Marine Picocyanobacteria

  • David J. ScanlanEmail author


Picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate vast tracts of the world’s oceans and contribute a significant proportion of primary production, particularly in oligotrophic regions. The ecological success of these two genera suggests they possess sophisticated strategies to respond to variations in their environment. Indeed, it appears that it is the in situ community structure of these organisms which underlies this success, with the existence of specific ecotypes or lineages occupying different niches to populate the world’s oceans. For Prochlorococcus there is now excellent physiological and genomic data for defining the basis of this niche partitioning particularly with respect to its vertical distribution down a water column. The situation for Synechococcus is more complex probably due to the larger spatial distribution of marine Synechococcus in oceanic ecosystems. This has led to extensive phylogenetic and physiological variation within the Synechococcus genus but the genomic basis for this phenotypic variation, and hence niche adaptation is less well understood. This chapter seeks to give an overview of the knowledge gained on these organisms over the last three decades focusing on aspects of ecology, physiology and molecular biology that are pertinent to this niche adaptation process.


Internal Transcribe Spacer Genomic Island Synechococcus Strain Station Aloha Prochlorococcus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research on marine picocyanobacteria in the Scanlan laboratory is currently supported by the Natural Environment Research Council, Leverhulme Trust and the EU. The author especially thanks Wolfgang Hess and Frédéric Partensky for critical reading of the chapter and Andrew Millard for help with figures.


  1. Ahlgren NA, Rocap G (2006) Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204PubMedCrossRefGoogle Scholar
  2. Ahlgren NA, Rocap G, Chisholm SW (2006) Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ Microbiol 8:441–454PubMedCrossRefGoogle Scholar
  3. Andersson A, Haecky P, Hagström A (1994) Effect of temperature and light on the growth of micro- nano- and pico-plankton: impact on algal succession. Mar Biol 120:511–520CrossRefGoogle Scholar
  4. Apple JK, Strom SL, Palenik B, Brahamsha B (2011) Variability in protist grazing and growth on different marine Synechococcus isolates. Appl Environ Microbiol 77:3074–3084CrossRefGoogle Scholar
  5. Axmann IM, Kensche P, Vogel J, Kohl S, Herzel H, Hess WR (2005) Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 6:R73PubMedCrossRefGoogle Scholar
  6. Axmann IM, Dühring U, Seeliger L, Arnold A, Vanselow JT, Kramer A, Wilde A (2009) Biochemical evidence for a timing mechanism in Prochlorococcus. J Bacteriol 191:5342–5347PubMedCrossRefGoogle Scholar
  7. Bailey S, Mann NH, Robinson C, Scanlan DJ (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579:275–280PubMedCrossRefGoogle Scholar
  8. Bailey S, Melis A, Mackey KR, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276PubMedCrossRefGoogle Scholar
  9. Baudoux AC, Veldhuis MJW, Witte HJ, Brussaard CPD (2007) Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III. Limnol Oceanogr 52:2519–2529CrossRefGoogle Scholar
  10. Baudoux AC, Veldhuis MJW, Noordeloos AAM, van Noort G, Brussaard CPD (2008) Estimates of virus- vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Microb Ecol 52:69–82CrossRefGoogle Scholar
  11. Baumdicker F, Hess WR, Pfaffelhuber P (2010) The diversity of a ­distributed genome in bacterial populations. Annal Appl Prob 20:1567–1606Google Scholar
  12. Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731CrossRefGoogle Scholar
  13. Bhaya D, Dufresne A, Vaulot D, Grossman A (2002) Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol Lett 215:209–219PubMedCrossRefGoogle Scholar
  14. Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054PubMedCrossRefGoogle Scholar
  15. Bibby TS, Zhang Y, Chen M (2009) Biogeography of marine light-harvesting systems in marine phytoplankton. PLoS One 4:e4601PubMedCrossRefGoogle Scholar
  16. Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256PubMedCrossRefGoogle Scholar
  17. Blanchot J, Rodier M (1996) Phytoplankton abundance and biomass in the western tropical Pacific Ocean during the 1992 El Niño year: new data from flow cytometry. Deep Sea Res Part I 43:877–895CrossRefGoogle Scholar
  18. Blot N, Wu XJ, Thomas J-C, Zhang J, Garczarek L, Böhm S, Tu JM, Zhou M, Plöscher M, Eichacker L, Partensky F, Scheer H, Zhao KH (2009) Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J Biol Chem 284:9290–9298PubMedCrossRefGoogle Scholar
  19. Boenigk J, Matz C, Jürgens K, Arndt H (2001) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb Ecol 42:168–176PubMedGoogle Scholar
  20. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606CrossRefGoogle Scholar
  21. Bouman HA, Ulloa O, Scanlan DJ, Zwirglmaier K, Li WKW, Platt T, Stuart V, Barlow R, Leth O, Clementson L, Lutz V, Fukasawa M, Watanabe S, Sathyendranath S (2006) Oceanographic basis of the global surface distribution of Prochlorococcus ecotypes. Science 312:918–921PubMedCrossRefGoogle Scholar
  22. Bouman HA, Ulloa O, Barlow R, Li KW, Platt T, Zwirglmaier K, Scanlan DJ, Sathyendranath S (2011) Water-column stratification governs the community structure of subtropical marine picophytoplankton. Environ Microbiol Rep 3:473–482CrossRefGoogle Scholar
  23. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617PubMedCrossRefGoogle Scholar
  24. Bragg JG, Dutkiewicz S, Jahn O, Follows MJ, Chisholm SW (2010) Modeling selective pressures on phytoplankton in the global ocean. PLoS One 5:e9569PubMedCrossRefGoogle Scholar
  25. Brahamsha B (1996a) An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Proc Natl Acad Sci USA 93:6504–6509PubMedCrossRefGoogle Scholar
  26. Brahamsha B (1996b) A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 62:1747–1751PubMedGoogle Scholar
  27. Brahamsha B (1999) Non-flagellar swimming in marine Synechococcus. J Mol Microbiol Biotechnol 1:59–62PubMedGoogle Scholar
  28. Brown MV, Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41:15–23CrossRefGoogle Scholar
  29. Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 7:1466–1479PubMedCrossRefGoogle Scholar
  30. Bruland KW, Rue EL, Smith GJ (2001) Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol Oceanogr 46:1661–1674CrossRefGoogle Scholar
  31. Bruyant F, Babin M, Genty B, Prasil O, Behrenfeld MJ, Claustre H, Bricaud A, Garczarek L, Holtzendorff J, Koblizek M, Dousova H, Partensky F (2005) Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: combined effects of light and cell cycle. Limnol Oceanogr 50:850–863CrossRefGoogle Scholar
  32. Buck KR, Chavez FP, Campbell L (1996) Basin-wide distributions of living carbon components and the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, summer 1993. Aquat Microb Ecol 10:283–298CrossRefGoogle Scholar
  33. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Van Mooy B, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570PubMedCrossRefGoogle Scholar
  34. Burkill PH, Leakey RJG, Owens NJP, Mantoura RFC (1993) Synechococcus and its importance to the microbial food web of the northwestern Indian Ocean. Deep Sea Res Part II 40:773–782CrossRefGoogle Scholar
  35. Campbell L, Iturriaga R (1988) Identification of Synechococcus spp. in the Sargasso Sea by immunofluorescence and fluorescence excitation spectroscopy performed on individual cells. Limnol Oceanogr 33:1196–1201CrossRefGoogle Scholar
  36. Campbell L, Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Res Part I 40:2043–2060CrossRefGoogle Scholar
  37. Campbell L, Nolla HA, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific. Limnol Oceanogr 39:954–961CrossRefGoogle Scholar
  38. Campbell L, Liu H, Nolla HA, Vaulot D (1997) Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991–1994 ENSO event. Deep Sea Res Part I 44:167–192CrossRefGoogle Scholar
  39. Caron DA, Lim EL, Miceli G, Waterbury JB, Valois FW (1991) Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar Ecol Prog Ser 76:205–217CrossRefGoogle Scholar
  40. Carr NG, Mann NH (1994) The oceanic cyanobacterial picoplankton. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 27–48, 881 ppGoogle Scholar
  41. Casey JR, Lomas MW, Mandecki J, Walker DE (2007) Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys Res Lett 34:L10604CrossRefGoogle Scholar
  42. Charpy L, Blanchot J (1998) Photosynthetic picoplankton in French Polynesia atoll lagoon: estimation of taxa contribution to biomass and production by flow cytometry. Mar Ecol Prog Ser 162:57–70CrossRefGoogle Scholar
  43. Chen F, Wang K, Kan JJ, Suzuki MT, Wommack KE (2006) Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol 72:2239–2243PubMedCrossRefGoogle Scholar
  44. Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 213–237Google Scholar
  45. Chisholm SW, Olson RJ, Zettler ER, Waterbury J, Goericke R, Welschmeyer N (1988) A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334:340–343CrossRefGoogle Scholar
  46. Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300CrossRefGoogle Scholar
  47. Choi DH, Noh JH (2009) Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol 69:439–448PubMedCrossRefGoogle Scholar
  48. Christaki U, Jacquet S, Dolan JR, Vaulot D, Rassoulzadegan F (1999) Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol Oceanogr 44:52–61CrossRefGoogle Scholar
  49. Christaki U, Courties C, Karayanni H, Giannakourou A, Maravelias C, Kormas KA, Lebaron P (2002) Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Microb Ecol 43:341–352PubMedCrossRefGoogle Scholar
  50. Claustre H, Bricaud A, Babin M, Bruyant F, Guillou L, Le Gall F, Marie D, Partensky F (2002) Diel variations in Prochlorococcus optical properties. Limnol Oceanogr 47:1637–1647CrossRefGoogle Scholar
  51. Coleman ML, Chisholm SW (2007) Code and context: Prochloro­coccus as a model for cross-scale biology. Trends Microbiol 15:398–407PubMedCrossRefGoogle Scholar
  52. Coleman ML, Chisholm SW (2010) Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA 107:18634–18639CrossRefGoogle Scholar
  53. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770PubMedCrossRefGoogle Scholar
  54. Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966PubMedCrossRefGoogle Scholar
  55. Cottrell MT, Michelou VK, Nemcek N, DiTullio G, Kirchman DL (2008) Carbon cycling by microbes influenced by light in the Northeast Atlantic Ocean. Aquat Microb Ecol 50:239–250CrossRefGoogle Scholar
  56. Davey M, Tarran GA, Mills MM, Ridame C, Geider RJ, LaRoche J (2008) Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol Oceanogr 53:1722–1733CrossRefGoogle Scholar
  57. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI, Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10020–10025PubMedCrossRefGoogle Scholar
  58. Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14PubMedCrossRefGoogle Scholar
  59. Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90PubMedCrossRefGoogle Scholar
  60. Durand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic time series station in the Sargasso Sea. Deep Sea Res Part II 48:1983–2003CrossRefGoogle Scholar
  61. Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J Bacteriol 188:3345–3356PubMedCrossRefGoogle Scholar
  62. Ferris MJ, Palenik B (1998) Niche adaptation in ocean cyanobacteria. Nature 396:226–228CrossRefGoogle Scholar
  63. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW (2007) Emergent biogeography of microbial communities in a model ocean. Science 315:1843–1846PubMedCrossRefGoogle Scholar
  64. Fouilland E, Descolas-Gros C, Courties C, Pons V (1999) Autotrophic carbon assimilation and biomass from size-fractionated phytoplankton in the surface waters across the subtropical frontal zone (Indian Ocean). Polar Biol 21:90–96CrossRefGoogle Scholar
  65. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, DeLong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810PubMedCrossRefGoogle Scholar
  66. Frias-Lopez J, Thompson A, Waldbauer J, Chisholm SW (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11:512–525PubMedCrossRefGoogle Scholar
  67. Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 69:2430–2443PubMedCrossRefGoogle Scholar
  68. Fuller NJ, West NJ, Marie D, Yallop M, Rivlin T, Post AF, Scanlan DJ (2005) Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol Oceanogr 50:363–375CrossRefGoogle Scholar
  69. Fuller NJ, Tarran GA, Yallop M, Orcutt KM, Scanlan DJ (2006) Molecular analysis of picocyanobacterial community structure along an Arabian Sea transect reveals distinct spatial separation of lineages. Limnol Oceanogr 51:2515–2526CrossRefGoogle Scholar
  70. Furnas M (1991) Net in situ growth rates of phytoplankton in an oligotrophic, tropical shelf ecosystem. Limnol Oceanogr 36:13–29CrossRefGoogle Scholar
  71. Furnas M, Crosbie NJ (1999) In situ growth dynamics of the photosynthetic prokaryotic picoplankters Synechococcus and Prochlorococcus. Bull Inst Oceanogr 19:387–417Google Scholar
  72. Garcia-Fernández JM, Tandeau de Marsac N, Diez J (2004) Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68:630–638PubMedCrossRefGoogle Scholar
  73. Garczarek L, Hess WR, Holtzendorff J, van der Staay GW, Partensky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci USA 97:4098–4101PubMedCrossRefGoogle Scholar
  74. Garczarek L, van der Staay GWM, Hess WR, LeGall F, Partensky F (2001) Expression and phylogeny of the multiple antenna genes of the low-light-adapted strain Prochlorococcus marinus SS120 (Oxyphotobacteria). Plant Mol Biol 46:683–693PubMedCrossRefGoogle Scholar
  75. Garczarek L, Dufresne A, Rousvoal S, West NJ, Mazard S, Marie D, Claustre H, Raimbault P, Post AF, Scanlan DJ, Partensky F (2007) High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiol Ecol 60:189–206PubMedCrossRefGoogle Scholar
  76. Garneau ME, Vincent WF, Alonso-Saez L, Gratton Y, Lovejoy C (2006) Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem. Aquat Microb Ecol 42:27–40CrossRefGoogle Scholar
  77. Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, Yamada T, Paccanaro A, Jensen LJ, Snyder M, Bork P, Gerstein MB (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci USA 106:1374–1379PubMedCrossRefGoogle Scholar
  78. Gieskes WWC, Kraay GW (1983) Unknown chlorophyll a derivatives in the North Sea and the tropical Atlantic Ocean revealed by HPLC analysis. Limnol Oceanogr 28:757–766CrossRefGoogle Scholar
  79. Glazer AN (1999) Cyanobacterial photosynthetic apparatus: an overview. Bull Inst Oceanogr 19:419–434Google Scholar
  80. Glover HE (1985) The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv Aquat Microbiol 3:49–107Google Scholar
  81. Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prochlorophyte. Limnol Oceanogr 37:425–433CrossRefGoogle Scholar
  82. Goericke R, Welschmeyer NA (1993) The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Sea Res Part I 40:2283–2294CrossRefGoogle Scholar
  83. Goericke R, Olson RJ, Shalapyonok A (2000) A novel niche for Prochlorococcus sp in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep Sea Res Part I 47:1183–1205CrossRefGoogle Scholar
  84. Gradinger R, Lenz J (1989) Picocyanobacteria in the high Arctic. Mar Ecol Prog Ser 52:99–101CrossRefGoogle Scholar
  85. Gradinger R, Lenz J (1995) Seasonal occurrence of picocyanobacteria in the Greenland Sea and central Arctic Ocean. Polar Biol 15:447–452CrossRefGoogle Scholar
  86. Grossman AR, Mackey KRM, Bailey S (2010) A perspective on photosynthesis in the oligotrophic oceans: hypotheses concerning alternate routes of electron flow. J Phycol 56:629–634CrossRefGoogle Scholar
  87. Guillou L, Jacquet S, Chretiennot-Dinet MJ, Vaulot D (2001) Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquat Microb Ecol 26:201–207CrossRefGoogle Scholar
  88. Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 10:174–188PubMedGoogle Scholar
  89. Haverkamp THA, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colourful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408PubMedCrossRefGoogle Scholar
  90. Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH (2003) Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48:1732–1743CrossRefGoogle Scholar
  91. Herdman M, Castenholz RW, Iteman I, Waterbury JB, Rippka R (2001) Subsection I (Formerly Chroococcales Wettstein 1924, emend. Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 493–514Google Scholar
  92. Hess WR (2004) Genome analysis of marine photosynthetic microbes and their global role. Curr Opin Biotechnol 15:191–198PubMedCrossRefGoogle Scholar
  93. Hess WR (2008) Comparative genomics of marine cyanobacteria and their phages. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 89–116, 484 ppGoogle Scholar
  94. Hess WR, Partensky F, van der Staay GWM, Garcia-Fernández JM, Boerner T, Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93:11126–11130PubMedCrossRefGoogle Scholar
  95. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70:53–71PubMedCrossRefGoogle Scholar
  96. Heywood JL, Zubkov MV, Tarran GA, Fuchs BM, Holligan PM (2006) Prokaryoplankton standing stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean: evaluation of inter-annual variability. Deep Sea Res Part II 53:1530–1547CrossRefGoogle Scholar
  97. Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199PubMedCrossRefGoogle Scholar
  98. Holtzendorff J, Partensky F, Jacquet S, Bruyant F, Marie D, Garczarek L, Mary I, Vaulot D, Hess WR (2001) Diel expression of cell cycle-related genes in synchronized cultures of Prochlorococcus sp. strain PCC 9511. J Bacteriol 183:915–920PubMedCrossRefGoogle Scholar
  99. Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L (2008) Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J Biol Rhythms 23:187–199PubMedCrossRefGoogle Scholar
  100. Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739PubMedCrossRefGoogle Scholar
  101. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2012) Novel lineages of Prochlorococcus and Synechococcus in the global ocean. ISME J 6:285–297PubMedCrossRefGoogle Scholar
  102. Hutchins DA, DiTullio GR, Zhang Y, Bruland KW (1998) A Iron limitation mosaic in the California upwelling regime. Limnol Oceanogr 43:1037–1054CrossRefGoogle Scholar
  103. Hutchins DA, Hare CE, Weaver RS, Zhang Y, Firme GF, DiTullio GR, Alm MB, Riseman SF, Maucher JM, Geesey ME, Trick CG, Smith GJ, Rue EL, Conn J, Bruland KW (2002) Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnol Oceanogr 47:997–1011CrossRefGoogle Scholar
  104. Jameson E, Joint I, Mann NH, Mühling M (2010) Detailed analysis of the microdiversity of Prochlorococcus populations along a north-south Atlantic Ocean transect. Environ Microbiol 12:156–171CrossRefGoogle Scholar
  105. Jardillier L, Zubkov MV, Pearman J, Scanlan DJ (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J 4:1180–1192PubMedCrossRefGoogle Scholar
  106. Jenkins BD, Zehr JP, Gibson A, Campbell L (2006) Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments. Environ Microbiol 8:2083–2095PubMedCrossRefGoogle Scholar
  107. Jezberová J, Komárková J (2007) Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ Microbiol 9:1858–1862PubMedCrossRefGoogle Scholar
  108. Jing H, Liu H, Suzuki K (2009a) Phylogenetic diversity of marine Synechococcus spp. in the Sea of Okhotsk. Aquat Microb Ecol 56:55–63CrossRefGoogle Scholar
  109. Jing H, Zhang R, Pointing SB, Liu H, Qian P (2009b) Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong. Can J Microbiol 55:311–318PubMedCrossRefGoogle Scholar
  110. Johnson PW, Sieburth JMcN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935Google Scholar
  111. Johnson Z, Landry ML, Bidigare RR, Brown SL, Campbell L, Gunderson J, Marra J, Trees C (1999) Energetics and growth kinetics of a deep Prochlorococcus spp. population in the Arabian Sea. Deep Sea Res Part II 46:1719–1743CrossRefGoogle Scholar
  112. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740PubMedCrossRefGoogle Scholar
  113. Jones H, Ostrowski M, Scanlan DJ (2006) A suppression subtractive hybridization approach reveals niche-specific genes that may be involved in predator avoidance in marine Synechococcus isolates. Appl Environ Microbiol 72:2730–2737PubMedCrossRefGoogle Scholar
  114. Joux F, Servais P, Naudin JJ, Lebaron P, Oriol L, Courties C (2005) Distribution of picophytoplankton and bacterioplankton along a river plume gradient in the Mediterranean Sea. Vie Milieu Life Environ 55:197–208Google Scholar
  115. Karl DM, Lukas R (1996) The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II 43:129–156CrossRefGoogle Scholar
  116. Karl DM, Bidigare RR, Letelier RM (2001) Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep Sea Res Part II 48:1449–1470CrossRefGoogle Scholar
  117. Kettler G, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church G, Richardson P, Chisholm SW (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:e231PubMedCrossRefGoogle Scholar
  118. Kimmance SA, Wilson WH, Archer SD (2007) Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: limitations associated with method sensitivity in natural waters. Aquat Microb Ecol 49:207–222CrossRefGoogle Scholar
  119. Klähn S, Steglich C, Hess WR, Hagemann M (2010) Glucosylglycerate: a secondary compatible solute common to marine picocyano­bacteria from nitrogen-poor environments. Environ Microbiol 12:83–94PubMedCrossRefGoogle Scholar
  120. Kuosa H (1991) Picoplanktonic algae in the northern Baltic Sea – seasonal dynamics and flagellate grazing. Mar Ecol Prog Ser 73:269–276CrossRefGoogle Scholar
  121. Kursar TA, Swift H, Alberte RS (1981) Morphology of a novel cyanobacterium and characterisation of light-harvesting complexes from it: implications for phycobiliprotein evolution. Proc Natl Acad Sci USA 78:6888–6892PubMedCrossRefGoogle Scholar
  122. LaRoche J, van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AW, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248CrossRefGoogle Scholar
  123. Lavin P, Gonzáles B, Santibáñez JF, Scanlan DJ, Ulloa O (2010) Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep 2:728–738CrossRefGoogle Scholar
  124. Li WKW (1994) Primary productivity of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175CrossRefGoogle Scholar
  125. Li WKW (1998) Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr 43:1746–1753CrossRefGoogle Scholar
  126. Li WKW, Subba Rao DV, Harrison WG, Smith JC, Cullen JJ, Irwin B, Platt T (1983) Autotrophic picoplankton in the tropical ocean. Science 219:292–295PubMedCrossRefGoogle Scholar
  127. Lichtlé C, Thomas JC, Spilar A, Partensky F (1995) Immunological and ultrastructural characterisation of the photosynthetic complexes of the prochlorophyte Prochlorococcus (oxychlorobacteria). J Phycol 31:934–941CrossRefGoogle Scholar
  128. Lindell D, Post AF (1995) Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol Oceanogr 40:1130–1141CrossRefGoogle Scholar
  129. Lindell D, Padan E, Post AF (1998) Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803. J Bacteriol 180:1878–1886PubMedGoogle Scholar
  130. Liu HB, Campbell L, Landry MR (1995) Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar Ecol Prog Ser 116:277–287CrossRefGoogle Scholar
  131. Liu HB, Campbell L, Landry MR, Nolla HA, Brown SL, Constantinou J (1998) Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 southwest and northeast monsoons. Deep Sea Res Part II 45:2327–2352CrossRefGoogle Scholar
  132. Mackey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900–913CrossRefGoogle Scholar
  133. Mackey KRM, Rivlin T, Grossman AR, Post AF, Paytan A (2009) Picophytoplankton responses to changing nutrient and light regimes during a bloom. Mar Biol 156:1531–1546CrossRefGoogle Scholar
  134. Malmstrom RR, Coe A, Kettler GC, Martiny AC, Frias-Lopez J, Zinser ER, Chisholm SW (2010) Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J 4:1252–1264PubMedCrossRefGoogle Scholar
  135. Mann NH (2003) Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 27:17–34PubMedCrossRefGoogle Scholar
  136. Mann EL, Chisholm SW (2000) Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol Oceanogr 45:1067–1076CrossRefGoogle Scholar
  137. Mann EL, Ahlgren N, Moffett JW, Chisholm SW (2002) Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol Oceanogr 47:976–988CrossRefGoogle Scholar
  138. Mao X, Olman V, Stuart R, Paulsen IT, Palenik B, Xu Y (2010) Computational prediction of the osmoregulation network in Synechococcus sp. WH8102. BMC Genomics 11:291PubMedCrossRefGoogle Scholar
  139. Marañón E, Holligan PM, Varela M, Mouriño B, Bale AJ (2000) Basin–scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep Sea Res Part I 47:825–857CrossRefGoogle Scholar
  140. Marañón E, Holligan PM, Barciela R, Gonzalez N, Mourino B, Pazo MJ, Varela M (2001) Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser 216:43–56CrossRefGoogle Scholar
  141. Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biol 1:1–9Google Scholar
  142. Martin AP, Zubkov MV, Burkill PH, Holland RJ (2005) Extreme spatial variability in marine picoplankton and its consequences for interpreting Eulerian time-series. Biol Lett 1:366–369PubMedCrossRefGoogle Scholar
  143. Martin AP, Zubkov MV, Fasham MJ, Burkill PH, Holland RJ (2008) Microbial spatial variability: an example from the Celtic Sea. Prog Oceanogr 76:443–465CrossRefGoogle Scholar
  144. Martinez A, Tyson GW, DeLong EF (2010) Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ Microbiol 12:222–238Google Scholar
  145. Martiny AC, Coleman ML, Chisholm SW (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA 103:12552–12557PubMedCrossRefGoogle Scholar
  146. Martiny AC, Huang Y, Li W (2009a) Occurrence of phosphate acquisition genes in Prochlorococcus cells from different oceanic regions. Environ Microbiol 11:1340–1347PubMedCrossRefGoogle Scholar
  147. Martiny AC, Kathuria S, Berube PM (2009b) Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc Natl Acad Sci USA 106:10787–10792PubMedCrossRefGoogle Scholar
  148. Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW (2009c) Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ Microbiol 11:823–832PubMedCrossRefGoogle Scholar
  149. Mazard S, Ostrowski M, Partensky F, Scanlan DJ (2012) Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ Microbiol 14:372–386PubMedCrossRefGoogle Scholar
  150. McCarren J, Brahamsha B (2005) Transposon mutagenesis in a marine Synechococcus strain: isolation of swimming motility mutants. J Bacteriol 187:4457–4462PubMedCrossRefGoogle Scholar
  151. McCarren J, Brahamsha B (2007) SwmB, a 1.12-megadalton protein that is required for nonflagellar swimming motility in Synechococcus. J Bacteriol 189:1158–1162PubMedCrossRefGoogle Scholar
  152. McCarren J, Heuser J, Roth R, Yamada N, Martone M, Brahamsha B (2005) Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J Bacteriol 187:224–230PubMedCrossRefGoogle Scholar
  153. Mella-Flores D, Mazard S, Humily F, Partensky F, Mahé F, Bariat L, Courties C, Marie D, Ras J, Mauriac R, Jeanthon C, Mahdi-Bendif E, Ostrowski M, Scanlan DJ, Garczarek L (2011) Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming? Biogeosciences 8:2785–2804PubMedCrossRefGoogle Scholar
  154. Moore LR, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol Oceanogr 44:628–638CrossRefGoogle Scholar
  155. Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116:259–275CrossRefGoogle Scholar
  156. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467PubMedCrossRefGoogle Scholar
  157. Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996CrossRefGoogle Scholar
  158. Moore CM, Mills MM, Langlois R, Milne A, Achterberg EP, LaRoche J, Geider RJ (2008) Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol Oceanogr 53:291–305CrossRefGoogle Scholar
  159. Morel A, Ahn Y-H, Partensky F, Vaulot D, Claustre H (1993) Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation. J Mar Res 51:617–649CrossRefGoogle Scholar
  160. Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER (2008) Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol 74:4530–4534PubMedCrossRefGoogle Scholar
  161. Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, Scanlan DJ, Post AF, Joint I, Mann NH (2005) Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol 7:499–508PubMedCrossRefGoogle Scholar
  162. Mühling M, Fuller NJ, Somerfield PJ, Post AF, Wilson WH, Scanlan DJ, Joint I, Mann NH (2006) High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism. Aquat Microb Ecol 45:263–275CrossRefGoogle Scholar
  163. Murphy LS, Haugen EM (1985) The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol Oceanogr 30:47–58CrossRefGoogle Scholar
  164. Odate T, Fukuchi M (1995) Physical and chemical properties of surface water in the Southern Ocean in summer 1991/92. Proc NIPR Symp Polar Biol 8:77–85Google Scholar
  165. Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1988) Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep Sea Res 35:425–440CrossRefGoogle Scholar
  166. Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1990a) Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanogr 35:45–58CrossRefGoogle Scholar
  167. Olson RJ, Zettler ER, Altabet MA, Dusenberry JA, Chisholm SW (1990b) Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res Part I 37:1033–1051CrossRefGoogle Scholar
  168. Osburne MS, Holmbeck BM, Frias-Lopez J, Steen R, Huang K, Kelly L, Coe A, Waraska K, Gagne A, Chisholm SW (2010) UV hyper-­resistance in Prochlorococcus MED4 results from a single base pair deletion just upstream of an operon encoding nudix hydrolase and photolyase. Environ Microbiol 12:1978–1988CrossRefGoogle Scholar
  169. Ostrowski M, Mazard S, Tetu SG, Phillippy K, Johnson A, Palenik B, Paulsen IT, Scanlan DJ (2010) PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J 4:908–921PubMedCrossRefGoogle Scholar
  170. Paerl RW, Foster RA, Jenkins BD, Montoya JP, Zehr JP (2008) Phylogenetic diversity of cyanobacterial narB genes from various marine habitats. Environ Microbiol 10:3377–3387PubMedCrossRefGoogle Scholar
  171. Paerl RW, Johnson KS, Welsh RM, Worden AZ, Chavez FP, Zehr JP (2011) Differential distributions of Synechococcus subgroups across the California current system. Front Microbiol 2:59PubMedGoogle Scholar
  172. Palenik B (2000) Why do isolates of eubacterial species have different growth rates under the same conditions? In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 611–616Google Scholar
  173. Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ Microbiol 67:991–994PubMedCrossRefGoogle Scholar
  174. Palenik B, Haselkorn R (1992) Multiple evolutionary origins of pro­chlorophytes, the chlorophyll b -containing prokaryotes. Nature 355:265–267PubMedCrossRefGoogle Scholar
  175. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042PubMedCrossRefGoogle Scholar
  176. Palenik B, Ren QH, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, Paulsen IT (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Natl Acad Sci USA 103:13555–13559PubMedCrossRefGoogle Scholar
  177. Palenik B, Ren Q, Tai V, Paulsen IT (2009) Coastal Synechococcus metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity. Environ Microbiol 11:349–359PubMedCrossRefGoogle Scholar
  178. Partensky F, Garczarek L (2003) The photosynthetic apparatus of chlorophyll b- and d-containing Oxychlorobacteria. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 29–62CrossRefGoogle Scholar
  179. Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Ann Rev Mar Sci 2:305–331PubMedCrossRefGoogle Scholar
  180. Partensky F, Hoepffner N, Li WKW, Ulloa O, Vaulot D (1993) Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol 101:285–296PubMedGoogle Scholar
  181. Partensky F, Blanchot J, Lantoine F, Neveux J, Marie D (1996) Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Res Part I 43:1191–1213CrossRefGoogle Scholar
  182. Partensky F, Blanchot J, Vaulot D (1999a) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull Inst Oceanogr 19:457–475Google Scholar
  183. Partensky F, Hess WR, Vaulot D (1999b) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127PubMedGoogle Scholar
  184. Penno S, Lindell D, Post AF (2006) Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA. Environ Microbiol 8:1200–1211PubMedCrossRefGoogle Scholar
  185. Perkins FO, Haas LW, Phillips DE, Webb KL (1981) Ultrastructure of a marine Synechococcus possessing spinae. Can J Microbiol 27:218–329CrossRefGoogle Scholar
  186. Pickup ZL, Pickup R, Parry JD (2007) Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Appl Environ Microbiol 73:2631–2634PubMedCrossRefGoogle Scholar
  187. Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618CrossRefGoogle Scholar
  188. Rabouille S, Edwards CA, Zehr JP (2007) Modelling the vertical distribution of Prochlorococcus and Synechococcus in the North Pacific Subtropical Ocean. Environ Microbiol 9:2588–2602PubMedCrossRefGoogle Scholar
  189. Richardson TL, Jackson GA (2007) Small phytoplankton and carbon export from the surface ocean. Science 315:838–840PubMedCrossRefGoogle Scholar
  190. Rippka R, Coursin T, Hess WR, Lichtlé C, Scanlan DJ, Palinska KA, Iteman I, Partensky F, Houmard J, Herdman M (2000) Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a 2/b 2-containing cyanobacterium (Oxyphotobacteria). Int J Syst Evol Microbiol 50:1833–1847PubMedGoogle Scholar
  191. Rivers AR, Wisniewski Jakuba R, Webb EA (2008) Iron stress genes in marine Synechococcus and the development of a flow cytometric iron stress assay. Environ Microbiol 11:382–396CrossRefGoogle Scholar
  192. Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871PubMedCrossRefGoogle Scholar
  193. Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191PubMedCrossRefGoogle Scholar
  194. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047PubMedCrossRefGoogle Scholar
  195. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 9:e6864CrossRefGoogle Scholar
  196. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu DY, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:398–431CrossRefGoogle Scholar
  197. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC (2010) Characterisation of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci USA 107:16184–16189CrossRefGoogle Scholar
  198. Saito MA, Rocap G, Moffett JW (2005) Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol Oceanogr 50:279–290CrossRefGoogle Scholar
  199. Samuel ADT, Petersen JD, Reese TS (2001) Envelope structure of Synechococcus sp. WH8113, a non-flagellated swimming cyanobacterium. BMC Microbiol 1:4PubMedCrossRefGoogle Scholar
  200. Scanlan DJ (2003) Physiological diversity and niche adaptation in marine Synechococcus. Adv Microb Physiol 47:1–64PubMedCrossRefGoogle Scholar
  201. Scanlan DJ, West NJ (2002) Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 40:1–12PubMedCrossRefGoogle Scholar
  202. Scanlan DJ, Bourne JA, Mann NH (1997) A putative transcriptional activator of the Crp/Fnr family from the marine cyanobacterium Synechococcus sp. WH7803. J Appl Phycol 8:565–567CrossRefGoogle Scholar
  203. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299PubMedCrossRefGoogle Scholar
  204. Shalapyonok A, Olson RJ, Shalapyonok LS (1998) Ultradian growth in Prochlorococcus spp. Appl Environ Microbiol 64:1066–1069PubMedGoogle Scholar
  205. Shapiro LP, Haugen EM (1988) Seasonal distribution and temperature tolerance of Synechococcus in Boothbay Harbor, Maine. Estuar Coast Shelf Sci 26:517–525CrossRefGoogle Scholar
  206. Shi Y, Tyson GW, Delong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459:266–272PubMedCrossRefGoogle Scholar
  207. Shimada A, Nishijima M, Maruyama T (1995) Seasonal abundance of Prochlorococcus in Suruga Bay, Japan in 1992–1993. J Oceanogr 51:289–300CrossRefGoogle Scholar
  208. Sieracki ME, Haugen EM, Cucci TL (1995) Overestimation of heterotrophic bacteria in the Sargasso Sea: direct evidence by flow and imaging cytometry. Deep Sea Res Part I 42:1399–1409CrossRefGoogle Scholar
  209. Six C, Thomas JC, Brahamsha B, Lemoine Y, Partensky F (2004) Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat Microb Ecol 35:17–29CrossRefGoogle Scholar
  210. Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259PubMedCrossRefGoogle Scholar
  211. Ŝmarda J, Ŝmajs D, Komrska J, Krzyžánek V (2002) S-layers on cell walls of cyanobacteria. Micron 33:257–277PubMedCrossRefGoogle Scholar
  212. Snyder DS, Brahamsha B, Azadi P, Palenik B (2009) Structure of compositionally simple lipopolysaccharide from marine Synechococcus. J Bacteriol 191:5499–5509PubMedCrossRefGoogle Scholar
  213. Sode K, Oonari R, Oozeki M (1997) Induction of a temperate marine cyanophage by heavy metal. J Mar Biotechnol 5:178–180Google Scholar
  214. Steglich C, Behrenfeld M, Koblizek M, Claustre H, Penno S, Prasil O, Partensky F, Hess WR (2001) Nitrogen deprivation strongly affects photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus. Biochim Biophys Acta 1503:341–349PubMedCrossRefGoogle Scholar
  215. Steglich C, Mullineaux CW, Teuchner K, Hess WR, Lokstein H (2003a) Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Lett 553:79–84PubMedCrossRefGoogle Scholar
  216. Steglich C, Post AF, Hess WR (2003b) Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequences. Environ Microbiol 5:681–690PubMedCrossRefGoogle Scholar
  217. Steglich C, Frankenberg-Dinkel N, Penno S, Hess WR (2005) A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. Environ Microbiol 7:1611–1618PubMedCrossRefGoogle Scholar
  218. Steglich C, Futschik M, Rector T, Steen R, Chisholm SW (2006) Genome-wide analysis of light sensing in Prochlorococcus. J Bacteriol 188:7796–7806PubMedCrossRefGoogle Scholar
  219. Steglich C, Futschik ME, Lindell D, Voss B, Chisholm SW, Hess WR (2008) The challenge of regulation in a minimal phototroph: non-coding RNAs in Prochlorococcus. PLoS Genet 4:e1000173PubMedCrossRefGoogle Scholar
  220. Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II 48:1405–1447CrossRefGoogle Scholar
  221. Stockner JW (1988) Phototrophic picoplankton: an overview from marine, freshwater ecosystems. Limnol Oceanogr 33:765–775CrossRefGoogle Scholar
  222. Strom SL, Brahamsha B, Fredrikson KA, Apple JK, Rodríguez AG. (2012) A giant cell surface protein in Synechococcus WH8102 inhibits feeding by a dinoflagellate predator. Environ Microbiol 14:807–816PubMedCrossRefGoogle Scholar
  223. Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107PubMedCrossRefGoogle Scholar
  224. Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298PubMedCrossRefGoogle Scholar
  225. Stuart RK, Dupont CL, Johnson DA, Paulsen IT, Palenik B (2009) Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl Environ Microbiol 75:5047–5057PubMedCrossRefGoogle Scholar
  226. Su ZC, Dam P, Chen X, Olman V, Jiang T, Palenik B, Xu Y (2003) Computational interference of regulatory pathways in microbes: an application to phosphorus assimilation pathways in Synechococcus sp. WH8102. Genome Inform 14:3–13PubMedGoogle Scholar
  227. Su Z, Olman V, Mao F, Xu Y (2005) Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acids Res 33:5156–5171PubMedCrossRefGoogle Scholar
  228. Su ZC, Mao FL, Dam P, Wu HW, Olman V, Paulsen IT, Palenik B, Xu Y (2006) Computational inference and experimental validation of the nitrogen assimilation regulatory network in the cyanobacterium Synechococcus sp. WH 8102. Nucleic Acids Res 34:1050–1065PubMedCrossRefGoogle Scholar
  229. Su ZC, Olman V, Xu Y (2007) Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8:156PubMedCrossRefGoogle Scholar
  230. Tai V, Palenik B (2009) Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 3:903–915PubMedCrossRefGoogle Scholar
  231. Tai V, Paulsen IT, Phillippy K, Johnson DA, Palenik B (2009) Whole-genome microarray analyses of SynechococcusVibrio interactions. Environ Microbiol 11:2698–2709PubMedCrossRefGoogle Scholar
  232. Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high-latitude cyanobacteria. New Phytol 142:315–323CrossRefGoogle Scholar
  233. Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillippy K, Palenik B, Paulsen IT (2009) Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J 3:835–849PubMedCrossRefGoogle Scholar
  234. Thomas EV, Phillippy KH, Brahamsha B, Haaland DM, Timlin JA, Elbourne LDH, Palenik, Paulsen IT (2009) Statistical analysis of microarray data with replicated spots: a case study with Synechococcus WH8102. Comp Funct Genomics, Article ID 950171Google Scholar
  235. Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142PubMedCrossRefGoogle Scholar
  236. Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493PubMedCrossRefGoogle Scholar
  237. Ting CS, Ramsey ME, Wang YL, Frost AM, Jun E, Durham T (2009) Minimal genomes, maximal productivity: comparative genomics of the photosystem and light-harvesting complexes in the marine cyanobacterium Prochlorococcus. Photosynth Res 101:1–19PubMedCrossRefGoogle Scholar
  238. Toledo G, Palenik B (1997) Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol 63:4298–4303PubMedGoogle Scholar
  239. Toledo G, Palenik B (2003) A Synechococcus serotype is found preferentially in surface marine waters. Limnol Oceanogr 48:1744–1755CrossRefGoogle Scholar
  240. Toledo G, Palenik B, Brahamsha B (1999) Swimming marine Synechococcus strains with widely different photosynthetic pigment ratios form a monophyletic group. Appl Environ Microbiol 65:5247–5251PubMedGoogle Scholar
  241. Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T, Steen R, Church GM, Chisholm SW (2006a) Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Mol Syst Biol 2:53PubMedCrossRefGoogle Scholar
  242. Tolonen AC, Liszt GB, Hess WR (2006b) Genetic manipulation of Prochlorococcus strain MIT9313: green fluorescent protein expression from an RSF1010 plasmid and Tn5 transposition. Appl Environ Microbiol 72:7607–7613PubMedCrossRefGoogle Scholar
  243. Urbach E, Robertson DL, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270PubMedCrossRefGoogle Scholar
  244. Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201PubMedCrossRefGoogle Scholar
  245. Uysal Z (2000) Pigments, size and distribution of Synechococcus spp. in the Black Sea. J Mar Syst 24:313–326CrossRefGoogle Scholar
  246. Vaulot D, Patensky F, Neveux J, Mantoura RFC, Llewellyn C (1990) Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol Oceanogr 35:1156–1164CrossRefGoogle Scholar
  247. Vaulot D, Marie D, Olson RJ, Chisholm SW (1995) Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268:1480–1482PubMedCrossRefGoogle Scholar
  248. Vaulot D, LeGall F, Marie D, Guillou L, Partensky F (2004) The Roscoff Culture Collection (RCC): a collection dedicated to marine picoplankton. Nova Hedwig 79:49–70CrossRefGoogle Scholar
  249. Veldhuis MJW, Kraay GW (1993) Cell abundance and fluorescence of picoplankton in relation to growth irradiance and nitrogen availability in the Red Sea. Neth J Sea Res 31:135–145CrossRefGoogle Scholar
  250. Venter JC, Remington K, Heidelberg JF, Halpern L, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  251. Vincent WF, Bowman J, Powell L, McMeekin T (2000) Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In: Brylinsky M, Bell C, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 317–322Google Scholar
  252. Waleron M, Waleron K, Vincent WF, Wilmotte A (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365PubMedCrossRefGoogle Scholar
  253. Waterbury JB, Rippka R (1989) Subsection 1. Order Chroococcales Wettstein 1924, emend. Rippka et al. 1979. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1728–1746Google Scholar
  254. Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294CrossRefGoogle Scholar
  255. Waterbury JB, Willey JM, Franks DG, Valois FW, Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230:74–76PubMedCrossRefGoogle Scholar
  256. Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 472:71–120Google Scholar
  257. Wawrik B, Paul JH, Campbell L, Griffin D, Houchin L, Fuentes-Ortega A, Muller-Karger F (2003) Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico. Mar Ecol Prog Ser 251:87–101CrossRefGoogle Scholar
  258. Wells ML, Price NM, Bruland KW (1994) Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters. Limnol Oceanogr 39:1481–1486CrossRefGoogle Scholar
  259. West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. Appl Environ Microbiol 65:2585–2591PubMedGoogle Scholar
  260. West NJ, Lebaron P, Strutton PG, Suzuki MT (2011) A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME J 5:933–944PubMedGoogle Scholar
  261. West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, Scanlan DJ (2001) Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology 147:1731–1744PubMedGoogle Scholar
  262. Wilmotte A, Demonceau C, Goffart A, Hecq J-H, Demoulin V, Crossley AC (2002) Molecular and pigment studies of the picophytoplankton in a region of the Southern Ocean (42–54°S, 141–144°E) in March 1998. Deep Sea Res Part II 49:3351–3363CrossRefGoogle Scholar
  263. Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007PubMedCrossRefGoogle Scholar
  264. Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–672PubMedCrossRefGoogle Scholar
  265. Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM, Waterbury JB (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnol Oceanogr 30:1303–1315CrossRefGoogle Scholar
  266. Wood AM, Phinney DA, Yentsch CS (1998) Water column transparency and the distribution of spectrally distinct forms of phycoerythrin containing organisms. Mar Ecol Prog Ser 162:25–31CrossRefGoogle Scholar
  267. Wood AM, Lipsen M, Coble P (1999) Fluorescence-based characterisation of phycoerythrin-containing cyanobacterial communities in the Arabian Sea during the northeast and early southwest monsoon (1994–1995). Deep Sea Res Part II 46:1769–1790CrossRefGoogle Scholar
  268. Worden AZ, Binder BJ (2003) Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol 30:159–174CrossRefGoogle Scholar
  269. Wyman M, Bird C (2007) Lack of control of nitrite assimilation by ammonium in an oceanic picocyanobacterium, Synechococcus sp. strain WH8103. Appl Environ Microbiol 73:3028–3033PubMedCrossRefGoogle Scholar
  270. Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, Chisholm SW (2006) Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl Environ Microbiol 72:723–732PubMedCrossRefGoogle Scholar
  271. Zinser ER, Johnson ZI, Coe A, Karaca E, Veneziano D, Chisholm SW (2007) Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol Oceanogr 52:2205–2220CrossRefGoogle Scholar
  272. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, Wright MA, Rector T, Steen R, McNulty N, Thompson LR, Chisholm SW (2009) Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS One 4:e5135PubMedCrossRefGoogle Scholar
  273. Zohary T, Robarts RD (1998) Experimental study of microbial P limitation in the eastern Mediterranean. Limnol Oceanogr 43:387–395CrossRefGoogle Scholar
  274. Zubkov MV, Tarran GA (2005) Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front. Aquat Microb Ecol 40:241–249CrossRefGoogle Scholar
  275. Zubkov MV, Sleigh MA, Burkill PH, Leakey RJG (2000) Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Prog Oceanogr 45:369–386CrossRefGoogle Scholar
  276. Zwirglmaier K, Heywood JL, Chamberlain K, Woodward EMS, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ Microbiol 9:1278–1290PubMedCrossRefGoogle Scholar
  277. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161PubMedGoogle Scholar
  278. Zwirglmaier K, Spence E, Zubkov MV, Scanlan DJ, Mann NH (2009) Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ Microbiol 11:1767–1776PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of WarwickCoventryUK

Personalised recommendations