Skip to main content

The Biotechnology of Cyanobacteria

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

This chapter gives an overview of the range of cyanobacterial materials being harvested from nature and grown in culture, increasingly on a large scale. Arthrospira, which is usually marketed as Spirulina, is the most important, but studies are also underway on developing methods to grow Nostoc commercially; at present colonies of several species are harvested for local use in a number of countries in Asia, Africa and South America Although Aphanizomenon flos-aquae has been harvested and sold, the costs of the quality control needed to avoid long-term risks of material including toxins makes its large-scale culture unrealistic. The various approaches to mass culture are considered and the ways in which cyanobacteria are now being used are described. These include food, phycobiliproteins for pigment and antioxidant, animal feed, cosmetics, biofertilizers and treatment of wastewater and exhaust gas. Promising products for the near future include some of the huge range of bioactive molecules produced by cyanobacteria and most important of all, biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalde J, Betancourt L, Torres E, Cid A, Barwell C (1998) Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136(1):109–120

    Article  CAS  Google Scholar 

  • Abdulqader GL, Barsanti L, Tredici MR (2000) Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J Appl Phycol 12(3):493–498

    Article  Google Scholar 

  • Akao Y, Ebihara T, Masuda H, Saeki Y, Akazawa T, Hazeki K, Hazeki O, Matsumoto M, Seya T (2009) Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice. Cancer Sci 100(8):1494–1501

    Article  PubMed  CAS  Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20(3):257–263

    Article  PubMed  CAS  Google Scholar 

  • Anwer R, Khursheed S, Fatma T (2011) Detection of immunoactive insulin in Spirulina. J Appl Phycol. doi:10.1007/s10811-011-9757-1:1-9

    Google Scholar 

  • Balunas MJ, Linington RG, Tidgewell K, Fenner AM, Urena LD, Togna GD, Kyle DE, Gerwick WH (2009) Dragonamide E, a modified linear lipopeptide from Lyngbya majuscula with antileishmanial activity. J Nat Prod 73(1):60–66

    Google Scholar 

  • Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68(12):1793–1795

    Article  PubMed  CAS  Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors: the Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 131–142, 233 pp

    Google Scholar 

  • Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutr Assoc 5(2):27–48

    Google Scholar 

  • Belay A (2007) Production and quality assurance. Spirulina in human nutrition and health. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–26, 312 pp

    Chapter  Google Scholar 

  • Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol 8(4):303–311

    Article  Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75(19):2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Benedetti S, Rinalducci S, Benvenuti F, Francogli S, Pagliarani S, Giorgi L, Micheloni M, D’Amici GM, Zolla L, Canestrari F (2006) Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. J Chromatogr B 833(1):12–18

    Article  CAS  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4(3):233–245

    Article  Google Scholar 

  • Bermejo Román R, Alvarez-Pez J, Acién Fernández F, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93(1):73–85

    Article  PubMed  Google Scholar 

  • Bhaskar SU, Gopalaswamy G, Raghu R (2005) A simple method for efficient extraction and purification of C-phycocyanin from Spirulina platensis Geitler. Indian J Exp Biol 43(3):277

    PubMed  CAS  Google Scholar 

  • Blinkova L, Gorobets O, Baturo A (2001) Biological activity of Spirulina platensis. Zh Mikrobiol Epidemiol Immunobiol 2:114–118

    PubMed  Google Scholar 

  • Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 47(37):7739–7750

    Article  CAS  Google Scholar 

  • Borkenstein CG, Knoblechner J, Frühwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23(1):131–135

    Article  CAS  Google Scholar 

  • Böttcher H, Franke H, Kallies KH, Kiessig Pompe W, Sandau E, Soltmann U (2006) Heavy metal decontamination by hybrid biofilters. WO00/2006/081932, 10.08.2006 (Patent application)

    Google Scholar 

  • Boussiba S, Richmond AE (1979) Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch Microbiol 120(2):155–159

    Article  CAS  Google Scholar 

  • Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125(1):143–147

    Article  CAS  Google Scholar 

  • Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41(7):1521

    PubMed  CAS  Google Scholar 

  • But PP-H, Cheng L, Chan PK, Lau DT-W, But JW-H (2002) Nostoc flagelliforme and faked items retailed in Hong Kong. J Appl Phycol 14:143–145

    Article  Google Scholar 

  • Cai YA, Murphy JT, Wedemayer GJ, Glazer AN (2001) Recombinant phycobiliproteins 1: recombinant C-phycocyanins equipped with affinity Tags, oligomerization, and biospecific recognition domains. Anal Biochem 290(2):186–204

    Article  PubMed  CAS  Google Scholar 

  • Cain KD, Grabowski L, Reilly J, Lytwyn M (2003) Immunomodulatory effects of a bacterial derived 1, 3 glucan administered to tilapia (Oreochromis nilotocus L.) in a Spirulina based diet. Aquac Res 34(13):1241–1244

    Article  CAS  Google Scholar 

  • Capelli B, Cysewski GR (2010) Potential health benefits of Spirulina microalgae. Nutr Food 9(2):19–26

    CAS  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315

    Article  PubMed  CAS  Google Scholar 

  • Carmichael WW, Drapeau C, Anderson DM (2000) Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. J Appl Phycol 12(6):585–595

    Article  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol 20(3):221–224

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18(5):603–608

    Article  CAS  Google Scholar 

  • Chen X, Smith GD, Waring P (2003) Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol 15(4):269–277

    Google Scholar 

  • Chen XF, Jia SR, Yue SJ, Wang N, Li CT, Wang Y (2009) Effect of solid bed-materials on vegetative cells of Nostoc flagelliforme. J Appl Phycol 22(3):341–347

    Article  Google Scholar 

  • Chen XF, Jia SR, Yue SJ, Wang Y, Wang N (2011) Biological crust of Nostoc flagelliforme (cyanobacteria) on sand bed materials. J Appl Phycol 23:67–71

    Article  Google Scholar 

  • Cheng Z, Cai H (1988) A preliminary study on the early-stage development of three species of Nostoc. J Northwest Norm Univ 3:41–52

    Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5):461–465

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84

    Article  PubMed  CAS  Google Scholar 

  • Chuntapa B, Powtongsook S, Menasveta P (2003) Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture 220(1–4):355–366

    Article  CAS  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Mol Biol Rev 47(4):551–578

    CAS  Google Scholar 

  • Contreras-Martel C, Matamala A, Bruna C, Poo-Caamano G, Almonacid D, Figueroa M, Martinez-Oyanedel J, Bunster M (2007) The structure at 2 Å resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC complex. Biophys Chem 125(2–3):388–396

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Oliveira R, Torres B, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100(23):5771–5776

    Article  PubMed  CAS  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce -N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102(14):5074–5078

    Article  PubMed  CAS  Google Scholar 

  • Critchley A, Ohno M (1998) Seaweeds resources of the world. Japan International Cooperation Agency, Yokosuka

    Google Scholar 

  • Cui Z (1983) Culture trial of facai in soil-soaked solution. Sci Technol Lett Inner Mongol 4:10–38

    Google Scholar 

  • Cysewski GR (2010) Commercial Production of Spirulina. 2nd Algae World, Brussels, Belgium, 31th May–1st June

    Google Scholar 

  • Danxiang H, Yonghong B, Zhengyu H (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Nostoc. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 304–311, 566 pp

    Google Scholar 

  • Davies-Coleman MT, Dzeha TM, Gray CA, Hess S, Pannell LK, Hendricks DT, Arendse CE (2003) Isolation ofomodolastatin 16, new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66(5):712–715

    Article  PubMed  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22(3):151–175

    Article  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13(4):293–299

    Article  Google Scholar 

  • De Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15(2):155–161

    Article  Google Scholar 

  • Delpeuch F, Joseph A, Cavelier C (1975) Consumption as food and nutritional composition of blue-green algae among populations in the Kanem region of Chad. Ann Nutr Aliment 29:497–516

    PubMed  CAS  Google Scholar 

  • Deng R, Chow TJ (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28(4):e33–e45

    Article  PubMed  CAS  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    PubMed  CAS  Google Scholar 

  • DeRuyter YS, Fromme P (2008) Molecular structure of the photosynthetic apparatus. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 217–270, 484 pp

    Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2(8):857–864

    Article  CAS  Google Scholar 

  • Diao Z (1996) Study of natural conditions and ecological physiology characteristics for growth of Nostoc flagelliforme in Qinhai province. Chin J Ecol 15:8–13

    Google Scholar 

  • Dias E, Pereira P, Franca S (2002) Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (Cyanobacteria). J Phycol 38(4):705–712

    Article  CAS  Google Scholar 

  • Dobler M, Dover S, Laves K, Binder A, Zuber H (1972) Crystallization and preliminary crystal data of C-phycocyanin. J Mol Biol 71(3):785–787

    Article  PubMed  CAS  Google Scholar 

  • Doke JM Jr (2005) An improved and efficient method for the extraction of phycocyanin from Spirulina sp. Int J Food Eng 1(5):1

    Google Scholar 

  • Dubey A, Rai A (1995) Application of algal biofertilizers (Aulosira fertilissima Tenuis and Anabaena doliolum Bhardawaja) for sustained paddy cultivation in northern India. Isr J Plant Sci 43(1):41–52

    Google Scholar 

  • Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algal biomass, production and use. North Holland Biomedical Press, Amsterdam, pp 51–64, 852 pp

    Google Scholar 

  • Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11(6):817–833

    Article  PubMed  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179(6):1940–1945

    PubMed  CAS  Google Scholar 

  • El-Sayed AFM (1994) Evaluation of soybean meal, Spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127(2–3):169–176

    Article  CAS  Google Scholar 

  • El-Sheekh MM, El-Shouny WA, Osman MEH, El-Gammal EWE (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19(2):357–365

    Article  PubMed  CAS  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Falch BS, Koenig GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM, Bachmann H (1995) Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med 61:321–328

    Article  PubMed  CAS  Google Scholar 

  • Falke P, Hendreich R, Knorr G, Güttes B, Sandau P (1999) Verfahren zur Herstellung von Polyurethan-Schaumstoffen für die Adsorption von Schwermetallionen. DE000019958702

    Google Scholar 

  • Ferey F, Walenta G, Grewe C (2010) Microalgae culture on a Lafarge cement plant. 8th workshop on microalgal biotechnology, June 7–10, Nuthetal, Germany

    Google Scholar 

  • Fox RD (2001) The spiral of Spirulina. In: Trevidi PC (ed) Algal biotechnology. Pointer Publishers, Jaipur, 398 pp

    Google Scholar 

  • Fujishiro T, Ogawa T, Matsuoka M, Nagahama K, Takeshima Y, Hagiwara H (2004) Establishment of a pure culture of the hitherto uncultured unicellular cyanobacterium Aphanothece sacrum, and phylogenetic position of the organism. Appl Environ Microbiol 70(6):3338–3345

    Article  PubMed  CAS  Google Scholar 

  • Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12(4):326–341

    Article  CAS  Google Scholar 

  • Gao K (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10(1):37–49

    Article  Google Scholar 

  • Gao K, Ye C (2003) Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae) under aquatic conditions. J Phycol 39(3):617–623

    Article  Google Scholar 

  • Ge B, Tang Z, Zhao F, Ren Y, Yang Y, Qin S (2005) Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli. Process Biochem 40(10):3190–3195

    Article  CAS  Google Scholar 

  • Gershwin ME, Belay A (2007) Spirulina in human nutrition and health. CRC Press, Boca Raton, 328 pp

    Google Scholar 

  • Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of Curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59(6):1243–1245

    Article  CAS  Google Scholar 

  • Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58(1):125–130

    Article  PubMed  CAS  Google Scholar 

  • Görs M, Schumann R, Hepperle D, Karsten U (2010) Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol 22(3):265–276

    Article  CAS  Google Scholar 

  • Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77(1):69–75

    Article  PubMed  CAS  Google Scholar 

  • Grawish ME (2008) Effects of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7, 12-dimethylbenz [a] anthracene. Oral Oncol 44(10):956–962

    Article  PubMed  Google Scholar 

  • Grawish ME, Zaher AR, Gaafar AI, Nasif WA (2010) Long-term effect of Spirulina platensis extract on DMBA-induced hamster buccal pouch carcinogenesis (immunohistochemical study). Med Oncol 27(1):20–28

    Article  PubMed  Google Scholar 

  • Grewe JC (2005) Cyanopeptoline und Scytocyclamide: zyklische Peptide aus Scytonema hofmanni PCC7110; Struktur und biologische Aktivität. Fakultät für Biologie. Ph D thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, Freiburg

    Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15(2):209–215

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2009a) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21(5):523–527

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2009b) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21(5):489–492

    Article  CAS  Google Scholar 

  • Guan X, Qin S, Su Z, Zhao F, Ge B, Li F, Tang X (2007) Combinational biosynthesis of a fluorescent cyanobacterial holo-α-phycocyanin in Escherichia coli by using one expression vector. Appl Biochem Biotechnol 142(1):52–59

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera SP, Ross C, Paul VJ, Matthew S, Luesch H (2008) Dragonamides C and D, linear lipopeptides from the marine cyanobacterium brown Lyngbya polychroa. J Nat Prod 71(5):887–890

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Natarajan C, Chaudhary V, Kumar A, Sharma E, Sharma J, Bhatnagar, AK, Prasanna R (2012) Analyses of diversity among fungicidal Anabaena strains. J Appl Phycol. doi:10.1007/s10811-012-9793-5:1-11

  • Gupta V, Rastogi A (2008) Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154(1–3):347–354

    Article  PubMed  CAS  Google Scholar 

  • Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GML, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 81(16):1254

    Article  PubMed  CAS  Google Scholar 

  • Haase SM, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24(2):157–162

    Google Scholar 

  • Hagmann L, Jüttner F (1996) Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37(36):6539–6542

    Article  CAS  Google Scholar 

  • Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998a) Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J Nat Prod 61(10):1221–1225

    Google Scholar 

  • Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998b) Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J Nat Prod 61(10):1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19–20):894–901

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87

    Article  PubMed  CAS  Google Scholar 

  • Helblin EW, Gao K, Ai H, Ma Z, Villafañe VE (2006) Differential responses of Nostoc sphaeroides and Arthrospira platensis to solar ultraviolet radiation exposure. J Appl Phycol 18(1):57–66

    Article  Google Scholar 

  • Hemscheidt T, Puglisi MP, Larsen LK, Patterson GML, Moore RE, Rios JL, Clardy J (1994) Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. J Org Chem 59(12):3467–3471

    Article  CAS  Google Scholar 

  • Henrikson R (1989) Earth food Spirulina. Ronore Enterprises, Inc, Laguna Beach, 174 pp

    Google Scholar 

  • Hernandez-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res 56(3):279–285

    Article  PubMed  CAS  Google Scholar 

  • Herrera A, Boussiba S, Napoleone V, Hohlberg A (1989) Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. J Appl Phycol 1(4):325–331

    Article  Google Scholar 

  • Hill DR, Keenan TW, Helm RF, Potts M, Crowe LM, Crowe JH (1997) Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J Appl Phycol 9(3):237–248

    Article  CAS  Google Scholar 

  • Hirata K, Yoshitomi S, Dwi S, Iwabe O, Mahakhant A, Polchai J, Miyamoto K (2003) Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95(5):512–517

    PubMed  CAS  Google Scholar 

  • Hu Q (2004) Industrial production of microalgal cell mass and secondary products major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 264–272, 566 pp

    Google Scholar 

  • Hussain A, Hasnain S (2011) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Jensen GS, Ginsberg DI, Drapeau C (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutr Assoc 3:24–30

    Google Scholar 

  • Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217(1–4):179–190

    Article  Google Scholar 

  • John DM, Whitton BA, Brook AJ (eds) (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, UK, 904 pp

    Google Scholar 

  • Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118(1):159–165

    Article  PubMed  CAS  Google Scholar 

  • Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13(2):216–223

    Article  PubMed  CAS  Google Scholar 

  • Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, Nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68(7):1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Kanekiyo K, Hayashi K, Takenaka H, Lee JB, Hayashi T (2007) Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol Pharm Bull 30(8):1573–1575

    Article  PubMed  CAS  Google Scholar 

  • Kaya K, Mahakhant A, Keovara L, Sano T, Kubo T, Takagi H (2002) Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. J Nat Prod 65(6):920–921

    Article  PubMed  CAS  Google Scholar 

  • Khaing MK (2004) A study on the edible cyanobacteria (blue green algae) Nostoc species in Upper Myanmar. Ph D thesis, Department of Botany, Mandalay University, Myanmar

    Google Scholar 

  • Khan Z, Bhadouria P, Bisen P (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6(5):373–379

    Article  PubMed  CAS  Google Scholar 

  • Kim JD (2006) Screening of cyanobacteria (blue-green algae) from rice paddy soil for anti-fungal activity against plant pathogenic fungi. Korean J Mycol 34(3):138–142

    CAS  Google Scholar 

  • Kiran B, Kaushik A (2008) Cyanobacterial biosorption of Cr (VI): application of two parameter and Bohart Adams models for batch and column studies. Chem Eng J 144(3):391–399

    Article  CAS  Google Scholar 

  • Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35(21):4283–4288

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Kajiyama S, Inawaka K, Kanzaki H, Kawazu K (1994) Nostodione A, a novel mitotic spindle poison from a blue green alga Nostoc commune. Z Naturforsch 49(7–8):464–470

    CAS  Google Scholar 

  • Larsen LK, Moore RE, Patterson GML (1994) β-Carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod 57(3):419–421

    Article  PubMed  CAS  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge, UK, 560 pp

    Book  Google Scholar 

  • Lee JB, Srisomporn P, Hayashi K, Tanaka T, Sankawa U, Hayashi T (2001) Effects of structural modification of calcium spirulan, a sulfated polysaccharide from Spirulina platensis, on antiviral activity. Chem Pharm Bull 49(1):108–110

    Article  PubMed  CAS  Google Scholar 

  • Liaaen-Jensen S, Egeland ES (1999) Microalgal carotenoids. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis Ltd., London, pp 145–172, 417 pp

    Google Scholar 

  • Liao X, Zhang B, Wang X, Yan H, Zhang X (2011) Purification of C-phycocyanin from Spirulina platensis by single-step ion-exchange chromatography. Chromatographia 73:291–296

    Article  CAS  Google Scholar 

  • Liu XJ, Chen F (2003) Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. Folia Microbiol 48(5):619–626

    Article  CAS  Google Scholar 

  • Liu Y, Liu K, Ai Y, Jiang H, Gao X, Qiu B (2012) Differential display analysis of cDNA fragments potentially involved in Nostoc flagelliformeresponse to osmotic stress. J Appl Phycol. doi:10.1007/s10811-012-9806-4:1-8

  • Løbner M, Walsted A, Larsen R, Bendtzen K, Nielsen CH (2008) Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis. J Med Food 11(2):313–322

    Article  PubMed  CAS  Google Scholar 

  • Lodi A, Binaghi L, De Faveri D, Carvalho JCM, Converti A, Del Borghi M (2005) Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) with carbon source pulse feeding. Ann Microbiol 55(3):181

    CAS  Google Scholar 

  • Lopes Pinto FA, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27(11–12):1209–1215

    Article  CAS  Google Scholar 

  • Lu J, Takeuchi T (2004) Spawning and egg quality of the tilapia Oreochromis niloticus fed solely on raw Spirulina throughout three generations. Aquaculture 234(1–4):625–640

    Article  Google Scholar 

  • Lu YM, Xiang WZ, Wen YH (2010) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23(2):265–269

    Google Scholar 

  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910

    Article  PubMed  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Article  PubMed  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401

    Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76(5):408–410

    Article  CAS  Google Scholar 

  • Marquez FJ, Nishio N, Nagai NS, Sasaki K (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Technol Biotechnol 62(2):159–164

    Article  CAS  Google Scholar 

  • Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Milkas AN, Ganotakis ES (2008) Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis). Phytomedicine 15(6–7):525–527

    Article  PubMed  Google Scholar 

  • McPhail KL, Correa J, Linington RG, González J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70(6):984–988

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Article  PubMed  CAS  Google Scholar 

  • Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibanez E, Señoráns F (2007) Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102(4):1357–1367

    Article  CAS  Google Scholar 

  • Mendiola JA, García-Martínez D, Rupérez FJ, Martín-Álvarez PJ, Reglero G, Cifuentes A, Barbas C, Ibañez E, Señoráns FJ (2008) Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluid 43(3):484–489

    Article  CAS  Google Scholar 

  • Miki W, Yamaguchi K, Konosu S (1986) Carotenoid composition of Spirulina maxima. Bull Jpn Soc Sci Fish 52(7):1225–1227

    Article  CAS  Google Scholar 

  • Min HEP, Zhang Yin Jiang H, Hui W (1999) Effect of the Spirulina feed on the growth and body color of Crucian carp. J Fish Chin 2:162–168

    Google Scholar 

  • Minkova K, Tchernov A, Tchorbadjieva M, Fournadjieva S, Antova R, Busheva MC (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102(1):55–59

    Article  PubMed  CAS  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calciumspirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16(6):541–550

    Article  PubMed  CAS  Google Scholar 

  • Miranda J, Krishnakumar G, Gonsalves R (2012) Cr6+ bioremediation efficiency ofOscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study. J Appl Phycol. doi:10.1007/s10811-012-9800-x:1-16

  • Moreno J, Vargas MA, Rodriguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20(4–6):191–197

    Article  PubMed  CAS  Google Scholar 

  • Mühling M, Harris N, Belay A, Whitton BA (2003) Reversal of helix orientation in the cyanobacterium Arthrospira. J Phycol 39(2):360–367

    Article  Google Scholar 

  • Mühling M, Belay A, Whitton BA (2005a) Screening Arthrospira (Spirulina) strains for heterotrophy. J Appl Phycol 17(2):129–135

    Article  CAS  Google Scholar 

  • Mühling M, Belay A, Whitton BA (2005b) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 17(2):137–146

    Article  CAS  Google Scholar 

  • Muller Feuga A (2004) Microalgae for aquaculture: the current global situation future trends. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 352–364, 566 pp

    Google Scholar 

  • Muller Feuga A, Robert R, Cahu C, Robin J, Divanach P (2003) Uses of microalgae in aquaculture. In: Stottrup J, McEvoy L (eds) Live feeds in marine aquaculture. Blackwell Publishing Co, Oxford, pp 253–299, 336 pp

    Chapter  Google Scholar 

  • Nagase H, Inthorn D, Oda A, Nishimura J, Kajiwara Y, Park M, Hirata K, Miyamoto K (2005) Improvement of selective removal of heavy metals in cyanobacteria by NaOH treatment. J Biosci Bioeng 99(4):372–377

    Article  PubMed  CAS  Google Scholar 

  • Narayan M, Manoj G, Vatchravelu K, Bhagyalakshmi N, Mahadevaswamy M (2005) Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int J Food Sci Nutr 56(7):521–528

    Article  PubMed  CAS  Google Scholar 

  • Niu JF, Wang GC, Lin X, Zhou BC (2007) Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J Chromatogr B 850(1–2):267–276

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4–6):459–466

    Article  PubMed  CAS  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2):249–257

    Article  Google Scholar 

  • Oliveira E, Rosa G, Moraes M, Pinto L (2008) Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer. J Food Process Eng 31(1):34–50

    Article  Google Scholar 

  • Oliveira EG, Duarte JH, Moraes K, Crexi VT, Pinto LAA (2010) Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. Int J Food Sci Tech 45(8):1572–1578

    Google Scholar 

  • Olvera Novoa M, Domínguez Cen L, Olivera Castillo L, Martínez Palacios CA (1998) Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac Res 29(10):709–715

    Article  Google Scholar 

  • Padgett MP, Krogmann DW (1987) Large scale preparation of pure phycobiliproteins. Photosynth Res 11(3):225–235

    Article  CAS  Google Scholar 

  • Padyana AK, Bhat VB, Madyastha K, Rajashankar K, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282(4):893–898

    Article  PubMed  CAS  Google Scholar 

  • Parages ML, Rico RM, Abdala-Díaz RT, Chabrillón M, Sotiroudis TG, Jiménez C (2012) Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. J Appl Phycol. doi:10.1007/s10811-012-9814-4:1-10

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60

    Google Scholar 

  • Patil G, Raghavarao K (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34(2):156–164

    Article  CAS  Google Scholar 

  • Patil G, Chethana S, Sridevi A, Raghavarao K (2006) Method to obtain C-phycocyanin of high purity. J Chromatogr A 1127(1–2):76–81

    PubMed  CAS  Google Scholar 

  • Patil G, Chethana S, Madhusudhan M, Raghavarao K (2008) Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresour Technol 99(15):7393–7396

    Article  PubMed  CAS  Google Scholar 

  • Patnaik S, Sarkar R, Mitra A (2001) Alginate immobilization of Spirulina platensis for wastewater treatment. Indian J Exp Biol 39(8):824–826

    PubMed  CAS  Google Scholar 

  • Patterson GML, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7-O-methyl-scytophycin b), a potent bioactive metabolite from cyanobacteria. Arch Microbiol 157(5):406–410

    Article  PubMed  CAS  Google Scholar 

  • Patterson GML, Smith CD, Kimura LH, Britton BA, Carmeli S (1993) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil Cytoskel 24(1):39–48

    Article  CAS  Google Scholar 

  • Pedroni P, Davison J, Beckert H, Bergman P, Benemann J (2001) A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. J Energy Environ Res 1(1):136–150

    Google Scholar 

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21(1):135–144

    Article  Google Scholar 

  • Posten C (2009) Design principles of photo bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Preußel K, Stüken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47(2):156–162

    Article  PubMed  CAS  Google Scholar 

  • Prinsep MR, Caplan FR, Moore RE, Patterson GML, Smith CD (1992) Tolyporphin, a novel multidrug resistance reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 114(1):385–387

    Article  CAS  Google Scholar 

  • Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS (2001) Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 67(8):737–742

    Article  PubMed  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  PubMed  CAS  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Bioprocess and algae reactor technology, apoptosis, vol 59. Springer, Berlin, pp 123–152, 259 pp

    Chapter  Google Scholar 

  • Pulz O, Storandt R, Boback A (2008) Mikroalgen in der Broileraufzucht. DGS 9:15–18

    Google Scholar 

  • Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9(2):113–119

    Article  Google Scholar 

  • Qiu B, Gao K (2002) Daily production and photosynthetic characteristics of Nostoc flagelliforme grown under ambient and elevated CO2 conditions. J Appl Phycol 14(2):77–83

    Article  Google Scholar 

  • Qiu B, Liu J, Liu Z, Liu S (2002) Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng County in China. J Appl Phycol 14(5):423–429

    Article  CAS  Google Scholar 

  • Quesada A, Leganés F, Fernández-Valiente E (1997) Environmental factors controlling N2 fixation in Mediterranean rice fields. Microb Ecol 34(1):39–48

    Article  PubMed  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34(2):77–88

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Acien FG, Fernandez-Sevilla JM, Gonzalez CV, Bermejo R (2011) Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography. J Chromatogr B 879(7–8):511–519

    Article  CAS  Google Scholar 

  • Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains—a laboratory study. J Appl Phycol 5(6):581–591

    Article  CAS  Google Scholar 

  • Rasool M, Sabina EP (2009) Appraisal of immunomodulatory potential of Spirulina fusiformis: an in vivo and in vitro study. J Nat Med 63(2):169–175

    Article  PubMed  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539

    Article  PubMed  CAS  Google Scholar 

  • Regunathan C, Wesley S (2006) Pigment deficiency correction in shrimp broodstock using Spirulina as a carotenoid source. Aquac Nutr 12(6):425–432

    Article  CAS  Google Scholar 

  • Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol Beih Ergebn Limnol 11:274–280

    Google Scholar 

  • Rickards R, Rothschild WJM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55(47):13513–13520

    Google Scholar 

  • Rito Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two phase systems for the development of a prototype process for c phycocyanin recovery from Spirulina maxima. J Chem Technol Biotechnol 76(12):1273–1280

    Article  CAS  Google Scholar 

  • Rodríguez A, Stella A, Storni M, Zulpa G, Zaccaro M (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2(1):7

    Article  PubMed  CAS  Google Scholar 

  • Rohrlack T, Christoffersen K, Hansen PE, Zhang W, Czarnecki O, Henning M, Fastner J, Erhard M, Neilan BA, Kaebernick M (2003) Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. J Chem Ecol 29(8):1757–1770

    Article  PubMed  CAS  Google Scholar 

  • Roney BR, Renhui L, Banack SA, Murch S, Honegger R, Cox PA (2009) Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China? Amyotroph Lateral Scler 10(S2):44–49

    Article  PubMed  CAS  Google Scholar 

  • Rosello Sastre R, Posten C (2010) Die vielfältige Anwendung von Mikroalgen als nachwachsende Rohstoffe. The variety of microalgae applications as a renewable resource. Chem Ing Tech 82(11):1925–1939

    Article  CAS  Google Scholar 

  • Ross E, Puapong D, Cepeda F, Patterson P (1994) Comparison of freeze-dried and extruded Spirulina platensis as yolk pigmenting agents. Poult Sci 73(8):1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Sajilata M, Singhal R, Kamat M (2008a) Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platensis. Food Chem 109(3):580–586

    Article  CAS  Google Scholar 

  • Sajilata M, Singhal RS, Kamat MY (2008b) Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J Food Eng 84(2):321–326

    Article  CAS  Google Scholar 

  • Saker ML, Jungblut AD, Neilan BA, Rawn DFK, Vasconcelos VM (2005) Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 46(5):555–562

    Article  PubMed  CAS  Google Scholar 

  • Sandau P (2010) Examples for successfully marketed active ingredients of algae in cosmetic products. Institue for Cereal Processing, Nuthetal

    Google Scholar 

  • Sandau P, Pulz O (2009) Untersuchungen zu bioaktiven Wirkungen des Algenpolysaacharids Calcium-Spirulan aus Arthrospira platensis. OM & Ernährung 131:F40–F45

    Google Scholar 

  • Santiago-Santos M (2004) Extraction and purification of phycocyanin from Calothrix sp. Process Biochem 39(12):2047–2052

    Article  CAS  Google Scholar 

  • Sarada R, Pillai MG, Ravishankar G (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34(8):795–801

    Article  CAS  Google Scholar 

  • Schaeffer DJ, Malpas PB, Barton LL (1999) Risk assessment of microcystin in dietary Aphanizomenon flos-aquae. Ecotoxicol Environ Saf 44(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Scherzinger D, Al Babili S (2008) In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight. Mol Microbiol 69(1):231–244

    Article  PubMed  CAS  Google Scholar 

  • Schlotmann K, Waldmann-laue M, Jassoy C, Kaeten M, Koehler E, Pulz O, Kurth E (2005) Extract of blue-green alga Spirulina and the use thereof in cosmetic skin-care and body care agents, EP Patent 1,239,813

    Google Scholar 

  • Schreckenbach K, Thürmer C, Loest K, Träger G, Hahlweg R (2001) Der Einfluss von Mikroalgen (Spirulina platensis) in Trockenmischfutter auf Karpfen (Cyprinus carpio). Fischer Teichwirt 1:10–13

    Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136

    Article  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215(2):229–238

    Article  PubMed  CAS  Google Scholar 

  • Sharma NK, Tiwari SP, Tripathi K, Rai AK (2010) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23(6):1059–1081

    Google Scholar 

  • Shelef G, Soeder C (1980) Algal biomass, production and use. North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Shi D, Zhou G, Fang S, Qiu Y, Zhong Z, Cui Z (1992) Studies on photosynthesis, respiration and morphology of Nostoc flagelliforme. Acta Bot Sin 34:507–514

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  PubMed  CAS  Google Scholar 

  • Simon NS, Lynch D, Gallaher TN (2009) Phosphorus fractionation in sediment cores collected In 2005 before and after opnset of an Aphanizomenon flos-aquae bloom in Upper Klamath Lake, OR, USA. Water Air Soil Pollut 204(1):139–153

    Article  CAS  Google Scholar 

  • Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100(4):1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Sinha RP, Klisch M, Walter Helbling E, Häder DP (2001) Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J Photochem Photobiol B Biol 60(2–3):129–135

    Article  CAS  Google Scholar 

  • Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 159–197, 484 pp

    Google Scholar 

  • Soeder C (1992) Mass cultures of microalgae – achievements and perspectives. 1st European workshop on microalgal biotechnology, Potsdam Rehbrücke, Germany

    Google Scholar 

  • Soeder C, Muller H, Payer H, Schulle H (1971) Mineral nutrition of planktonic algae: some considerations, some experiments. Int Ver Theor Angew Limnol 19:39–58

    Google Scholar 

  • Soni B, Kalavadia B, Trivedi U, Madamwar D (2006) Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata isolated from the rocky shores of Bet-Dwarka, Gujarat, India. Process Biochem 41(9):2017–2023

    Article  CAS  Google Scholar 

  • Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Technol 99(1):188–194

    Article  PubMed  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial Applications of Microalgae. J Biosci Bioeng 101(2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76(6):2912–2921

    Article  PubMed  CAS  Google Scholar 

  • Stirk W, Ördög V, Van Staden J, Jäger K (2002) Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J Appl Phycol 14(3):215–221

    Article  CAS  Google Scholar 

  • Storandt R, Franke H, Pulz O, Loest K, Ecke M, Steinberg KH (2000) Algae in animal nutrition. Tierernährung – Ressourcen und neue Aufgaben, Hannover, Germany, Landbauforschung Völkenrode

    Google Scholar 

  • Su J, Jia S, Qiao C, Jung G (2005) Culture of Nostoc flagelliforme on solid medium. Korean J Environ Biol 23:135–140

    Google Scholar 

  • Su J, Jia S, Chen X, Yu H (2008) Morphology, cell growth, and polysaccharide production of Nostoc flagelliforme in liquid suspension culture at different agitation rates. J Appl Phycol 20(3):213–217

    Article  CAS  Google Scholar 

  • Takenaka H, Yamaguchi Y, Sakaki S, Watarai K, Tanaka N, Hori M, Seki H, Tsuchida M, Yamada A, Nishimori T (1998) Safety evaluation of Nostoc flagelliforme (Nostocales, Cyanophyceae) as a potential food. Food Chem Toxicol 36(12):1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68(7):954–979

    Article  PubMed  CAS  Google Scholar 

  • Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130(6):1806–1807

    Article  PubMed  CAS  Google Scholar 

  • Tarakhovskay E, Maslov YI, Shishova M (2007) Phytohormones in algae. Russ J Plant Physiol 54(2):163–170

    Article  CAS  Google Scholar 

  • Teas J, Hebert JR, Fitton JH, Zimba PV (2004) Algae – a poor man’s HAART? Med Hypotheses 62(4):507–510

    Article  PubMed  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci India 89(1):47–57

    CAS  Google Scholar 

  • Thein M (2011) The use of natural resource for sustainable production of Spirulina in Myanmar crater lakes. 5th International Algae Congress, Dec 1–2, Berlin

    Google Scholar 

  • Tiburcio P, Galvez FCF, Cruz L, Gavino V (2007) Optimization of low-cost drying methods to minimize lipid peroxidation in Spirulina platensis grown in the Philippines. J Appl Phycol 19(6):719–726

    Article  CAS  Google Scholar 

  • Tomaselli L (1997) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell biology, and biotechnology. Taylor & Francis, London/San Francisco, pp 1–19, 233 pp

    Google Scholar 

  • Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo- subunit in a heterologous host. Proc Natl Acad Sci USA 98(19):10560–10565

    Article  PubMed  CAS  Google Scholar 

  • Toyomizu M, Sato K, Taroda H, Kato T, Akiba Y (2001) Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Br Poult Sci 42(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Travieso L, Sanchez E, Benitez F, Conde J (1993) Arthospira sp. intensive cultures for food and biogas purification. Biotechnol Lett 15:1091–1094

    Article  CAS  Google Scholar 

  • Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116(11):4729–4737

    Article  CAS  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  PubMed  CAS  Google Scholar 

  • Vaishampayan A, Sinha R, Hader DP, Dey T, Gupta A, Bhan U, Rao A (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67(4):453–516

    Article  Google Scholar 

  • Volk RB (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17(4):339–347

    Article  CAS  Google Scholar 

  • Vonshak A (1997a) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London/Bristol, 233 pp

    Google Scholar 

  • Vonshak A (1997b) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London/Bristol, pp 43–65, 233 pp

    Google Scholar 

  • Vonshak A, Tomaselli L (2000) Arthrospira (Spirulina): systematics and ecophysiology. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publihsers, Dordrecht, pp 505–522, 669 pp

    Google Scholar 

  • Wang ZP, Zhao Y (2005) Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): from linear to helical. J Phycol 41(3):622–628

    Article  Google Scholar 

  • Watanabe I (1982) AzollaAnabaena symbiosis – its physiology and use in tropical agriculture. In: Dommergues YE (ed) Microbiology of tropical soils and plant productivity. Kluwer Academic Publishers, Dordrecht, p 169

    Chapter  Google Scholar 

  • Watanuki H, Ota K, Tassakka ACMAR, Kato T, Sakai M (2006) Immunostimulant effects of dietary Spirulina platensis on carp, Cyprinus carpio. Aquaculture 258(1–4):157–163

    Article  Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, 669 pp

    Google Scholar 

  • Wilson AC, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM, Kerfeld CA, Van Grondelle R, Robert B, Kennis J (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Nat Acad Sci 105(33):12075

    Google Scholar 

  • Wood SA, Rasmussen JP, Holland PT, Campbell R, Crowe ALM (2007) First report of the cyanotoxin anatoxin A from Aphanizomenon issatschenkoi (Cyanobacteria). J Phycol 43(2):356–365

    Article  CAS  Google Scholar 

  • Yamamoto Y, Nakahara H (2005) The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length. Limnology 6(1):1–6

    Article  CAS  Google Scholar 

  • Yan SG, Zhu LP, Su HN, Zhang XY, Chen XL, Zhou BC, Zhang YZ (2011) Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis. J Appl Phycol 23(1):1–6

    Article  CAS  Google Scholar 

  • Yoshimura H, Kotake T, Aohara T, Tsumuraya Y, Ikeuchi M, Ohmori M (2012) The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. J Appl Phycol 24:237–243

    Google Scholar 

  • Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133

    Article  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution à l étude d une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Paris, University de Paris, Ph.D.

    Google Scholar 

  • Zemke-White W, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11(4):369–376

    Article  Google Scholar 

  • Zhang YM, Chen F (1999) A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13(9):601–603

    Article  CAS  Google Scholar 

  • Zhang H, Hu C, Jia X, Xu Y, Wu C, Chen L, Wang F (2012) Characteristics of γ-hexachlorocyclohexane biodegradation by a nitrogen-fixing cyanobacterium, Anabaena azotica. J Appl Phycol 24(2):221–225

    Article  CAS  Google Scholar 

  • Zhang YM, Chen F (1999) A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13(9):601–603

    Google Scholar 

  • Zhong Z, Shi D, Wang F, Cui Z (1992) Effects of temperature, water content and light intensity on nitrogenase activity of Nostoc flagelliforme. Acta Bot Sin 34:219–225

    CAS  Google Scholar 

  • Zitelli GC, Tomasello V, Pinzani E, Tredici MR (1996) Outdoor culture of Arthrospira platensis during autumn and winter in temperate climate. J Appl Phycol 8:293–301

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the editor for critical comments and careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia B. Grewe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grewe, C.B., Pulz, O. (2012). The Biotechnology of Cyanobacteria. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_26

Download citation

Publish with us

Policies and ethics