CC, Jensen TE (1965) Blue-green algae: fine structure of the gas vacuoles. Science 147(3664):1460–1462

    Article  PubMed  CAS  Google Scholar 

  • Bozarth CS, Schwartz AD, Shepardson JW, Colwell FS, Dreher TW (2010) Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season. Appl Environ Microbiol 76:5207–5213

    Article  PubMed  CAS  Google Scholar 

  • Brookes JD, Ganf GG (2001) Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J Plankton Res 23:1399–1411

    Article  Google Scholar 

  • Brookes JD, Ganf GG, Oliver RL (2000) Heterogeneity of cyano­bacterial gas-vesicle volume and metabolic activity. J Plankton Res 22:1579–1589

    Article  CAS  Google Scholar 

  • Brookes JD, Regel RH, Ganf GG (2003) Changes in the photo-chemistry of Microcystis aeruginosa in response to light and mixing. New Phytol 158:151–164

    Article  CAS  Google Scholar 

  • Brunberg AK (1995) Microbial activity and phosphorus dynamics in eutrophic lake-sediments enriched with Microcystis colonies. Freshw Biol 33:541–555

    Article  Google Scholar 

  • Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22

    Article  CAS  Google Scholar 

  • Brunberg AK, Blomqvist P (2002) Benthic overwintering of Microcystis colonies under different environmental conditions. J Plankton Res 24:1247–1252

    Article  Google Scholar 

  • Brunberg AK, Blomqvist P (2003) Recruitment of Microcystis (Cyanophyceae) from lake sediments: the importance of littoral inocula. J Phycol 39:58–63

    Article  Google Scholar 

  • Brunberg AK, Bostrom B (1992) Coupling between benthic biomass of Microcystis and phosphorus release from the sediments of a highly eutrophic lake. Hydrobiologia 235:375–385

    Article  Google Scholar 

  • Bulgakov NG, Levich AP (1999) The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure. Arch Hydrobiol 146:3–22

    CAS  Google Scholar 

  • Caceres O, Reynolds CS (1984) Some effects of artificially enhanced anoxia on the growth of Microcystis aeruginosa Kutz emend Elenkin, with special reference to the initiation of its annual growth cycle in lakes. Arch Hydrobiol 99:379–397

    Google Scholar 

  • Canini A, Pellegrini S, Caiola MG (2003) Ultrastructural variations in Microcystis aeruginosa (Chroococcales, Cyanophyta) during a surface bloom induced by high incident light irradiance. Plant Biosyst 137(3):235–247

    Google Scholar 

  • Cao HS, Kong FX, Luo LC, Shi XL, Yang Z, Zhang XF, Tao Y (2006) Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. J Freshw Ecol 21(2):231–238

    Article  Google Scholar 

  • Cao HS, Tao Y, Kong FX, Yang Z (2008) Relationship between temperature and cyanobacterial recruitment from sediments in laboratory and field studies. J Freshw Ecol 23(3):405–412

    Article  CAS  Google Scholar 

  • Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105(32):11039–11040

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EJ, Price CC (1976) Marine Oscillatoria (Trichodesmium) – explanation for aerobic nitrogen-fixation without heterocysts. Science 191(4233):1278–1280

    Article  PubMed  CAS  Google Scholar 

  • Chen FZ, Xie P, Qin BQ (2007) Different competitive outcomes among four species of cladocerans under different alga combinations of colonial Microcystis spp. and green alga Scenedesmus obliquus. Hydrobiologia 581:209–215

    Article  Google Scholar 

  • Chen WM, Zhang QM, Dai SG (2009a) Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa. J Appl Phycol 21:701–706

    Article  CAS  Google Scholar 

  • Chen XC, He SB, Huang YY, Kong HN, Lin Y, Li CJ, Zeng GQ (2009b) Laboratory investigation of reducing two algae from eutrophic water treated with light-shading plus aeration. Chemosphere 76:1303–1307

    Article  PubMed  CAS  Google Scholar 

  • Chen MJ, Chen FZ, Xing P, Li HB, Wu QL (2010) Microbial eukaryotic community in response to Microcystis spp. bloom, as assessed by an enclosure experiment in Lake Taihu, China. FEMS Microbiol Ecol 74:19–31

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Liu H, Zhang QM, Dai S (2011) Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC 7806. J Appl Phycol 23:665–671

    Article  CAS  Google Scholar 

  • Chislock MF, Kaul RB, Jernigan LM, Sarnelle O, Wilson AE (2011) Abstract, aquatic sciences meeting, American Society for Limnology and Oceanography, San Juan Puerto Rico, 13–18 Feb 2011

    Google Scholar 

  • Chu ZS, Jin XC, Iwami N, Inamori YH (2007a) The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. Hydrobiologia 581:217–223

    Article  Google Scholar 

  • Chu ZS, Jin XC, Yang B, Zeng QR (2007b) Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. J Plankton Res 29:739–745

    Article  CAS  Google Scholar 

  • Coelho-Souza SA, Guimarães JRD, Mauro JBN, Miranda MR, Azevedo SMFO (2005) Mercury methylation and bacterial activity associated to tropical phytoplankton. Sci Total Environ 364:188–189

    Article  PubMed  CAS  Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8(5):715–725

    Article  CAS  Google Scholar 

  • Deacon C, Walsby AE (1990) Gas vesicle formation in the dark, and in light of different irradiances, by the cyanobacterium Microcystis sp. Br Phycol J 25:133–139

    Article  Google Scholar 

  • Deng D, Zhang S, Li Y, Meng X, Yang W, Li Y, Li X (2010) Effects of Microcystis aeruginosa on population dynamics and sexual reproduction in two Daphnia species. J Plankton Res 32:1393–1404

    Article  Google Scholar 

  • Deppe T, Ockenfeld K, Meybohm A, Opitz M, Benndorf J (1999) Reduction of Microcystis blooms in a hypertrophic reservoir by a combined ecotechnological strategy. Hydrobiologia 409:31–38

    Article  Google Scholar 

  • Downing TG, Meyer C, Gehringer MM, van de Venter M (2005) Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol 20:257–262

    Article  PubMed  CAS  Google Scholar 

  • Dugdale RC, Menzel DW, Ryther JH (1961) Nitrogen fixation in the Sargasso Sea. Deep Sea Res 7:297–300

    Article  CAS  Google Scholar 

  • Dunton PG, Walsby AE (2005) The diameter and critical collapse pressure of gas vesicles in Microcystis are correlated with GvpCs of different length. FEMS Microbiol Lett 247:37–43

    Article  PubMed  CAS  Google Scholar 

  • Ebel JP (1952) Recherches sur les polyphosphates contenus dans diverse cellules vivantes. IV. Localisation cytologique et role physiologique des polyphosphates dans la cellule vivante. Bull Soc Chim Biol Paris 34:498

    PubMed  CAS  Google Scholar 

  • Falconer IR (2005) Cyanobacterial toxins of drinking water supplies – cylindrospermopsins and microcystins. CRC Press, New York, 296 pp

    Google Scholar 

  • Fallon RD, Brock TD (1981) Overwintering of Microcystis in Lake Mendota. Freshw Biol 11:217–226

    Article  Google Scholar 

  • Fastner J, Erhard M, von Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization -time of flight mass spectrometry. Appl Environ Microbiol 67(11):5069–5076

    Article  PubMed  CAS  Google Scholar 

  • Fujii M, Rose AL, Omura T, Waite TD (2010) Effect of Fe(II) and Fe(III) transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa. Environ Sci Technol 44(6):1980–1986

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto N, Inamori Y, Sugiura N, Sudo R (1994) Effects of temperature-change on algal growth. Environ Technol 15(5):497–500

    Article  Google Scholar 

  • Fukuhara H (1987) The effect of tubificids and chironomids on particle redistribution of lake sediment. Ecol Res 2:255–264

    Article  Google Scholar 

  • Fulton RS, Paerl HW (1987) Toxic and inhibitory effects of the blue-green alga Microcystis-aeruginosa on herbivorous zooplankton. J Plankton Res 9:837–855

    Article  Google Scholar 

  • Furusato E, Asaeda T, Manatunge J (2004) Tolerance for prolonged darkness of three phytoplankton species, Microcystis aeruginosa (Cyanophyceae), Scenedesmus quadricauda (Chlorophyceae), and Melosira ambigua (Bacillariophyceae). Hydrobiologia 527:153–162

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  PubMed  CAS  Google Scholar 

  • Ganf GG, Oliver RL (1982) Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J Ecol 70:829–844

    Article  Google Scholar 

  • Gavel A, Maršálek B, Adámek Z (2004) Viability of Microcystis colonies is not damaged by silver carp (Hypophthalmichthys molitrix) digestion. Algol Stud 113:189–194

    Article  Google Scholar 

  • Ger KA, Arneson P, Goldman CR, Teh SJ (2010) Species specific differences in the ingestion of Microcystis cells by the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi. J Plankton Res 32:1479–1484

    Article  CAS  Google Scholar 

  • Ghadouani A, Pinel-Alloul B, Prepas EE (2003) Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshw Biol 48:363–381

    Article  Google Scholar 

  • Ginn HP, Pearson LA, Neilan BA (2009) Hepatotoxin biosynthesis and regulation in cyanobacteria – the putative involvement of nitrogen and iron homeostasis mechanisms. Chiang Mai J Sci 36(2):200–223

    CAS  Google Scholar 

  • Gons HJ, Ebert J, Hoogveld HL, van den Hove L, Pel R, Takkenberg W, Woldringh CJ (2002) Observations on cyanobacterial population collapse in eutrophic lake water. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:319–326

    Article  CAS  Google Scholar 

  • Granéli W (1979) The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Arch Hydrobiol 87:385–403

    Google Scholar 

  • Gugger M, Lyra C, Suominen I, Tsitko I, Humbert JF, Salkinoja-Salonen MS, Sivonen K (2002) Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). Int J Syst Evol Microbiol 52:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Gulati RD, Bronkhorst M, Van Donk E (2001) Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. J Plankton Res 23:705–718

    Article  Google Scholar 

  • Guseva KA (1952) Water-blooms, their causes, prognoses and eradication [In Russian]. Tr Vsesoyuz Gidrobiol Obsch 4:13–92

    Google Scholar 

  • Gustafsson S, Hansson L-A (2004) Development of tolerance against toxic cyanobacteria in Daphnia. Aquat Ecol 38:37–44

    Article  Google Scholar 

  • Gustafsson S, Rengefors K, Hansson L-A (2005) Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86:2561–2567

    Article  Google Scholar 

  • Hammer UT (1964) The succession of “bloom” species of blue-green algae and some causal factors. Verh Int Ver Limnol 15:829–836

    Google Scholar 

  • Hansson LA, Gustafsson S, Rengefors K, Bomark L (2007) Cyanobacterial chemical warfare affects zooplankton community composition. Freshw Biol 52:1290–1301

    Article  CAS  Google Scholar 

  • Hayes PK, Walsby AE (1984) An investigation into the recycling of gas vesicle protein derived from collapsed gas vesicles. J Gen Microbiol 130:1591–1596

    Google Scholar 

  • Holdren C, Jones W, Taggart J (2001) Chapter 7: Management techniques within the lake or reservoir. In: Holdren C, Jones W, Taggart J (eds) Managing lakes and reservoirs. North American Lake Management Society/Terrene Institute, Madison/Alexandria, pp 215–306, 400 pp

    Google Scholar 

  • Holland DP, Walsby AE (2009) Digital recordings of gas-vesicle collapse used to measure turgor pressure and cell-water relations of cyanobacterial cells. J Microbiol Method 77:214–224

    Article  CAS  Google Scholar 

  • Houwink AL (1956) Flagella, gas vacuoles and cell wall structure in Halobacterium halobium; an electron microscopic study. J Gen Microbiol 15:146–150

    Article  PubMed  CAS  Google Scholar 

  • Howard A (1997) Computer simulation modelling of buoyancy change in Microcystis. Hydrobiologia 349:111–117

    Article  Google Scholar 

  • Howard A (2001) Modeling movement patterns of the cyanobacterium, Microcystis. Ecol Appl 11:304–310

    Article  Google Scholar 

  • Huisman J, Hulot FD (2005) Population dynamics of harmful cyanobacteria. In: Huisman J, Matthijs HCP, Visser PM (eds) Harmful cyanobacteria, Aquatic ecology series. Springer, Dordrecht, pp 143–176, 242 pp

    Chapter  Google Scholar 

  • Huisman J, Jonker RR, Zonneveld C, Weissing FJ (1999a) Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80:211–222

    Article  Google Scholar 

  • Huisman J, van Oostveen P, Weissing FJ (1999b) Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol Oceanogr 44:1781–1787

    Article  Google Scholar 

  • Huisman J, van Oostveen P, Weissing FJ (1999c) Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am Nat 154:46–68

    Article  Google Scholar 

  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Article  Google Scholar 

  • Hyenstrand P, Blomqvist P, Pettersson A (1998) Factors determining cyanobacterial success in aquatic systems – a literature review. Arch Hydrobiol Spec Issues Adv Limnol 51:41–62

    Google Scholar 

  • Ibelings BW (1996) Changes in photosynthesis in response to combined irradiance and temperature stress in cyanobacterial surface waterblooms. J Phycol 32:549–557

    Article  Google Scholar 

  • Ibelings BW, Mur LR (1992) Microprofiles of photosynt hesis and oxygen concentration in Microcystis sp. scums. FEMS Microbiol Ecol 86:195–203

    Article  CAS  Google Scholar 

  • Ibelings BW, Mur LR, Walsby AE (1991) Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in 2 shallow lakes. J Plankton Res 13:419–436

    Article  Google Scholar 

  • Ibelings BW, Bruning K, de Jonge J, Wolfstein K, Pires LMD, Postma J, Burger T (2005) Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microb Ecol 49:487–500

    Article  PubMed  CAS  Google Scholar 

  • Ihle T, Jahnichen S, Benndorf J (2005) Wax and wane of Microcystis (Cyanophyceae) and microcystins in lake sediments: a case study in Quitzdorf Reservoir (Germany). J Phycol 41(3):479–488

    Article  Google Scholar 

  • Imai H, Chang KH, Kusaba M, Nakano S (2009) Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J Plankton Res 31:171–178

    Article  Google Scholar 

  • Imamura N, Motoike I, Shimada N, Nishikori M, Morisaki H, Fukami H (2001) An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem. J Antibiot 54(7):582–587

    Article  PubMed  CAS  Google Scholar 

  • Innok S, Matsumura M, Boonkerd N, Teaumroong N (2005) Detection of Microcystis in lake sediment using molecular genetic techniques. World J Microbiol Biotechnol 21:1559–1568

    Article  CAS  Google Scholar 

  • Istvanovics V, Pettersson K, Rodrigo MA, Pierson D, Padisák J (1993) Gloeotrichia echinulata, a colonial cyanobacterium with a unique phosphorus uptake and life strategy. J Plankton Res 15:531–552

    Article  Google Scholar 

  • Jacobson L, Halmann M (1982) Polyphosphate metabolism in the blue-green alga Microcystis aeruginosa. J Plankton Res 4:481–488

    Article  CAS  Google Scholar 

  • Jang M-H, Ha K, Joo GJ, Takamura N (2003) Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshw Biol 48:1540–1550

    Article  Google Scholar 

  • Jang M-H, Jung J-M, Takamura N (2007) Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol Oceanogr 52(4):1454–1466

    Article  CAS  Google Scholar 

  • Janse I, Meima M, Kardinaal EA, Zwart G (2003) High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 69(11):6634–6643

    Article  PubMed  CAS  Google Scholar 

  • Jiang HB, Qiu BS (2005) Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) to prolonged UV-B exposure. J Phycol 41:983–992

    Article  Google Scholar 

  • Jiang Y, Ji B, Wong RNS, Wong MH (2008) Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium – Microcystis aeruginosa. Harmful Algae 7:127–136

    Article  CAS  Google Scholar 

  • John KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512

    Article  Google Scholar 

  • Jones DD, Jost M (1970) Isolation and chemical characterization of gas vacuole membranes from Microcystis aeruginosa Kütz. emend. Elenkin. Arch Mikrobiol 70:43–64

    Article  PubMed  CAS  Google Scholar 

  • Jost M, Jones DD (1970) Morphological parameters and macromolecular organization of gas vacuole membranes of Microcystis aeruginosa Kuetz. emend. Elenkin. Can J Microbiol 16:159–164

    Article  PubMed  CAS  Google Scholar 

  • Jost M, Zehnder A (1966) Die Gasvakuolen der Blaualge Microcystis aeruginosa. Schweiz Z Hydrol 28:1–3

    Google Scholar 

  • Kaneko T, Nakajima N, Okamoto S, Suzuki I, Tanabe Y, Tamaoki M, Nakamura Y, Kasai F, Watanabe A, Kawashima K, Kishida Y, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabatai S, Watanabe MM (2007) Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res 14:247–256

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Watanabe MF, Watanabe M (1991) Allozyme divergence in Microcystis (Cyanophyceae) and its taxonomic inference. Algol Stud 64:129–140

    Google Scholar 

  • Kilham P, Hecky RE (1988) Comparative ecology of marine and freshwater phytoplankton. Limnol Oceanogr 33:776–795

    Article  Google Scholar 

  • Kim SG, Joung SH, Ahn CY, Ko SR, Boo SM, Oh HM (2010) Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. FEMS Microbiol Ecol 74:93–102

    Article  PubMed  CAS  Google Scholar 

  • Klebahn H (1895) Gasvakuolen, ein Bestandteil der Zellen der Wasserblütebildenden Phycochromaceen. Flora 80:241–282

    Google Scholar 

  • Klebahn H (1922) Neue Untersuchengungen uber die Gasvakuolen. Jahrb Wiss Bot 61:535–589

    Google Scholar 

  • Klemer AR, Feuillade J, Feuillade M (1982) Cyanobacterial blooms – carbon and nitrogen limitation have opposite effects on the buoyancy of Oscillatoria. Science 215(4540):1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Klemer AR, Cullen JJ, Mageau MT, Hanson KM, Sundell RA (1996) Cyanobacterial buoyancy regulation: the paradoxical roles of carbon. J Phycol 32:47–53

    Article  CAS  Google Scholar 

  • Kolkwitz R (1928) Uber Gasvakuolen bei Bakterien. Ber Dtsch Bot Ges 46:29–34

    Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroo­coccales. In: Süsswasserflora von Mitteleuropa 19/1. Fisher Verlag, Stuttgart, 548 pp

    Google Scholar 

  • Komárek J, Komárková J (2002) Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycol (Fottea) 2:1–24

    Google Scholar 

  • Komárek J, Komárková-Legnerova J, Sant’Anna CL, Azevedo MTD, Senna PAC (2002) Two common Microcystis species (Chroococcales, Cyanobacteria) from tropical America, including M. panniformis sp nov. Cryptogam Algol 23:159–177

    Google Scholar 

  • Komárková J, Mugnai MA, Sili C, Komárek O, Turicchia S (2005) Stable morphospecies within the 16S rRNA monophyletic genus Microcystis (Kutzing) Kutzing. Algol Stud 117:279–295

    Article  Google Scholar 

  • Konopka A, Brock TD (1978) Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota. Appl Environ Microbiol 36:572–576

    PubMed  CAS  Google Scholar 

  • Konopka A, Brock TD, Walsby AE (1978) Buoyancy regulation by planktonic blue-green algae in Lake Mendota, Wisconsin. Arch Hydrobiol 83:524–537

    Google Scholar 

  • Krivtsov V, Bellinger EG, Sigee DC (2005) Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquat Ecol 39:123–134

    Article  CAS  Google Scholar 

  • Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. N Z J Mar Freshw Res 21:457–465

    Article  CAS  Google Scholar 

  • Kromkamp J, Mur LR (1984) Buoyant density changes in the cyano­bacterium Microcystis aerugionosa due to changes in the cellular carbohydrate content. FEMS Microbiol Lett 25:105–109

    Article  CAS  Google Scholar 

  • Kromkamp J, Walsby AE (1990) A computer-model of buoyancy and vertical migration in cyanobacteria. J Plankton Res 12:161–183

    Article  Google Scholar 

  • Kromkamp J, Konopka A, Mur LR (1988) Buoyancy regulation in light-limited continuous cultures of Microcystis eeruginosa. J Plankton Res 10:71–183

    Article  Google Scholar 

  • Kromkamp J, Vandenheuvel A, Mur LR (1989a) Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa. Br Phycol J 24:347–355

    Article  Google Scholar 

  • Kromkamp J, Vandenheuvel A, Mur LR (1989b) Formation of gas vesicles in phosphorus-limited cultures of Microcystis aeruginosa. J Gen Microbiol 135:1933–1939

    CAS  Google Scholar 

  • Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118

    Article  PubMed  CAS  Google Scholar 

  • Lagauzere S, Pischedda L, Cuny P, Gilbert F, Stora G, Bonzom JM (2009) Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination. Environ Pollut 157:1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Lampert W (1981) Inhibitory and toxic effects of blue-green-algae on Daphnia. Int Rev Ges Hydrobiol 66:285–298

    Article  Google Scholar 

  • Lampert W (1982) Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch Hydrobiol 95:207–220

    Google Scholar 

  • Lampert W (1987) Laboratory studies on zooplankton-cyanobacteria interactions. N Z J Mar Freshw Res 21:483–490

    Article  Google Scholar 

  • Lang NJ (1968) The fine structure of the blue-green algae. Annu Rev Microbiol 22:15–46

    Article  PubMed  CAS  Google Scholar 

  • Latour D, Salencon MJ, Reyss JL, Giraudet H (2007) Sedimentary imprint of Microcystis aeruginosa (Cyanobacteria) blooms in Grangent reservoir (Loire, France). J Phycol 43:417–425

    Article  Google Scholar 

  • Lehman EM, McDonald KE, Lehman JT (2009) Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. Water Res 43:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski J, Schadach M, Hupfer M (2005) Impact of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations: in-situ study in Lake Arendsee (Germany). Hydrobiologia 549:43–55

    Article  CAS  Google Scholar 

  • Lewin WC, Kamjunke N, Mehner T (2003) Phosphorus uptake by Microcystis during passage through fish guts. Limnol Oceanogr 48(6):2392–2396

    Article  Google Scholar 

  • Li HL, Murphy T, Guo J, Parr T, Nalewajko C (2009) Iron-stimulated growth and microcystin production of Microcystis novacekii UAM 250. Limnologica 39:255–259

    Article  CAS  Google Scholar 

  • Lindenschmidt KE (1999) Controlling the growth of Microcystis using surged artificial aeration. Int Rev Hydrobiol 84:243–254

    Google Scholar 

  • Liu Y, Tan W, Wu X, Wu Z, Yu G, Li R (2011) First report of microcystin production in Microcystis smithii Komárek and Anagnostidis (Cyanobacteria) from a water bloom in Eastern China. J Environ Sci 23:102–107

    Article  CAS  Google Scholar 

  • Lockau W, Ziegler K (2006) Cyanophycin inclusions: biosynthesis and applications. In: Rehm BHA (ed) Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures. Horizon Bioscience, Norfolk, pp 79–106, 373 pp

    Google Scholar 

  • Lukac M, Aegerter R (1993) Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon 31:293–305

    Article  PubMed  CAS  Google Scholar 

  • Lyra S, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526

    PubMed  CAS  Google Scholar 

  • MacKintosh C, Beattie K, Klumpp S, Cohen C, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  PubMed  CAS  Google Scholar 

  • Martin-Luna B, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2006a) Identification of a ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbiol Lett 254:63–70

    Article  PubMed  CAS  Google Scholar 

  • Martin-Luna B, Sevilla E, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2006b) Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster. Phytochemistry 67:876–881

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MJ, James RT, Chen YW, East TL, Gardner WS (2009) Nutrient ratios and phytoplankton community structure in the large, shallow, eutrophic, subtropical Lakes Okeechobee (Florida, USA) and Taihu (China). Limnology 10(3):215–227

    Article  CAS  Google Scholar 

  • Mercier P, Perret J (1949) Aeration of Lake Bret. Monatsbull Schweiz Ver Gas u Wasserfachm 29:25

    CAS  Google Scholar 

  • Mermillod-Blondin F, Lemoine D, Boisson JC, Malet E, Montuelle B (2008) Relative influences of submersed macrophytes and bioturbating fauna on biogeochemical processes and microbial activities in freshwater sediments. Freshw Biol 53:1969–1982

    Article  CAS  Google Scholar 

  • Min X, Xu XD, Hong G, Kong RQ (2007) High variability of the gvpA-gvpC region in Microcystis. Prog Nat Sci 17(11):1290–1295

    Google Scholar 

  • Mlouka A, Comte K, Castets AM, Bouchier C, Tandeau de Marsac N (2004a) The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 186:2355–2365

    Article  PubMed  CAS  Google Scholar 

  • Mlouka A, Comte K, de Marsac NT (2004b) Mobile DNA elements in the gas vesicle gene cluster of the planktonic cyanobacteria Microcystis aeruginosa. FEMS Microbiol Lett 237(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Moisander PH, Ochiai M, Lincoff A (2009) Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae 8:889–897

    Article  CAS  Google Scholar 

  • Nagai T, Imai A, Matsushige K, Fukushima T (2006) Effect of iron complexation with dissolved organic matter on the growth of cyanobacteria in a eutrophic lake. Aquat Microb Ecol 44:231–239

    Article  Google Scholar 

  • Nagai T, Imai A, Matsushige K, Fukushima T (2007) Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology 8:261–270

    Article  CAS  Google Scholar 

  • Nalewajko C, Murphy TP (2001) Effects of temperature and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2:45–48

    Article  Google Scholar 

  • Nedzi M, Kosakowska A (2005) Influence of iron III on the growth of toxic cyanobacteria Microcystis aeruginosa Kutzing. In: Piecuch T (ed) VII national polish scientific conference on complex and detailed problems of environmental engineering. Wydawnictwo Uczelniane Politechn Koszalinskiej, Koszalin, pp 309–320

    Google Scholar 

  • Nogaro G, Mermillod-Blondin F, Valett MH, Francois-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment-water interface: bioturbation and consumer-substrate interaction. Oecologia 161:125–138

    Article  PubMed  Google Scholar 

  • Oberholster PJ, Myburgh JG, Govender D, Bengis R, Botha AM (2009) Identification of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotoxicol Environ Saf 72:1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Oliver RL (1994) Floating and sinking in gas-vacuolate cyanobacteria. J Phycol 30:161–173

    Article  CAS  Google Scholar 

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 149–194, 669 pp

    Google Scholar 

  • Oliver RL, Walsby AE (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena-Flos-Aquae (Cyanobacteria). Limnol Oceanogr 29:879–886

    Article  Google Scholar 

  • Oliver RL, Thomas RH, Reynolds CS, Walsby AE (1985) The sedimentation of buoyant Microcystis colonies caused by precipitation with iron-containing colloid. Proc R Soc Lond B Biol 223:511–528

    Article  Google Scholar 

  • Onderka M (2007) Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia) – a simple regression model. Ecol Model 209(2–4):412–416

    Article  Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43(7):1604–1614

    Article  CAS  Google Scholar 

  • Otsuka S, Suda S, Renhui L, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1998) 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 164:119–124

    Article  CAS  Google Scholar 

  • Otsuka S, Suda S, Li RH, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46:39–50

    Article  PubMed  CAS  Google Scholar 

  • Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyano­bac­terial genus Microcystis Kutzing ex Lemmermann 1907 under the rules of the bacteriological code. Int J Syst Evol Microbiol 51:873–879

    Article  PubMed  CAS  Google Scholar 

  • Ou MM, Wang Y, Zhou BX, Cai WM (2006) Effects of iron and phosphorus on Microcystis physiological reactions. Biomed Environ Sci 19:399–404

    CAS  Google Scholar 

  • Paerl HW (1983) Partitioning of CO2 fixation in the colonial cyano­bacterium Microcystis aeruginosa: mechanism promoting formation of surface scums. Appl Environ Microbiol 46:252–259

    PubMed  CAS  Google Scholar 

  • Paerl HW, Bland PT, Bowles ND, Haibach ME (1985) Adaptation to high-intensity low-wavelength light among surface blooms of the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 49:1046–1052

    PubMed  CAS  Google Scholar 

  • Parra OO, Ugarte E, Mora S, Libreman M, Aron A, Balabanoff L (1980) Remarks on a bloom of Microcystis aeruginosa Kutzing. Nova Hedwig 33:971–990

    Google Scholar 

  • Paterson MJ, Findlay DL, Salki AG, Hendzel LL, Hesslein RH (2002) The effects of Daphnia on nutrient stoichiometry and filamentous cyanobacteria: a mesocosm experiment in a eutrophic lake. Freshw Biol 47:1217–1233

    Article  CAS  Google Scholar 

  • Preston T, Stewart WDP, Reynolds CS (1980) Bloom-forming cyanobacterium Microcystis-aeruginosa overwinters on sediment surface. Nature 288(5789):365–367

    Article  Google Scholar 

  • Rabouille S, Salencon MJ, Thebault JM (2005) Functional analysis of Microcystis vertical migration: a dynamic model as a prospecting tool I – processes analysis. Ecol Model 188:386–403

    Article  Google Scholar 

  • Redfield A (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Reynolds CS (1999) Non-determinism to probability, or N: P in the community ecology of phytoplankton. Arch Hydrobiol 146:23–35

    CAS  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge, 507 pp

    Book  Google Scholar 

  • Reynolds CS, Bellinger EG (1992) Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England – evidence from an 18-year data set. Aquat Sci 54:10–36

    Article  Google Scholar 

  • Reynolds CS, Rogers DA (1976) Seasonal variations in the vertical distribution and buoyancy of Microcystis aeruginosa Kütz. emend. Elenkin in Rostherne Mere, England. Hydrobiologia 48:17–23

    Article  Google Scholar 

  • Reynolds CS, Walsby AE (1975) Water-blooms. Biol Rev 50:437–481

    Article  CAS  Google Scholar 

  • Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz emend Elenkin. Proc R Soc Lond B Biol 293(1068):419–477

    Google Scholar 

  • Rhee GY (1980) Continuous culture in phytoplankton ecology. Adv Aquat Microbiol 2:151–303

    CAS  Google Scholar 

  • Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming Cyano­bacteria. N Z J Mar Freshw Res 21:391–399

    Article  CAS  Google Scholar 

  • Rohrlack T, Christoffersen O, Kaebernick M, Neilan BA (2004) Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphania. Appl Environ Microbiol 70:5047–5050

    Article  PubMed  CAS  Google Scholar 

  • Romo S, Soria J, Fernandez F, Ouahid Y, Baron-Sola A (2012) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol. doi:10.1111/j.1365-2427.2012.02734.x

    Google Scholar 

  • Rueter JG, Petersen RR (1987) Micronutrient effects on cyanobacterial growth and physiology. N Z J Mar Freshw Res 21:435–445

    Article  Google Scholar 

  • Rydin E, Brunberg AK (1998) Seasonal dynamics of phosphorus in Lake Erken surface sediment. Arch Hydrobiol Spec Issues Adv Limnol 51:157–167

    CAS  Google Scholar 

  • Sabour B, Loudiki M, Vasconcelos V (2009) Growth responses of Microcystis ichthyoblabe Kutzing and Anabaena aphanizomenoides Forti (Cyanobacteria) under different nitrogen and phosphorus conditions. Chem Ecol 25:337–344

    Article  CAS  Google Scholar 

  • Sanchis D, Padilla C, Del Campo FF, Quesada A, Sanz-Alferez S (2005) Phylogenetic and morphological analyses of Microcystis strains (Cyanophyta/Cyanobacteria) from a Spanish water reservoir. Nova Hedwig 81:431–448

    Article  Google Scholar 

  • Sarnelle O, Wilson AE (2005) Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr 50:1565–1570

    Article  Google Scholar 

  • Sarnelle O, Gustafsson S, Hansson L-A (2010) Effects of cyanobacteria on fitness components of the herbivore Daphnia. J Plankton Res 32:471–477

    Article  CAS  Google Scholar 

  • Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Borner T, Dittmann E, Kaplan A (2007) Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 9(4):965–970

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 165:260–262

    Article  Google Scholar 

  • Schone K, Jahnichen S, Ihle T, Ludwig F, Benndorf J (2010) Arriving in better shape: benthic Microcystis as inoculum for pelagic growth. Harmful Algae 9:494–503

    Article  Google Scholar 

  • Sedmak B, Elersek T (2005) Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 50:298–305

    Article  PubMed  CAS  Google Scholar 

  • Šejnohová L (2008) Microcystis. New findings in peptide production, autecology and taxonomy by cyanobacterium Microcystis. Ph.D. thesis, Institute of Botany, Czech Academy of Sciences, Brno, 178 pp, ISBN 978-80-86188-27-0. www.sejnohova.cz/soubory/sejnohova_PhD_tisk080709.pdf

  • Šejnohová L, Harustiakova D, Welker M, Maršálek B (2011) Morphology and oligopeptides composition by the genus Microcystis – is there any possible relationship? (unpublished data)

    Google Scholar 

  • Semyalo R, Rohrlack T, Larsson P (2009) Growth and survival responses of a tropical Daphnia (Daphnia lumholtzi) to cell-bound microcystins. J Plankton Res 31:827–835

    Article  CAS  Google Scholar 

  • Shao JH, Wu XQ, Li RH (2009) Physiological responses of Microcystis aeruginosa PCC7806 to nonanoic acid stress. Environ Toxicol 24:610–617

    Article  PubMed  CAS  Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh Int Ver Limnol 24:38–54

    Google Scholar 

  • Shen H, Song LR (2007) Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592:475–486

    Article  CAS  Google Scholar 

  • Shi XL, Yang LY, Niu XJ, Xiao L, Kong ZM, Qin BQ, Ga G (2003) Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiol Res 158:345–352

    Article  PubMed  CAS  Google Scholar 

  • Shi XL, Kong FX, Yu Y, Yang Z (2007) Survival of Microcystis aeruginosa and Scenedesmus obliquus under dark anaerobic conditions. Mar Freshw Res 58:634–639

    Article  CAS  Google Scholar 

  • Shi LM, Cai YF, Wang XY, Li PF, Yu Y, Kong FX (2010) Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J Freshw Ecol 25:193–203

    Article  CAS  Google Scholar 

  • Sigee DC, Selwyn A, Gallois P, Dean AP (2007) Patterns of cell death in freshwater colonial cyanobacteria during the late summer bloom. Phycologia 46:284–292

    Article  Google Scholar 

  • Sirenko A (1972) Physiological fundamentals of reproduction of the blue-green algae in reservoirs [in Russian]. Naukova Dumka, Kiev, p 403

    Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1988) Crystalline bacterial cell surface layers. Springer, Berlin, 193 pp

    Book  Google Scholar 

  • Šmajs D, Šmarda J (1999) New findings of S-layers among cyanobacteria. Algol Stud 94:317–332

    Google Scholar 

  • Šmajs D, Šmarda J, Krzyzanek V (1999) A comparative study of fine structure of cyanobacterial gas vesicles. Algol Stud 94:305–316

    Google Scholar 

  • Šmarda J (1991) S-layer of chroococcal cell walls. Algol Stud 64:41–51

    Google Scholar 

  • Šmarda J, Šmajs D (1996) Morphological types of gas vesicles. Algol Stud 83:485–499

    Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green-algae in lake phytoplankton. Science 221(4611):669–671

    Article  PubMed  CAS  Google Scholar 

  • Smith RV, Peat A (1967) Comparative structure of the gas vacuoles of blue-green algae. Arch Mikrobiol 57:111–122

    Article  Google Scholar 

  • Sommaruga R, Chen Y, Liu Z (2009) Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microb Ecol 57:667–674

    Article  PubMed  Google Scholar 

  • Sommer U (1985) Comparison between steady-state and non-steady state competition – experiments with natural phytoplankton. Limnol Oceanogr 30(2):335–346

    Article  CAS  Google Scholar 

  • Stahl-Delbanco A, Hansson LA (2002) Effects of bioturbation on recruitment of algal cells from the “seed bank” of lake sediments. Limnol Oceanogr 47(6):1836–1843

    Article  Google Scholar 

  • Stahl-Delbanco A, Hansson LA, Gyllstrom M (2003) Recruitment of resting stages may induce blooms of Microcystis at low N:P ratios. J Plankton Res 25(9):1099–1106

    Article  CAS  Google Scholar 

  • Stoeckenius W, Kunau WH (1968) Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacule membranes. J Cell Biol 38:336–357

    Article  Google Scholar 

  • Stoeckenius W, Rowen R (1967) A morphological study of Halo­bacterium halobium and its lysis in media of low salt concentration. J Cell Biol 34:355–395

    Article  Google Scholar 

  • Strayer RF, Tiedje JM (1978) In situ methane production in a small, hypereutrophic, hard-water lake: loss of methane from sediments by vertical diffusion and ebullition. Limnol Oceanogr 23(6):1201–1206

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, 1022 pp

    Google Scholar 

  • Svensson JM, Enrich-Prast A, Leonardson L (2001) Nitrification and denitrification in a eutrophic lake sediment bioturbated by oligochaetes. Aquat Microb Ecol 23(2):177–186

    Article  Google Scholar 

  • Takeya K, Kuwata A, Yoshida M, Miyazaki T (2004) Effect of dilution rate on competitive interactions between the cyanobacterium Microcystis novacekii and the green alga Scenedesmus quadricauda in mixed chemostat cultures. J Plankton Res 26:29–35

    Article  Google Scholar 

  • Tan X, Kong FX, Cao HS, Yu Y, Zhang M (2008) Recruitment of bloom-forming cyanobacteria and its driving factors. Afr J Biotechnol 7(25):4726–4731

    Google Scholar 

  • Tan X, Kong F, Zeng Q, Cao H, Qian S, Zhang M (2009) Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. J Environ Sci 21:892–899

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190

    Article  CAS  Google Scholar 

  • Thomas RH, Walsby AE (1985a) Regulation of buoyancy by the cyanobacterium Microcystis. Br Phycol J 20:191–197

    Google Scholar 

  • Thomas RH, Walsby AE (1985b) Buoyancy regulation in a strain of Microcystis. J Gen Microbiol 131:799–809

    Google Scholar 

  • Thomas RH, Walsby AE (1986) The effect of temperature on recovery of buoyancy by Microcystis. J Gen Microbiol 132:1665–1672

    Google Scholar 

  • Toetz DW (1981) Effects of whole lake mixing on water quality and phytoplankton. Water Res 15(10):1205–1210

    Article  Google Scholar 

  • Trimbee AM, Harris GP (1984) Phytoplankton population dynamics of a small reservoir – use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming blue-green-algae. J Plankton Res 6:897–918

    Article  Google Scholar 

  • Trimbee AM, Prepas EE (1988) The effect of oxygen depletion on the timing and magnitude of blue-green algal blooms. Verh Int Ver Limnol 23:220–223

    Google Scholar 

  • Tsujimura S, Tsukada H, Nakahara H, Nakajima T, Nishino M (2000) Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 434:183–192

    Article  Google Scholar 

  • Utkilen H, Gjolme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800

    PubMed  CAS  Google Scholar 

  • Van Donk E (2006) Food-web interactions in lakes – what is the impact of chemical information conveyance? In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem, vol 16, Wageningen Ur Frontis series. Springer, Dordrecht, pp 145–160

    Google Scholar 

  • Van Donk E (2007) Chemical information transfer in freshwater plankton. Ecol Inform 2:112–120

    Article  Google Scholar 

  • Van Donk E, Cerbin S, Wilken S, Helmsing NR, Ptacnik R, Verschoor AM (2009) The effect of a mixotrophic chrysophyte on toxic and colony-forming cyanobacteria. Freshw Biol 54:1843–1855

    Article  CAS  Google Scholar 

  • Van Gremberghe I, Vanormelingen P, Van der Gucht K, Souffreau C, Vyverman W, De Meester L (2009a) Priority effects in experimental populations of the cyanobacterium Microcystis. Environ Microbiol 11:2564–2573

    Article  PubMed  CAS  Google Scholar 

  • Van Gremberghe I, Vanormelingen P, Vanelslander B, Van der Gucht K, D’Hondt S, De Meester L, Vyverman W (2009b) Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing. Oikos 118:1647–1658

    Article  Google Scholar 

  • Van Wichelen J, Van Gremberghe I, Vanormelingen P, Debeer AE, Leporcq B, Menzel D, Codd GA (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ Microbiol 12:2797–2813

    PubMed  Google Scholar 

  • Vanrijn J, Shilo M (1985) Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fishponds. Limnol Oceanogr 30:1219–1228

    Article  CAS  Google Scholar 

  • Varis O (1993) Cyanobacteria dynamics in a restored Finnish lake – a long-term simulation study. Hydrobiologia 268:129–145

    Article  CAS  Google Scholar 

  • Verspagen JMH, Snelder E, Visser PM, Huisman J, Mur LR, Ibelings BW (2004) Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? J Phycol 40:260–270

    Article  Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komárek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602

    Article  PubMed  CAS  Google Scholar 

  • Visser PM, Ibelings BW, Mur LR (1995) Autumnal sedimentation of Microcystis spp. as result of an increase in carbohydrate ballast at reduced temperature. J Plankton Res 17:919–933

    Article  Google Scholar 

  • Visser PM, Ibelings BW, van der Veer B, Koedood J, Mur LR (1996a) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshw Biol 36:435–450

    Article  Google Scholar 

  • Visser PM, Ketelaars HAM, van Breemen L, Mur LR (1996b) Diurnal buoyancy changes of Microcystis in an artificially mixed storage reservoir. Hydrobiologia 331:131–141

    Article  Google Scholar 

  • Visser PM, Passarge J, Mur LR (1997) Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349:99–109

    Article  Google Scholar 

  • Visser PM, Ibelings BW, Mur LR, Walsby AE (2005) The ecophysiology of the harmful cyanobacterium Microcystis. In: Huisman J, Matthijs HCP, Visser PM (eds) Harmful cyanobacteria, Aquatic ecology series. Springer, Dordrecht, pp 109–142, 242 pp

    Chapter  Google Scholar 

  • Waaland JR, Branton D (1969) Gas vacuole development in a blue-green alga. Science 163(3873):1339–1341

    Article  PubMed  CAS  Google Scholar 

  • Wallace BB, Hamilton DP (1999) The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnol Oceanogr 44:273–281

    Article  Google Scholar 

  • Wallace BB, Hamilton DP (2000) Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J Plankton Res 22:1127–1138

    Article  Google Scholar 

  • Wallace BB, Bailey MC, Hamilton DP (2000) Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquat Sci 62:320–333

    Article  Google Scholar 

  • Walsby AE (1969) The permeability of blue-green algal gas-vacuole membranes to gas. Proc R Soc Lond B Biol 173:235–255

    Article  Google Scholar 

  • Walsby AE (1971) The pressure relationships of gas vacuoles. Proc R Soc Lond B Biol 178:301–326

    Article  Google Scholar 

  • Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36(1):1–32

    PubMed  CAS  Google Scholar 

  • Walsby AE (1980) The water relations of gas-vacuolate prokaryotes. Proc R Soc Lond B Biol 208:78–102

    Article  Google Scholar 

  • Walsby AE (1984) Lower limit of the gas permeability coefficient of gas vesicles. Proc R Soc Lond B Biol 223:177–196

    Article  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  • Walsby AE, Bleything A (1988) The dimensions of cyanobacterial gas vesicles in relation to their efficiency in providing buoyancy and withstanding pressure. J Gen Microbiol 134:2635–2645

    Google Scholar 

  • Walsby AE, Hayes PK (1988) The minor cyanobacterial gas vesicle protein, Gvpc, is attached to the outer surface of the gas vesicle. J Gen Microbiol 134:2647–2657

    CAS  Google Scholar 

  • Walsh K, Jones GJ, Dunstan RH (1997) Effect of irradiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa. Phytochemistry 44:817–824

    Article  CAS  Google Scholar 

  • Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Wan N, Tang J, Li QM, Song LR (2008) The response of Microcystis to sediment environments and the assessment for its overwintering – a simulation study in a novel device. Fresenius Environ Bull 17:2146–2151

    CAS  Google Scholar 

  • Wang YY, Chen FZ (2008) Decomposition and phosphorus release from four different size fraction of Microcystis spp. taken from Lake Taihu, China. J Environ Sci 20:891–896

    Article  Google Scholar 

  • Wang H, Gruden CL, Bridgeman TB, Chaffin JD (2009) Detection and quantification of Microcystis spp. and microcystin-LR in Western Lake Erie during the summer of 2007. Water Sci Technol 60:1837–1846

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Kong HN, He SB, Zheng XY, Li CJ (2010a) The inverse correlation between growth rate and cell carbohydrate content of Microcystis aeruginosa. J Appl Phycol 22:105–107

    Article  CAS  Google Scholar 

  • Wang C, Kong HN, Wang XZ, Wu HD, Lin Y, He SB (2010b) Effects of iron on growth and intracellular chemical contents of Microcystis aeruginosa. Biomed Environ Sci 23:48–52

    Article  PubMed  Google Scholar 

  • Wang W, Liu Y, Yang Z (2010c) Combined effects of nitrogen content in media and Ochromonas sp grazing on colony formation of cultured Microcystis aeruginosa. J Limnol 69:193–198

    Article  Google Scholar 

  • Wang XD, Qin BQ, Gao G, Paerl HW (2010d) Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J Plankton Res 32:457–470

    Article  CAS  Google Scholar 

  • Webster IT (1990) Effect of wind on the distribution of phytoplankton cells in lakes. Limnol Oceanogr 35:989–1001

    Article  Google Scholar 

  • Webster IT, Hutchinson PA (1994) Effect of wind on the distribution of phytoplankton cells in lakes revisited. Limnol Oceanogr 39:365–373

    Article  Google Scholar 

  • Welker M, von Dohren H (2006) Cyanobacterial peptides – nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  PubMed  CAS  Google Scholar 

  • Welker M, Maršálek B, Šejnohová L, von Dohren H (2006) Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: toward an understanding of metabolic diversity. Peptides 27(9):2090–2103

    Article  PubMed  CAS  Google Scholar 

  • Welker M, Šejnohová L, Nemethova D, Maršálek B (2007) Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr 52:609–619

    Article  CAS  Google Scholar 

  • White SH, Duivenvoorden LJ, Fabbro LD (2005) Impacts of a toxic Microcystis bloom on the macroinvertebrate fauna of Lake Elphin­stone, Central Queensland, Australia. Hydrobiologia 548:117–126

    Article  Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Dietrich DR, Cary CS, Hamilton DP (2012) Increasing Microcystis cell density enhanced microcystin synthesis: a mesocosm study. Inland Waters 2:17–22

    Google Scholar 

  • Worm J, Sondergaard M (1998) Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat Microb Ecol 14(1):19–28

    Article  Google Scholar 

  • Wu XD, Kong FX (2009) Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94:258–266

    Article  Google Scholar 

  • Wu WJ, Li GB, Li DH, Liu YD (2010) Temperature may be the dominating factor on the alternant succession of Aphanizomenon flos-aquae and Microcystis aeruginosa in Dianchi lake. Fresenius Environ Bull 19:846–853

    CAS  Google Scholar 

  • Wyatt JT, Silvey JKG (1969) Nitrogen fixation by Gloeocapsa. Science 165(3896):908–909

    Article  PubMed  CAS  Google Scholar 

  • Xie LQ, Xie P, Li SX, Tang HJ, Liu H (2003a) The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Res 37(9):2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Xie LQ, Xie P, Tang HJ (2003b) Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms – an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Environ Pollut 122:391–399

    Article  PubMed  CAS  Google Scholar 

  • Xing W, Huang WM, Liu GH, Liu YD (2008) Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii (Kom.) Kom. (Cyanobacterium). Fresenius Environ Bull 17(12):2034–2042

    CAS  Google Scholar 

  • Xu H, Paerl HW, Qin BQ, Zhu GW, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55(1):420–432

    Article  CAS  Google Scholar 

  • Yagi O, Ohkubo N, Tomioka N, Okada M (1994) Effect of Irradiance and temperature on photosynthetic activity of the cyanobacterium Microcystis spp. Environ Technol 15(4):389–394

    Article  Google Scholar 

  • Yamamoto Y (2010) Contribution of bioturbation by the red swamp crayfish Procambarus clarkii to the recruitment of bloom-forming cyanobacteria from sediment. J Limnol 69(1):102–111

    Article  Google Scholar 

  • Yamamoto Y, Nakahara H (2005) Competitive dominance of the cyanobacterium Microcystis aeruginosa in nutrient-rich culture conditions with special reference to dissolved inorganic carbon uptake. Phycol Res 53:201–208

    Article  Google Scholar 

  • Yamamoto Y, Shiah F-K (2010) Variation in the growth of Microcystis aeruginosa depending on colony size and position in colonies. Ann Limnol Int J Limnol 46:47–52

    Article  Google Scholar 

  • Yamamoto Y, Tsukada H (2009) Measurement of in situ specific growth rates of Microcystis (cyanobacteria) from the frequency of dividing cells. J Phycol 45:1003–1009

    Article  Google Scholar 

  • Yamamoto Y, Shiah F-K, Chen Y-L (2011) Importance of large colony formation in bloom-forming cyanobacteria in eutrophic ponds. Ann Limnol Int J Limnol 47:167–174

    Article  Google Scholar 

  • Yan H, Pan G, Zou H, Song LR, Zhang MM (2004) Effects of nitrogen forms on the production of cyanobacterial toxin microcystin-LR by an isolated Microcystis aeruginosa. J Environ Sci Heal A 39(11–12):2993–3003

    Google Scholar 

  • Yang Z, Kong F, Shi XL, Cao H (2006) Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–230

    Article  Google Scholar 

  • Yang Z, Kong FX, Shi XL, Zhang M, Xing P, Cao HS (2008) Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J Phycol 44:716–720

    Article  Google Scholar 

  • Ye LL, Wu XD, Tan XA, Shi XL, Li DM, Yu Y, Zhang M, Kong FX (2010) Cell lysis of cyanobacteria and its implications for nutrient dynamics. Int Rev Hydrobiol 95:235–245

    Article  CAS  Google Scholar 

  • Yuan L, Zhu W, Xiao L, Yang LY (2009) Phosphorus cycling between the colonial cyanobacterium Microcystis aeruginosa and attached bacteria, Pseudomonas. Aquat Ecol 43(4):859–866

    Article  CAS  Google Scholar 

  • Yuanyuan W, Feizhou C (2008) Decomposition and phosphorus release from four different size fractions of Microcystis spp. taken from Lake Taihu, China. J Environ Sci 20(7):891–896

    Article  Google Scholar 

  • Zeng SJ, Yuan XZ, Shi XS, Qiu YL (2010) Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp. J Hazard Mater 178:89–93

    Article  PubMed  CAS  Google Scholar 

  • Zevenboom W, Mur LR (1984) Growth and photosynthethic response of the cyanobacterium Microcystis aeruginosa in relation to photoperiodicity and irradiance. Arch Microbiol 129:61–66

    Article  Google Scholar 

  • Zhang M, Kong FX, Wu XD, Xing P (2008a) Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing. Hydrobiologia 603:267–278

    Article  CAS  Google Scholar 

  • Zhang X, Xie P, Huang X (2008b) A review of nontraditional biomanipulation. Sci World J 8:1184–1196

    Article  Google Scholar 

  • Zhu GW, Qin BQ, Gao G (2005) Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance. Chin Sci Bull 50(6):577–582

    CAS  Google Scholar 

  • Zilliges Y, Kehr J-C, Mikkat S, Bouchier C, Tandeau de Marsac N, Börner T, Dittmann E (2008) An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC 7806. J Bacteriol 190(8):2871–2879

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported by the Project of the Ministry of Education, Youth and Sports of the Czech Republic: Project No: 1M0571 Research Centre for Bioindication and Revitalization of the programme “Research Centers PP2-DP01” (1M) and by the National Agency of Agricultural Research, Czech Republic, project no. NAZV QH81012 “The use of aeration technologies in the reduction cyanobacterial resting stages and nutrient bioavailability in reservoir sediments”. We are also grateful to our laboratory team for their help and support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blahoslav Maršálek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Šejnohová, L., Maršálek, B. (2012). Microcystis. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_7

Download citation

Publish with us

Policies and ethics